

Grazing in a dairy goat farm to design sustainable production systems in France

Hugues CAILLAT¹, B. Ranger¹, E. Bruneteau¹, C. Paraud², R. Delagarde³

n**ii**in 🕴 🔅

¹ INRA, UE1373 FERLus, F-86600 Lusignan, France

² ANSES, 60, rue de Pied de Fond, F-79000 Niort, France

³ INRA-Agrocampus Ouest, UMR PEGASE, F-35590 Saint-Gilles, France

67th Annual Meeting of the European Federation of Animal Science - Belfast UK, 29 Aug – 2 Sept 2016

FRANCE: the country of goat's milk in EU

1st EU producer: 550 millions liters collected 4th flock: 1.2 million of goats

INRA Lusignan research center is based in the main region of goat milk industry
50% of national delivered milk collection
26% of French goat flock
Mixed farming systems region
Oceanic climate with dry summers

...but a low feed self-sufficiency!

Feed self-sufficiency = 53 % ± 26% (88% in French dairy cows systems)

Due to :

♦ Intensification of dairy goat systems

Stopping of grazing because of parasitism

Today, only 5% of goats graze in the main region of production!!!

Main challenges of goat sector: develop sustainable dairy goat systems

- Develop grazing and/or herbage utilization in ration
- ✓ Optimize self-sufficiency of goat systems
- ✓ Integrate grasslands in cropping systems

To find a compromise between economy and environment

PATUCHEV : THE NEW EXPERIMENTAL GOAT PLATFORM OF INRA

A system-experiment to assess goat breeding systems using cultivated grasslands

- → Forage use : grazing + hay or exclusive hay
- → Reproduction: in or out sexual season
- Solar-heated air dried hay

Systemic and multidisciplinary approach

The system's transition & studied period

A multi-challenges grazing

- ➔ maximize herbage intake
- ➔ manage parasitism
- ➔ high yield and high qualities herbage
- → Offer: 3 kg DM/goat/day → 21 m²/goat/day
- → Paddocks of 0.5 ha → daily alternate use during 7 days with another

(changes in paddocks stimulates goat intake)

→ Sward height objectives → initial: 13-14 cm / final: more 7-8 cm

(« high » to limitate parasites intake)

Dynamic

rotational

grazing

- → After grazing → make hay alternate grazing /cutting to provide a rest period of more 45 days between 2 grazings. (break parasite's cycle)
- → When goats graze more 9 h/day, the ration is only about 700 g of self-produce grains complements

→ Herbage average yield (2014-2015): 10 Tons DM/ha

(only organic fertilzer)

Cutting: 6.5 T DM/ha + Grazing*: 3.5 T DM /ha

*(estimated by feed intake method from Inra 2007 tables)

A rapid but controlled GIN infestation

- Main GINs : Oesophagostomum and Teladorsagia/Trichonstrongylus
- TST + alternating AH molecules : only 2 to 15% of goats (FEC individual level)
 - → reduces costs, AH resistance and negative impacts on the environment

Lower milk performances but cheaper feed costs

Techno-economic criteria	Objectives for a more sustainable goat system	Conventional system
Milk yield ¹ (kg/goat/year)	850	868
Fat content ¹ (g/kg)	38	34.9
Protein Content ¹ (g/kg)	33	31.5
Milksolids ¹ (kg/goat/year)	60	57
Conc. + Deshy. efficiency ² (g/liters of milk)	360	918
Conc. + Deshy. quantity ² (kg/goat/year)	300	790
Proportion of forage in ration (%)	65	30
Feed self-sufficiency (%)	80	0
Feeding system cost ² (€/1000 L)	290	428

Lower milk performances but cheaper feed costs

Techno-economic criteria	Objectives for a more sustainable goat system	Conventional system (references of case study)
Milk yield ¹ (kg/goat/year)	850	868 (975)
Fat content ¹ (g/kg)	38	34.9 (40.4)
Protein Content ¹ (g/kg)	33	31.5 (34.7)
Milksolids ¹ (kg/goat/year)	60	57 (73)
Conc. + Deshy. efficiency ² (g/liters of milk)	360	918 (921)
Conc. + Deshy. quantity ² (kg/goat/year)	300	790 (875)
Proportion of forage in ration (%)	65	30
Feed self-sufficiency (%)	80	0
Feeding system cost ² (€/1000 L)	290	428 (386)

Lower milk performances but cheaper feed costs

Techno-economic criteria	Objectives for a more sustainable goat system	Conventional system (references of case study)	Seasonal grazing system "Patuchev"	Stat test ³	Milk yield (kg/goat/year) 120% Feeding system
Milk yield ¹ (kg/goat/year)	850	868 (975)	755	***	cost (€/1000 L) 80% Fat content (g/kg)
Fat content ¹ (g/kg)	38	34.9 (40.4)	35.8	NS	50%
Protein Content ¹ (g/kg)	33	31.5 (34.7)	33.2	***	Feed 40% Protein content
Milksolids ¹ (kg/goat/year)	60	57 (73)	52	**	(%) (g/kg)
Conc. + Deshy. efficiency ² (g/liters of milk)	360	918 (921)	399		Proportion of Millicollide
Conc. + Deshy. quantity ² (kg/goat/year)	300	790 (875)	301		forage in ration (%) (kg/goat/year)
Proportion of forage in ration (%)	65	30	76		quantity efficiency (kg/goat/year) (g/liters of milk)
Feed self-sufficiency (%)	80	0	77		Objectives Conventional system
Feeding system cost ² (€/1000 L)	290	428 (386)	315		Seasonal grazing system

Despite a lower milk yield, feeding system cost is decreased and

the objectives of self-sufficiency are reached

¹data from monthly individual milk recorder

² data from systemic approach

³Stat test: PROC GLM SAS - *** <0.001, ** <0.01, NS: No significant

67th Annual Meeting of the European Federation of Animal Science – Belfast UK, 29 Aug – 2 Sept 2016

Conclusion

- For goat systems, grazing is a real opportunity to improve their feeding self-sufficiency and their sustainability
 - → Milk production is lower but lower feed prod. costs
 - ➔ No major problem on metabolic or health aspects
- BUT...
- It is essential:
 - to choose swards and grazing management adapted to goats
 - to respect rules for integrated gastro-intestinal parasitism management

and evidently, to have access to land areas...

We need still to improve knowledge on

- impacts on environment, qualities of milk and cheeses, ...
- simulations according to economic situations
- herbage intake under grazing (grazing time and offered area)
- interactions between herbs and complements

THANK YOU FOR YOUR ATTENTION

http://www.poitou-charentes.inra.fr/en/patuchev

Aknowledgments to experimental staff for measures and fundings

PRÉFET DE LA RÉGION POITOU-CHARENTES

