

Système de contrôle de la dynamique hydrique d'échantillons de sol couplé à la mesure des émissions N_2O

Guillaume GIOT, Eva RABOT, Isabelle COUSIN / J2M 2014

- Les sols sont reconnus comme la principale source d'émissions du gaz à effet de serre N₂O.
 Emissions directes
 - 6 % de l'effet de serre ad Emissions indirectes et 15 % à l'échelle de la
- Les émissions de N₂O rés microbiens : nitrification/dé oxygène du milieu

Contexte

Diffusion faible de l'oxygène dans l'eau
la disponibilité en oxygène est liée à l'humidité des sols

Les émissions de N₂O sont en particulier déterminées par les caractéristiques hydriques des sols

Les simulations sont très sensibles à la caractérisation de l'humidité et de la masse volumique apparente des sols pour un WFPS > 0,6

WFPS : teneur en eau volumique / porosité

Les modèles ne tiennent pas compte de la dynamique d'humectation/dessiccation, de l'historique hydrique et des phénomènes d'hystérèse hydrique

> Besoin d'une meilleure connaissance du lien entre l'eau du sol et les émissions de N₂O

Concevoir un système de contrôle de la dynamique hydrique de saturation et de désaturation en eau d'échantillons de sol

Coupler le dispositif à un analyseur de gaz pour la mesure des émissions de N₂O

Cahier des charges

- Contrôle fin de la saturation et de la désaturation en eau d'un échantillon de sol, sans déplacement de l'échantillon
- Dispositif compatible avec la mesure des flux de N₂O par la méthode des chambres statiques
- Système étanche aux gaz et à l'eau mais démontable
- Régulation et mesure du potentiel matriciel au-delà de -100 cm d'eau
- \blacktriangleright Échantillons : \emptyset = 15 cm et h = 7 cm
- Suivi temporel de la teneur en eau et du potentiel matriciel du sol
- L'eau drainée lors de la désaturation doit être recueillie
- Le système doit pouvoir être transporté

Conception d'un système multistep outflow (MSO)

- système d'étanchéité permettant une saturation homogène de l'échantillon
- évacuation des bulles d'air pour améliorer la qualité de la saturation

Mesure du potentiel matriciel du sol : énergie avec laquelle l'eau est retenue dans le sol. Se mesure en unité de pression (mH₂O).

G. Giot / J2M 2014

Etalonnage des capteurs de pression

Tensiomètres

Relation linéaire tension - pression

Capteur	а	b	R ²
C1	42,83	4,38	0,9999
C2	43,38	-1,66	0,9999
C3	45,34	3,75	0,9999

Etalonnage avec un calibrateur de pression (Druck DPI 602) raccordé COFRAC Gamme : 0 à -8 mH₂O

Détermination du gain et de l'offset pour chaque capteur

Centrale d'acquisition + alim 12V

Entrées analogiques : mesures différentielles

RS 232

Ports numériques : Instruction SerialOpen SerialInRecord SerialFlush

Balance de précision : mesure du flux hydrique

Boitier microtensiométrique

- Fréquence d'acquisition : 10 minutes
- Communication : LoggerNet
- Programmation : CRBasic

G. Giot / J2M 2014

Mesure des flux de N₂O

Analyseur par corrélation infrarouge modèle 46i, Thermo Scientific

Méthode des chambres statiques

- la chambre est retirée avant chaque mesure (mise à l'atmosphère)
- [N₂O] enregistrée toutes les minutes dans la chambre pendant des périodes de 20 minutes

Les flux sont calculés de façon linéaire sur des périodes de 10 minutes après la fermeture de la chambre

Mesure des flux de N₂O

d'Orléans

La pente de la régression linéaire est utilisée pour calculer le flux de N_2O : quantité de N_2O émise par unité de surface et de temps

Sols prélevés sur le site atelier OS^2 (Eure et Loir) Horizons de surface Séchage à 25°C puis tamisage à 5 mm Compactage avec presse manuelle Cylindres $\emptyset = 15$ cm et h = 7 cm Saturé dans une solution enrichie en nitrates

G. Giot / J2M 2014

.013

Résultats

UR SOLS Unité de Recherche de Science du d'Orléans .014

Résultats

- Le système permet de contrôler finement le statut hydrique d'un échantillon de grande taille
- Le couplage à un analyseur de gaz permet de suivre les flux de N₂O par la méthode des chambres statiques
- Le montage étanche de l'échantillon doit être amélioré afin d'atteindre des potentiels matriciels inférieurs à -300 cm d'eau
- Le système est transportable et a pu être installé sous le tomographe à rayon X de la plateforme d'imagerie CIRE du site INRA de Tours

G. Giot / J2M 2014

.017

Merci de votre attention

