
HAL Id: hal-02741882
https://hal.inrae.fr/hal-02741882

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ridge regression for the functional concurrent model
Nadine Hilgert, Tito Manrique Chuquillanqui, Christophe Crambes, André

Mas

To cite this version:
Nadine Hilgert, Tito Manrique Chuquillanqui, Christophe Crambes, André Mas. Ridge regression
for the functional concurrent model. 60. World Statistics Congress – ISI2015, Instituto Brasileiro de
Geografia e Estatística (IBGE). Rio de Janeiro, BRA., Jul 2015, Rio de Janeiro, Brazil. �hal-02741882�

https://hal.inrae.fr/hal-02741882
https://hal.archives-ouvertes.fr


Ridge Regression for the Functional Concurrent Model
Tito Manrique* 1, 2, Nadine Hilgert 1, Christophe Crambes 2, André Mas 2
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Abstract

The aim of the paper is to propose an estimator of the unknown function in the functional concurrent model.
This is a general model in which all functional linear models can be reduced. We follow a strictly functional
approach and extend the ridge regression method developed in the classical linear case to the functional
data framework. We establish asymptotic statistical properties of the proposed estimator and present some
simulations which show its high accuracy in fitting the unknown function, despite a low signal-to-noise ratio.
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1 Introduction

Functional Data Analysis (FDA) proposes very good tools to handle data that are functions of some covariate
(e.g. time, when dealing with longitudinal data). These tools may allow a better modelling of complex
relationships than classical multivariate data analysis would do, as noticed by Ramsay and Silverman [2005,
Ch. 1], Yao et al. [2005a,b], among others.
There are several models in FDA to study the relationship between two variables. In particular in this paper
we are interested in the Functional Concurrent Model (FCM) because, as stated by Ramsay and Silverman
[2005, p. 220], all functional linear models can be reduced to this form. This model can be defined as follows

Y (t) = β(t)X(t) + ε(t), (1)

where t ∈ R, β is an unknown function to be estimated, X,Y are random functions and ε is a noise random
function.
Some related models have already been discussed by several authors. For instance West et al. [1985] defined
a similar model called ‘dynamic generalized linear model’ which is written in the next equation over time

ηt = β0(t) +X1(t)β1(t) + · · ·+Xp(t)βp(t).

Hastie and Tibshirani [1993] themselves proposed a generalization of FCM called ‘varying coefficient model’.
Afterwards many people studied this model trying to estimate the unknown smooth regression functions βi,
for instance by local maximum likelihood estimation (Dreesman and Tutz [2001]; Cai et al. [2000a,b]), by
kernel smoothing (Wu et al. [1998]), or by local polynomial smoothing (Zhang et al. [2000]; Fan et al. [2003];
Zhang et al. [2002]).
As far as we know, despite the abundant literature related to FCM, there is no paper providing a strictly
functional approach (i.e. with random functions defined inside normed functional spaces) as noticed by
Ramsay and Silverman [2005, p. 259], who said that all these methods come more from a multivariate data
analysis approach rather than from a functional one. This may cause a loss of information because these
approaches, as noticed by Müller and Sentürk [2010, p. 1257], “do not take full advantage of the functional
nature of the underlying data”.
The goal of this paper is to extend the ridge regression method developed in the classical linear case to the
functional data framework. We establish asymptotic statistical properties of the proposed estimator and
present some simulation trials which show its high accuracy in fitting the unknown function, despite a low
signal-to-noise ratio.



2 General Hypotheses and Estimator

The space of the real valued continuous functions vanishing at infinity is denoted C0(R). In this space we
use the supremum norm, that is ‖f‖C0

:= supx∈R |f(x)| for some f ∈ C0(R). In the same way, for a compact
K ⊂ R, C0(K) is the space of real valued continuous functions defined on K, with the supremum norm
‖f‖C0(K) := supx∈K |f(x)|. Here are the general hypotheses made on the FCM (1) throughout this paper.

General Hypotheses of FCM

(H1FCM) X, ε are independent C0(R) valued random functions, E(ε) = E(X) = 0, E[‖ε‖C0
] < +∞ and

E[‖X‖C0
] < +∞.

(H2FCM) β ∈ C0(R).

(H3FCM) E[ ‖X‖2C0
] < +∞.

The Estimator

The definition of the estimator of β is inspired by the estimator introduced by Hoerl [1962] used in the ridge
regularization method that deal with ill-posed problems in the classical linear regression.

Let (Xi, Yi)i=1,··· ,n be an i.i.d sample of FCM (1) and λn > 0. We define the estimator of β as follows

β̂n =
1
n

∑n
i=1 YiXi

1
n

∑n
i=1 |Xi|2 + λn

n

. (2)

In the classical linear regression case, Hoerl and Kennard [1970, p. 62] proved that there is always a regular-
ization parameter for which the ridge estimator is better than the Ordinary Linear Squares (OLS) estimator.
Huh and Olkin [1995] made a study of some asymptotic properties of the ridge estimator in this context.

3 Asymptotic Properties

Theorem 3.1. Let (Xi, Yi)i=1,··· ,n be an i.i.d. sample of FCM (1). Then under the following hypotheses

(A1) The sequence of positive numbers (λn)n≥1 ⊂ R+ is such that λn

n → 0 and
√
n

λn
→ 0,

(A2) 0 < E[ |X(t)|2] < +∞, for all t ∈ R,

(A3) There exists a sequence of positive numbers (Dk)k≥1 ⊂ R+ such that

lim
k→∞

[
λk
k
· 1

inft∈[−Dk,Dk] E[ |X(t)|2]

]
= 0,

and for every t ∈ R, if |t| > Dk then |β(t)| ≤ 1
k ,

we obtain
‖β̂n − β‖C0

P−→ 0. (3)

Proof. (sketch) Given that Yi = β Xi + εi, for each i = 1, · · · , n we can decompose β̂n as follows

β̂n = β − λn
n

(
β

1
n

∑n
i=1 |Xi|2 + λn

n

)
+

(
1
n

∑n
j=1 εj Xj

1
n

∑n
i=1 |Xi|2 + λn

n

)
. (4)

Then the hypothesis (A2) and the Strong Law of Large Numbers (SLLN) in the separable Banach space
C0(R) are used to show that ∥∥∥∥∥

1
n

∑n
j=1 εj Xj

1
n

∑n
i=1 |Xi|2 + λn

n

∥∥∥∥∥
C0

P−→ 0.



Finally (A3) and SLLN are used to prove that∥∥∥∥∥λnn
(

β
1
n

∑n
i=1 |Xi|2 + λn

n

)∥∥∥∥∥
C0

a.s.−−→ 0,

which implies (3) by the triangle inequality in (4).

3.1 Comments about the Hypotheses

Hypothesis (A1): This hypothesis is about how fast λn has to go to infinity, it must be slower than n but
faster than

√
n.

Hypothesis (A2): We use (A2) because, if for some t ∈ R, we have E[ |X(t)|2] = 0 then almost surely

X(t) = 0 and thus β̂n(t) = 0 also. Therefore when β(t) 6= 0 and E[ |X(t)|2] = 0, β̂n cannot estimate β at the
point t.

Hypothesis (A3): Finally (A3) says that β must decrease faster than E[ |X(t)|2]. In this sense this hypothesis
may be interpreted as an assumption about the decreasing rate of the function β with respect to that of X,
as we can see in the following proposition where K1 can be understood as the decreasing rate of β and K2

that of E[ |X|2].

Proposition 3.2. If β(t) = 1
eK1|t| and E[|X(t)|2] = 1

eK2|t| in such a way that K1 > 2K2 > 0, then the

hypothesis (A3) is satisfied when we take λn =
√
n log n which satisfies (A1) in Theorem 3.1.

Proof. (sketch) We define Dk := log k
K1

> 0 for each k ≥ 1 and use the fact that β and E[|X|2] are strictly
decreasing functions.

It is possible to get a similar proposition for polynomial decreasing rates.

Proposition 3.3. If β(t) = 1
|t|r and E[|X(t)|2] = 1

|t|s in such a way that r > 2s > 0 with r, s ∈ N then the

hypothesis (A3) is satisfied when we take λn =
√
n log n which satisfies (A1) in the Theorem 3.1.

3.2 Further Results

We can prove the next corollaries by using similar ideas.

Corollary 3.4. Let (Xi, Yi)i=1,··· ,n be an i.i.d. sample of FCM (1), then under (A1) and the following
hypotheses

(A2bis) inf
t∈supp(β) E[ |X(t)|2] > 0,

(A3bis) supp(β) is bounded, where supp(β) is the closure of the support of β, supp(β),

we obtain
‖β̂n − β‖C0

P−→ 0. (5)

In the following corollary we establish a similar result as that of Theorem 3.1 in the space C0(K).

Corollary 3.5. Let (Xi, Yi)i=1,··· ,n be an i.i.d. sample of FCM (1), then under (A1), (A2bis) and the
following hypothesis

(A3ter) There exists a compact K ⊂ R such that supp(β) ⊂ K, and almost surely supp(X), supp(ε) ⊂ K,

we obtain
‖β̂n − β‖C0(K)

P−→ 0. (6)



4 Simulations

The accuracy of the estimator β̂n is illustrated for two choices of the function β. In all experiments, X
is a Brownian Motion (BM) on the interval [0, 1] and ε is a BM on [0, 1] too, which is independent of X.
To simulate the BM we used the Karhunen-Loève decomposition with the first 100 eigenfunctions. All the
functions are observed on 100 evenly spaced points in [0, 1].

We calculate the signal-to-noise ratio (SNR) as SNR =
Var[‖Y ‖C0

]

Var[‖ε‖C0
] .

We set two sample sizes n = 100 and n = 200 and fix three values for λ. For each set of parameter (n, λ), 100

trials were run to estimate the mean and the standard deviation of the relative estimation error
‖β̂n−β‖C0

‖β‖C0
.

Simulation 1 β is defined as follows β(t) =
√

2 sin((8− 1/2)πt). The accuracy of the estimation of β shall
be appreciated on the example given in the Figure 1,

Figure 1: β and its estimator β̂ with a SNR ≈ 2.937 (around 33% noise).

as well as in the following tables:
n = 100

λ mean sd
10−1 0.1386390 0.04017871
10−2 0.1391908 0.03942906
10−3 0.1394522 0.03932101

n = 200

λ mean sd
10−1 0.1003225 0.02600884
10−2 0.1000697 0.02628544
10−3 0.1000806 0.02634147

Simulation 2 β is defined as follows β(t) = 4(t6− 1/2t7 + 2t3 + 2t2− 4t+ 1) sin(22πt). One example of the
estimation is given in the Figure 2, and the relative estimation error is illustrated in the following tables:

n = 100

λ mean sd
10−1 0.05175795 0.01389744
10−2 0.03762299 0.01079769
10−3 0.03760215 0.01061630

n = 200

λ mean sd
10−1 0.03233332 0.009219947
10−2 0.02701885 0.007106225
10−3 0.02698448 0.007102699



Figure 2: β and its estimator β̂ with a SNR ≈ 32.743 (around 3% noise).

5 Conclusions

We established the asymptotic convergence of the functional ridge estimator. The simulations showed the
good accuracy of the estimator even for a low signal-to-noise ratio (around 3 in Simulation 1).
For further research, some work on the rate of convergence should be considered as well as a discussion about
the choice of the regularization parameter λn.
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