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ABSTRACT: Three different procedures were 
implemented to calculate weights for a genomic 
relationship matrix to restrict the shrinkage along iterations 
of weighted single-step genomic BLUP (WssGBLUP).  The 
procedures as well as BayesC were tested with 3 simulated 
data sets. Prediction accuracy for WssGBLUP improved at 
2nd or 3rd iteration by updating only the top number of SNP 
equal to 1 × or 3 × the number of QTL; accuracy increased 
after 3rd iteration and remained stable by using weights 
proportional to 2pi(1- pi)ui

2 + constant. Except in the 5 QTL 
scenario, accuracies with all WssGBLUP procedures were 
higher than with BayesC. Noise in Manhattan plots was 
small with 5 and 100 QTL but large with 500 QTL. 
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INTRODUCTION 
Genomic BLUP (GBLUP) is usually associated 

with equal weights on all SNP while the Bayesian methods 
are associated with different weights on SNP. If those 
weights are known, weighted GBLUP provides similar 
Genomic EBV (GEBV) to a Bayesian procedure using the 
same weights (Legarra et al., (2010)).  Methods were 
developed that allow for estimation of weights within the 
GBLUP (Sun et al. (2011)) or single-step GBLUP (Misztal 
et al. (2009); Aguilar et al. (2010); Wang et al. (2012)). 
They can be called as WGBLUP and WssGBLUP, 
respectively. Sun et al. developed two procedures for 
calculating weights in WGBLUP. In the first one, the 
weights were calculated as wj

(i) = 𝑎� j
(i)2, where wj

(i) is the 
weight of j-th SNP at i-th iteration and  𝑎�j

(i) is the effect of 
j-th SNP at i-th iteration. Such a procedure was good for 
identification of top QTL but shrank small SNP too much, 
thus reduced accuracy of GEBV. The highest accuracy of 
GEBV was achieved by modifying the formula for weights 

to wj
(i) = 𝑎� j

(i)2 + t, where t = 𝜎𝑔2

2∑ 𝑝𝑗𝑞𝑗
𝑚
𝑗=1

 , 𝜎𝑔2  is the genetic 

variance; p and q are the minor and major allele frequencies 
at j-th locus, respectively; and m is the number of SNPs. 
This procedure brought the accuracy of GEBV close to that 
by BayesC but yielded “noisy” Manhattan plots.  Wang et 
al., (2012) evaluated WssGBLUP with simulation data. 
They iterated either on SNP alone or on GEBV and SNP. 
The first option gave a good identification of top QTL, and 
the second option provided a higher accuracy of GEBV 
than BayesB, but at the second iteration only.  

The objectives of our study were to present new 
procedures to calculate weights for SNP in WssGBLUP and 
compare the accuracy and SNP effects with those computed 
by BayesC (Kizilkaya et al. (2010)) using simulated data.  

 

MATERIALS AND METHODS 
Data simulation. One additive trait with a mean 

of 1.0, phenotypic variance 1.0 and heritability 0.5 was 
simulated using QMSim (Sargolzaei and Schenkel, (2009)). 
A total of 20 chromosomes with average length 82 cM 
containing 45K evenly distributed SNP were created. Three 
scenarios were considered involving different numbers of 
randomly placed QTL: 5, 100, and 500. For the first 
scenario, QTL effects were sampled from the normal 
distribution with a minimum absolute value of 0.2. For the 
later two scenarios, QTL sampling was by the gamma 
distribution with a shape factor 0.4. Both SNP and QTL 
were bi-allelic, with no overlapping between their positions. 
The simulated population was randomly selected for 205 
generations and preceded by a historical population with 
1000 generations of random mating. 200 males and 2600 
females were selected to mate in each generation with a 
litter size of 1. Generations 200-204 were treated as a 
training population and 205 as a validation population, with 
1240 and 300 genotyped animals, respectively. The 
complete datasets contained 18,400 individuals in the 
pedigree, of which 13,000 were phenotyped and 1540 were 
genotyped. Average LD (r2) at last generation was about 
0.29. 

Model. The model for the simulation analysis was 
included a population mean, a random SNP effect and a 
random residual error term. Comparisons included 
WssGBLUP and BayesC. Both GEBV and SNP effects 
were obtained by BLUPF90 (Misztal et al. (2002)) 
modified for genomic analyses (Aguilar et al. (2010)), and 
GenSel (Fernando and Garrick (2009)). 

Statistical analysis. The weights were derived 
from SNPsolutions. Improvements on the SNP weights can 
be obtained iteratively either by recomputing the SNP 
effects only or by also recomputing the GEBV (Wang et al., 
(2012)). The latter was chosen for this study. Four options 
were used to calculate the SNP weights in ssGBLUP: 1) 
default: proportional to 2pi(1- pi)ui

2, where pi and ui are 
frequency and effect of the i-th SNP; 2) top N: weights as in 
1, but updating only N SNP with largest effects using the 
number of SNP is equal to 1 × the number of simulated 
QTL; 3) top 3N: updating only the top 3N SNP where 3N is 
equal to 3 × the number of simulated QTL; 4) constant: 
proportional to 2pi(1- pi)ui

2 + constant, where the constant 
was chosen as the weight of top 1 SNP in the first iteration. 

Accuracy was defined as the correlation between 
true breeding value (TBV) and GEBV in the validation 
population. Comparisons were made among the 4 options 
and also with BayesC using π equal to the proportion of 
ignored SNP in WssGBLUP using Option 2. 
 



RESULTS AND DISCUSSION 
Accuracy. Figure 1 shows accuracies of GEBV 

for 5 different methods under three scenarios. With Option 
1 the accuracy increased initially but declined later. As the 

number of QTLs increased, the inflection point came earlier 
(0.875, 0.817 and 0.873 on 4th, 3rd, and 2nd iterations for 5, 
100, and 500 QTL scenarios, respectively).  
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Figure 1. Accuracies with data containing different number 
of simulated QTL. 
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Figure 2. QTL effects and absolute SNP effects of 5 
methods using different weight with data containing 
different number of simulated QTL. A: true QTL effects; B: 
default: proportional to 2pi(1- pi)ui

2; C: top N: updating only 
the top N SNP where N is equal to 1 × QTL number; D: top 
3N: updating only the top 3N SNP where 3N is equal to 3 × 
QTL number; E: constant: proportional to 2pi(1- pi)ui+ 
constant, where constant = 15, 5 and 25 for 5, 100 and 500 
QTL; F: BayesC with π equal to the proportion of ignored 
SNP in WssGBLUP using Option 2. 
 



At early (≤3) iterations, options 2 and 3 could 
reach the best accuracy at 2nd (500 QTL scenario) or 3rd (5 
and 100 QTL scenarios) iteration. Option 3 provided the 
highest accuracy compared to other options by improving 
the peak accuracy of Option 1 in 2% (0.832 vs. 0.817) and 
1% (0.878 vs. 0.873) under 100 and 500 QTL scenarios, 
respectively. For the 5 QTL scenario, the best accuracy of 
Option 2 did not outperform Option 1 (0.871 vs. 0.875), but 
kept increasing throughout the iterations. However, except 
for the 5 QTL scenario, the accuracy of Options 2 and 3 
still dropped after the peak points. 

Although Option 4 did not reach a high accuracy 
at early iteration as Options 2 and 3, the accuracies 
remained stable once reaching the peak point (0.869 and 
0.879, for 5 and 500 QTL, respectively), and kept 
increasing for the 100 QTL scenario (0.839 at 10th 
iteration).  For 100 and 500 QTL scenarios, the accuracy by 
Option 4 exceeded those by Option 2 but only by 1%. 

Except for the 5 QTL scenario, all WssGBLUP 
options under all scenarios surpassed BayesC in accuracy. 
BayesC was 6% lower than the peak accuracy of Option 1 
under the 100 QTL scenario (0.772 vs. 0.817), and 18% 
lower under the 500 QTL scenario (0.714 vs. 0.873). This 
implies that BayesC performs well when the number of 
QTL is small, whereas WssGBLUP performs better when 
the number of QTL is large (>50, results not shown). 
However, Option 3 in the 5 QTL scenario outperformed 
BayesC, indicating that the choice of the weight in 
WssGBLUP affects the accuracy. Options 2 to 4 enhanced 
the accuracy because over-shrinkage of SNP effects was 
avoided. 

SNP identification. Figure 2 shows the Manhattan 
plots of SNP effects (graph A) of all methods and scenarios 
at the iteration corresponding to the best accuracy (graph B-
F; iteration 3, 3 and 2, for 5, 100 and 500 QTL, 
respectively). Under all scenarios, Options 2 to 4 reduced 
the noise. Although up to 20% of the QTLs did not create 
large peaks, most of QTL with large effects were identified, 
and few peaks were due to false positives.  

Option 4 distinguished QTL effects more clearly 
than Options 2 and 3 as adding a constant did not change 
the scale of each SNP relative to others like in Options 2 
and 3, whereas small effects were not shrunk as much as in 
the other scenarios. However, under the 500 QTL scenario, 
all Manhattan plots were noisy. 

 

CONCLUSION 
Presented procedures to calculate weights of SNP 

in WssGBLUP can be effective in improving both the 
accuracy of GEBV and GWAS. By the procedures, GEBVs 
were more accurate than by BayesC, although different 
parameters in the latter could change ranking of methods. 
Option 4 maybe the best choice given that in real data we 
may not know the true number of QTL. The WssGBLUP 
method is especially useful for GWAS when the population 
contains many ungenotyped animals and complex models 
preclude accurate deregression.  
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