Comparison of the Biomass Production Efficiency (BPE) seasonal evolution for a forest, a crop and a grassland under similar soil and climatic conditions
Laura Heid, Sébastien Conil, Katja Klumpp, Christine Moureaux, André A. Granier, Bernard B. Longdoz

To cite this version:
Laura Heid, Sébastien Conil, Katja Klumpp, Christine Moureaux, André A. Granier, et al.. Comparison of the Biomass Production Efficiency (BPE) seasonal evolution for a forest, a crop and a grassland under similar soil and climatic conditions. 1. ICOS International Conference on Greenhouse Gases and Biogeochemical Cycles, 2014, Bruxelles, Belgium. 2014. hal-02741484

HAL Id: hal-02741484
https://hal.inrae.fr/hal-02741484
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Comparison of the Biomass Production Efficiency (BPE) seasonal evolution for a forest, a crop and a grassland under similar soil and climatic conditions

HEID Laura(1,2), CONIL Sébastien(2), KLO Misty(3), MOUTADAU Christine(4), GRANIER André(1), LONGDOZ Bernard(1)

(1)INRA, UMR EEF, UMR 1137, Champenoux, France
(2)ANDRA, DRD – OS/GES, Centre Meuse-Haute Marne, 55290 Bure, France
(3)INRA, UR EP, UR 874, Clermont-Ferrand, France
(4)Université de Liège-Gembloux Agro-Bio Tech, Unité de Physique des biosystèmes, Gembloux, Belgium

Context
- Uncertainties in spatiotemporal variability of C allocation models within ecosystems (Campioli et al., 2013)
- Better understanding of C allocation would help to predict the strategies adopted by ecosystems to adapt to climate change
- Long term ecosystem C emissions depend indeed of where the C assimilates goes (i.e. deciduous tree leaves having a life span shorter than the woody part,...) (Trumbore, 2006)

Ecosystem Efficiencies

Component of interest (CI) to analyze

General objectives
- Obtain BPE for a weekly to monthly scale
- Compare the BPE of a forest, a crop and a grassland under almost identical climatic and pedological conditions
 - Study relationship with climate and management
 - Analysis of adaptability to climate change (if available: climate variability)

References

Biomass Production Efficiency (BPE) Vicca et al., 2012

- Introduced to distinguish the BPE from the ratio NPP/GPP (which also includes VOCs and root exudates) as BP is often used as proxy for NPP
- Show the part of C assimilated through photosynthesis used by plant for biomass production

Potential determining factors:
- Nutrient availability (Vicca et al., 2012; Sheriff et al., 1986)
- Age (controversial: De Lucia et al., 2007; Vicca et al., 2012)
- Species (Ryan et al., 1997; Aubinet et al., 2009)
- Atmospheric CO2 concentration (Matamala et al., 2003)

Experimental Sites

Studied soil type: Calci-brunicol

1998

(AFES, Growth follow-up)

Tree growth increment
Crop, Grassland monthly sampling

Biochemical analysis

Tree monthly micro-coring, Crop and Grassland monthly sampling

Forest Cl: gravimetric determination (Schädel et al., 2010)
Crop, grassland Cl: chemical, IR determination (Cesar laboratory, France)

Method

Flux tower/mast

- Wind speed
- Wind direction
- Radiation
- Precipitation
- CO2/H2O covariance

Obtaining GPP

use of big-plate online tool

References

Acknowledgments

The UMR1137 is supported by the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-12-LABXARBRE-01)