Response of black poplar (Populus nigra L.) to hydrogeomorphological constraints: a semi-controlled ex situ experiment

Virginia Garófano-Gómez, Dov Corenblit, Johannes Steiger, Bruno Moulia, Stéphane Ploquin, Patrice Chaleil, Olivier Forestier, André Evette, Eduardo Gonzalez, Borbála Hortobágyi, et al.

To cite this version:

Virginia Garófano-Gómez, Dov Corenblit, Johannes Steiger, Bruno Moulia, Stéphane Ploquin, et al., Response of black poplar (Populus nigra L.) to hydrogeomorphological constraints: a semi-controlled ex situ experiment. I.S. Rivers, 2e conférence internationale "recherches et actions au service des fleuves et grandes rivières", Jun 2015, Lyon, France. La ZABR et le GRAIE, 324 p., 2015, Recherches et actions au service des fleuves et grandes rivières. hal-02740599

HAL Id: hal-02740599
https://hal.inrae.fr/hal-02740599
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
RESPONSE OF BLACK POPLAR (POPULUS NIGRA L.) TO HYDROGEO MORPHOLOGICAL CONSTRAINTS: A SEMI-CONTROLLED EX SITU EXPERIMENT

Réponse du peuplier noir (Populus nigra L.) aux contraintes hydro-géomorphologiques : une expérimentation ex situ semi-contrôlée

Evolutionary feedback between woody riparian species and hydrogeomorphological constraints

- Hydrogeomorphological factors (topography, flow and sediment transport regimes) control vegetation dynamics in riparian ecosystems but vegetation also has an impact on these factors, which in turn causes an effect on the plant phenotype.
- Concepts: ‘ecosystems engineers’ and ‘positive niche construction’.
- At an evolutionary timescale, this reciprocal interaction has promoted the selection of certain plant traits to increase the persistence of woody riparian species within fluvial environments.

Semi-controlled ex situ experiment

3.1 Objective: To quantify key response functional traits (morphological and biomechanical) of Populus nigra L. cuttings to simulated hydrogeomorphological constraints (drag force and sediment burial) as well as to dissociate the specific responses to them.

3.2 Experimental design: 128 stem cuttings of P. nigra (variety Jean Pourret) were measured, planted in permeable bags with an irrigation system attached and randomly assigned to one of the 4 treatments.

3.2.1 Treatments:

- T.1: Drag force
- T.2: Sediment burial
- T.3: Drag force + Burial
- T.4: Control

The weight (T.1) will be modulated imitating the shape of an average hydrograph of a Spring flood in the Garonne River (where the clone Jean Pourret comes from).

The burial (T.2) will be applied during the recession limb of the curve.

Temporal sequence of expected above-ground and below-ground plant development according to the application of treatments. (Experimentation from March to Sept. 2015)

3.2.2 Morphological and biomechanical traits:

- Above-ground traits
 - Number of shoots
 - Max. plant height
 - Root collar diameter
 - Diameter at middle mature height
 - Tapering
 - Inflation of the main stem
 - Average leaf area
 - Specific leaf area
 - Above-ground dry mass
 - Frontal surface area
 - Pulling force
 - Flexibility

- Below-ground traits
 - Initial diameter (cutting)
 - Initial weight (cutting)
 - N° first order roots
 - N° structural roots
 - N° basal, lateral and superficial roots
 - Root diameter
 - Insertion angle
 - Root length by diameter class
 - Max. and mean root length
 - Below-ground dry mass
 - N° 'shear' and 'broken' roots
 - Diameter of 'shear' and 'broken' roots

3.2.3 Preliminary results: First partial harvest

- 12 plants were destructively sampled to test the methodology of extraction, conservation and sub-sampling.

The growth is optimum but some differences are evident depending on the original size of the cutting and the mother tree they come from.

Analysis of root length confirms that roots could have different functions: anchorage (basal roots) and absorption (lateral roots).

The quantification of functional response traits of P. nigra will enhance our understanding of fundamental biogeomorphic interactions and its implication for the restoration of river systems.

Acknowledgements: Io Catherine Cochard, Olivier Volodin, Adil Aissi, Mohamed Abadi, Christophe Corona, Jérôme Lopez, Valérie Legué, Frédéric Julien, and Marc Villard for their support during this experimentation.

Virginia Garófano-Gómez1,2, Dov Corenblit1,2, Johannes Steiger1,2, Bruno Mouilla3, Stéphane Ploquin5, Patrice Chaleil3, Olivier Forestier4, André Evette6, Eduardo González8, Borbála Horthobágyi1,2, Luc Lambs8

1 Université Clermont Auvergne, UFR, MSH, Clermont-Ferrand, France (corresponding author: virginia.garofano.gomez@univ-clermont.fr) CNRS, UMR 6042, GEOLAB – Laboratoire de géographie physique et environnementale, Clermont-Ferrand, France. IAE, Clermont-Ferrand, France. 2 Université Clermont-Auvergne, UFR, MSH, Clermont-Ferrand, France. 3 Laboratoire de Physique de l’Éau, DRCAF Pays-de-la-Loire, Gueret, France. 4 Instituto de Ecosistemas y Medio Ambiente, Universidad de Oviedo, Spain. 5 Université Claude Bernard, Lyon, France. 6 Université de Lorraine, Nancy, France. 7 University of Ottawa, Ottawa, Canada.