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Coupling Fluid Flow, Heat Transfer
and Food Product Transformation
In a Tubular Heat Exchanger,

Including the Influence of Curved Sections

A. Plana-Fattori, E. Auger, C. Doursat, and D. Flick
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O experiment

# Eustice (1911): the existence of secondary flow in curved tubes is
demonstrated for a variety of geometries 4 o 00 0,,;00000
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O theory

# Dean (1928): fully-developed flow
In helically coiled circular tubes
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Aerosol Science and Technology

X Guan and T. B. Martanen

ADAPTED FROM

vﬁl‘ﬂlﬁ\ﬁumi parabalic

U naform



J. Biasetti et al. / J. R. Soc. Interface 11 (2014) 20140403

O numerical simulation

t=0.1s

(a) ICA sinus inner wall I
(outer curvature wall)

(b) ICA sinus outer wall
(inner curvature wall)

Figure 12. In-plane RBC velocity vectors on a plane normal to the centreline
in the carotid sinus of the stenotic carotid bifurcation at t = 0.10 s. Second-
ary flows in the form of Dean vortices are observed and are present
throughout the cardiac cycle (not shown). This secondary flow pattern
plays a key role in lowering the haematocrit on the outer wall of the ICA
sinus (see main text).

V. Kumar et al. / Chemical Engineering Science 61 (2006) 5742-5753
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8 SCOPE (AND SUMMARY)

O What about continuous thermal processing of liquid food products
...whose rheological behavior can change along the product history
...within heat exchangers characterized by complex geometry ...?

O In order to study these coupled problems, we need numerical model

...which must include realistic representation for the product
transformation Kinetics and rheological behavior
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...while considering the 3D characteristics of the processing unit ...!

O In addition, we need assess the model reliability with the help of
Independent observations
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...and evaluate the influence of mesh resolution on model predictions !




> HEAT EXCHANGER
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* heating sections are 80 cm long / bend
« all sections have a diameter of 8 mm inflow

» mean residence time ~50 s under 15 L/h holdmg section




10 COUPLED PHYSICAL PROBLEM

O aqueous suspension of modified waxy maize starch (3.42 % w/w)

O governing equations
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la_z ivs=v{rY(1-s¥+v-(dg¥s) .. transformation
E where V{T}=Va(T-Ta)

= . .

-::‘?ﬂ O transformation state: the swelling degree

S=(D-Dy )/(Dyx—Dy )

where D = volume mean diameter of starch granules




11 COUPLED PHYSICAL PROBLEM

O rheological model

apparent viscosity at 20 °C

7.7 }=K{®T };" !

< no hot bath o 1 min O 2 min
¢ 4 min A 8§ min — egstimates
K{QD’T}: ki exp(kZ@)Uwarer{T} 100 -
M@} =nx+(1-n*)exp(—k; (P-Dy)) IO-I:M
E oo
where i o
1072 3

@ = volume fraction occupied
by starch granules

@ =d,(D/D,)

apparent viscosity [Pa.s]

o
-
el
‘mt shear rate [s-1]
1

Fig. 2. Apparent viscosity values at 20 °C of the starch suspension, after selected
thermal treatments. Lines indicate the corresponding predictions of apparent viscosity
I.as a function of shear rate and solid volume fraction.

A. Plana-Fattori et al. / Journal of Food Engineering 171 (2016) 28—36




12 NUMERICAL MODEL

e governing equations are solved through the finite-element method
* simulation package COMSOL Multiphysics 4.4

* half- heat exchanger

e un-structured mesh

 double boundary-layer along the walls
e minimum element size=R /6
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2 R=8mm 1.3 107 degrees of freedom (1)
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13

NUMERICAL MODEL.: Boundary Conditions

FLUID FLOW HEAT TRANSFER TRANSFORMATION
LA _ SWELLING DEGREE:
INLET ti =—up 1, fully-developed flow (parabolic profile). . ’ D = Dy = 16.3 um (experiment).
) T4 =439 °C (experiment)
V' = 15 L/h (assignment); Reynolds number ~ 1040 hence 5 =0
NO VISCOUS STRESS, NULL PRESSURE:
: CONVECTIVE FLUX ONLY: CONVECTIVE FLUX ONLY:
OUTLET [ =2 (e 6=V ) 2 (5.2)7] B, R L
1-P1+f7l\V"+‘Vu.’I]-;f?‘V‘u'I [==Po7i | _jie-29T)=0 —iie(-dgVs)=0
ietf=0. pp=0
PLANE OF SYMMETRY: SYMMETRY: SYMMETRY:
SYMMETRY iei=0 —siel-4AVT)=0 —riel-dgVS+i S)=0
FLUX DENSITY (HEATING):
NO SLIPPING: L -\ . INSULATION:
WALLS —rie(-2VT)=4 i}
i=0 —iiel-dgVS+i S)=0
INSULATION (BENDS & HOLDING):
—iie|-AVT)=0




14 RESULTS: Secondary Flow




15 RESULTS: Secondary Flow
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17 RESULTS: Secondary Flow
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18 RESULTS: Secondary Flow and Product History
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19 RESULTS: Temperature and Product History
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20 RESULTS: Temperature and Product History
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21 RESULTS: Transformation and Product History
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22 RESULTS: Transformation and Product History
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23 RESULTS: Apparent Viscosity and Product History
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24 RESULTS: Apparent Viscosity and Product History
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25 RESULTS: Mixing Effectiveness
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26 RESULTS: Mixing Effectiveness
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RESULTS: Selected Variables at the Exchanger Inlet and Outlet
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28 RESULTS: Comparison with Observations

O experimental value of the volume mean diameter of starch granules at the
exchanger outlet (after sampling the product while running the heat
exchanger):

# 23.6 +/- 0.4 um (three samples separated by five minutes)

L model prediction of the volume mean diameter of starch granules at the
exchanger outlet:

SUENCE & IMPACT

-~
.
o d
o
—

@

#24.22 pym (minimum element size = R/6)
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29 RESULTS: Comparison with Observations

O experimental value of the volume mean diameter of starch granules at the
exchanger outlet (after sampling the product while running the heat
exchanger):

# 23.6 +/- 0.4 um (three samples separated by five minutes)
... OF 0p = (23.6 — 16.3) = 7.3 um In diameter increase

SUENCE & IMPACT

L model prediction of the volume mean diameter of starch granules at the
exchanger outlet:

i

- #24.22 pym (minimum element size = R/6)

k= .. OF 0 = (24.22 - 16.3) = 7.9 um (+8 %) in diameter increase
z

g

g
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30 RESULTS: Comparison with Observations

O experimental value of the volume mean diameter of starch granules at the
exchanger outlet (after sampling the product while running the heat
exchanger):

# 23.6 +/- 0.4 um (three samples separated by five minutes)
... OF 0p = (23.6 — 16.3) = 7.3 um In diameter increase

SCENCE & IMPACT

model prediction of the volume mean diameter of starch granules at the

i exchanger outlet:

;: # 24.22 um (minimum element size = R/6)

,a_z .. OF 85 = (24.22 - 16.3) = 7.9 um (+8 %) in diameter increase
D’m: O influence of mesh resolution on these model predictions:

!:"Eﬂ # 24.18 pm (minimum element size = R/5)

#24.25 pym (minimum element size = R/7)
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SUMMARY

O 3D numerical modeling of fluid flow, heat transfer and starch swelling
under thermal continuous processing, with no assumption regarding
the mixing role played by curved sections

# assessment of mixing: o decreases to 20 % of its previous value
(mixing effectiveness ~ 80 %o)

# reliability of model predictions: the increase o = (D — Dg) In
volume mean diameter is overestimated by about 8 % at the heat
exchanger outlet

# computational resources: hundreds of Gb RAM, some days
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ONGOING WORK

O looking for more realistic representation of starch swelling kinetics

# observations with an optical microscope coupled to a warming
plate, in order to follow the behavior of starch granules during
thermal treatments

# in the case of modified waxy maize starch, the swelling
mechanism exhibits some stochastic nature, associated with
diffusion of surrounding water into the starch granule.
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