Alley coppice: an innovative land use system - options of system design with experimental evidence

To cite this version:

P. Paris, Julie André, G. Facciotto, L. Tosi, M Nahm, et al.. Alley coppice: an innovative land use system - options of system design with experimental evidence. 2. European Agroforestry Conference, European Agroforestry Federation (EURAF). INT., Jun 2014, Cottbus, Germany. hal-02741338

HAL Id: hal-02741338
https://hal.inrae.fr/hal-02741338
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Alley coppice: an innovative land use system - options of system design with experimental evidence

Paris P\(^1\), Andre J\(^2\), Facciotto G\(^3\), Tosi L\(^1/8\), NAHM M\(^4\), Morhart C\(^5\), Douglas GC\(^6\), Lunny R\(^6\), Dupraz C\(^2\), Graves A\(^7\)

\(^1\)CNR-IBAF, It; \(^2\)INRA Montpellier, UMR SYSTEM, Fr; \(^3\)CRA-PLF Casale M., It; \(^4\)Forest Research Institute Baden-Württemberg (FVA), D; \(^5\)Chair of Forest Growth, Albert-Ludwigs-University of Freiburg, D; \(^6\)Teagasc Kinsealy Research Centre, Dublin 17, Ir; \(^7\)Institute for Environment, Health, Risks, and Futures, Cranfield University, UK; \(^8\)DIBAF, Univ. of Tuscia, It
What is alley Coppice?

Cultivation of multipurpose plantation producing biomass and logs for industry combining SRC (e.g. poplars, willows) and valuable timber trees (e.g. walnut, w. cherry, *Sorbus*) on agricultural land
Coppice with standards

Alley cropping

Mixed timber plantations

Morhar et al., 2014. Alley coppice – A new system with ancient roots. Annals of Forest Science
Why Alley Coppice?

i) the farmers can receive payments for biomass every 2-5 years during juvenile phase of the high value timber trees;

ii) the timber trees can be planted at final spacing, avoiding plantation thinning;

iii) the SRC, with a rapid canopy closure, has a positive environmental impact, reducing soil erosion and increasing biodiversity;

iv) the SRC can protect the timber trees from wind and storm;

v) a modulated light competition of SRC towards the timber trees causes the correct growth of their stem, reducing pruning intensity.
Biomass harvesting cost in mixed plantations vs SRC

Thinning in mixed plantations:
25-50 €/fresh t (chips/fuelwood) (1)

Harvesting in SRC:
Circa 5 € fresh t (2)

Problems!!!!!!!

SRC trees (poplars/willows/eucalypts) are fast growing and demanding crops, potentially very competitive towards timber trees

<table>
<thead>
<tr>
<th>Crop (from literature)</th>
<th>‘Irrigation’ Crop coeff. (Kc) max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poplar SRC</td>
<td>3,4</td>
</tr>
<tr>
<td>Sorghum</td>
<td>1,5</td>
</tr>
<tr>
<td>Sunflower</td>
<td>1,12</td>
</tr>
<tr>
<td>Corn</td>
<td>1,2</td>
</tr>
<tr>
<td>Olive tree</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Poplar SRC Nitrogen Uptake in the harvested biomass (Paris et al. unpublished)
Three alley coppice designs

• Simultaneous planting

• Lagged planting

• Border planting

Photos from Ireland, March 2014
First Results from 2 exp. plantations

Site of Domaine de Restinclières, INRA (Lagged planting) Hybrid walnut (18 years) and poplar SRC (2 years)

Site of Casale M. (simultaneous planting in 2007) Pyrus/Sorbus and poplar SRC (biennial cycle)
The experimental plantation in Casale M., Italy

TIMBER AND BIOENERGY TREES

- Poplar, 3 hybrid cultivars, to produce biomass for energy

- Hardwood species *Pyrus, Sorbus*, to produce wood for industry
Results

Timber and poplar tree growth stem height (H)

Years with *: harvesting of poplar SRC

7° years timber H: NS
Light Competition - Hemispherical photos

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alley Coppice</td>
<td></td>
<td>66.05 (2.35)</td>
<td>98.52 (0.15)</td>
</tr>
<tr>
<td>Sole timber</td>
<td></td>
<td>99.45 (1.3)</td>
<td>-</td>
</tr>
</tbody>
</table>
Wood quality of timber trees (Q)

\[Q = 3L - (+ F + DI + DF + DM + CF + Kn + EB) \]

- \(L \) = log morphology coef. (log length and stem straightness);
- \(E \) = stem eccentricity;
- \(F \) = fiber orientation;
- \(ID \) = insects damages;
- \(FD \) = bacteria/fungi damages;
- \(MD \) = mechanical damages;
- \(CF \) = presence/absence of critical fork;
- \(Kn \) = knots;
- \(EB \) = epicormic branches

<table>
<thead>
<tr>
<th>Treatments</th>
<th>(Q_{ave})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alley Coppice</td>
<td>3.7* (0.815)</td>
</tr>
<tr>
<td>Sole timber</td>
<td>2 (0.72)</td>
</tr>
</tbody>
</table>

* \(p \leq 0.05 \) according to Friedman’s Test
The experimental plantation
In Montpellier Restinclières (France)

TIMBER AND BIOENERGY TREES on 1,5ha

Poplar cultivar Monviso, to produce biomass for energy

+

18 year old hardwood species *Juglans regia x nigra* L., to produce wood for industry
Results at 1st coppicing (Poplar SRC: 2 year old)

- Low SRC yield average
 - Pure SRC: 1 Mg (DM)/ha/year
 - AC SRC: 0.3 Mg (DM)/ha/year

Severe drought during the first year of establishment (2012)
Leaf Water Potentials of Poplar SRC

- Strong competition for resources acquisition and use:
 - SRC water stress (Ψ_{pd}) in AC SRC > pure SRC (p-value=0.002)

- SRC water stress mitigated by agroforestry microclimate conditions:
 - ($\Psi_{pd} - \Psi_{md}$) in AC SRC < pure SRC (p-value = 0.03)
Concluding remarks

- LP site (France): the first coppicing cycle resulted in very low yields.
- LP site: the competition for light and water from the 18 year old walnut trees had strong negative effects on the SRC.
- It is not yet possible to conclude if LP can be used for the establishment of Agrocop systems.
- SP site (Italy). Co-planting seems to enhance complementarity for resources acquisition and use. It may be due partly to below-ground optimized co-development.

- In Alley Coppice, preliminary benefits on timber wood quality and from SRC micro-climate have been observed. These benefits have to be further explored for system optimization.

Acknowledgement for supporting the AgroCop Project to