

Extruded linssed alone or in combination with fish oil modifies mammary gene expression profiles

Christine Leroux, Yannick Faulconnier, Jordann J. Domagalski, Céline Boby, Jacques J. Rouel, Yves Y. Chilliard, Laurence Bernard

► To cite this version:

Christine Leroux, Yannick Faulconnier, Jordann J. Domagalski, Céline Boby, Jacques J. Rouel, et al.. Extruded linssed alone or in combination with fish oil modifies mammary gene expression profiles. 11. International Symposium on Milk Genomics and Human Health (IMGC), 2014, Aarhus, Denmark. 2014, 11th. International Symposium on Milk Genomics and Human Health (IMGC). hal-02740743

HAL Id: hal-02740743 https://hal.inrae.fr/hal-02740743

Submitted on 2 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EXTRUDED LINSEED ALONE OR IN COMBINATION WITH FISH OIL MODIFIES MAMMARY GENE EXPRESSION PROFILES

LEROUX C, FAULCONNIER Y, DOMAGALSKI J, BOBY C, ROUEL J, CHILLIARD Y, BERNARD L

INTRODUCTION

Nutrition is a major factor that regulates ruminant milk components synthesis particularly fatty acid (FA) composition which is an important determinant of milk nutritional quality for human consumers. Thus, in ruminants, nutritional strategies were developed with dietary supplementations such as plant oils or seeds rich in n-3 polyunsaturated FA to increase the milk nutritional value. In mammary gland, the milk components biosynthesis involves a large number of genes which nutritional regulation is not totally known in ruminants. In particular, in goats, although there are recent advances in functional genomic studies based on targeted approach using quantitative RT-PCR (reviewed in Bernard et al. 2008) or on global analyses using microarrays (Ollier et al., 2007; 2009), the effects of n-3 rich diets on mammary gene expression profiles are still poorly documented.

600

MATERIAL & METHODS

Microarray analysis

regulated with ELFO compared with EL whereas only ACSBG1 (p<0.05) was down-regulated with EL compared to CTRL diet.

APOE

ABCG2

0		
Fat	Protein Lactose	Fat Protein lactose
yield	yield (g/d)	content content content
(g/d)	(g/d)	(g/kg) (g/kg) (g/kg)

effects of EL. Both EL and **ELFO** enhanced lactose content relative to CTRL.

Statistical analyses revealed 346 and 316 differentially expressed genes (DEG) with the EL and ELFO compared to the CTRL diet, respectively. The classification of these DEG according to their gene ontology pointed out the cell cycle, proliferation, differentiation and death (ca. 13% of the DEG) together with the protein metabolism and transport classes (ca. 13% of the DEG) as the two main categories altered by EL or ELFO diets.

The bioinformatics analyses of the DEG list

revealed two networks centered on an estrogen receptor (ESR1) and a transcriptional factor (SP1, represented here) with EL and ELFO diets compared to CTRL diet.

CONCLUSIONS & PERSPECTIVES

The increment of such holistic transcriptomics approach will provide new integrative view of molecular mechanisms involved in the nutritional regulation of goat mammary function during lactation. However, the expression of all these genes still needs to be evaluated in relation with milk fat composition and needs to be looked deeper into data mining analysis.

> Bernard et al., Adv. Exp. Med. Biol. (2008), 606:67-108 Ollier et al., J. Nutr. 137:560–567. Ollier et al., JDS, J. Dairy Sci. 92 :5544–5560

SCIENCE & IMPACT VetAgro Sup

INRA, UMR1213 HERBIVORES, F-63122 SAINT-GENÈS-CHAMPANELLE, FRANCE

http://www1.clermont.inra.fr/urh