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Abstract: Since the 50 last years, the rapid development of modercdynie in industrialised countries has
considerably affected the quality of water resources, upégoint to jeopardise the capacity of rural territories
to produce drinking water. Hence, there has been interésinithe field of agronomy to study complex nitrogen
biogeochemical interactions over a long time period. Ninedess, if the agronomists are able to produce very
accurate models at different scales, they have a limitedbeurof available tools in order to cope with quality
measurements in water sources for which very little infdfamaabout the geological information is available. It
prevents the specialists of being affirmative about theiptied of their current actions on the water quality. By
opposition, system identification can deliver dynamicalele from measured data: they cannot be generalised
but offer strong insight without ang priori. This applicative paper introduces a data-driven modeisoé for
both modelling the nitrogen propagation in drinking wated affering new decision tools to stakeholders.

Keywords: data-driven modelling, nitrogen propagation, drinkingevajuality.

1 INTRODUCTION

Agriculture is challenged by large scale issues, like inpa€ land system changes on the preservation of envi-
ronmental resources, urging agronomy to evolve. Landsagmmomy has been proposed as new perspective to
address these issues (Béret al., 2012). In European Union, the WFD (Water Framewangative) is built on a
strict basis: water policy is a result based policy. Thawf&tates and Agencies have to maintain water in a good
state, link to chemical norms and dates to obtain thesetse@000/60/EC, 2000). It has hence become compul-
sory to deal with two main parameters to help decision maketss domain: the evolution of concentration and
the level of chemical contents at precise dates (2015, 2Z225). This work is hence dedicated to water quality
depletion or improvement.

During the past decades many different models have beeogedpn order to analyse the complex biogeochem-
ical behaviour of Nitrogen (N) in agricultural soils. In (M2zoni and Porporato, 2009), 250 different models are
classified in terms of mathematical features such as spaithtemporal scale or isotropy approximations. These
models take into account different phenomena (denitriboabiomass growth and decay, water flux ...) and there-
fore require the tuning of a large number of parameters. atsyrequire quite a large number of input such as the
type of culture (cereals,vegetables...), the N densityifigrdnt depths or the soil type (Bacsi and Zemankovics,
1995; de Willigen and Neeteson, 1985). Hence, they are ynesdlusively validated on dedicated experimental

parcels (Cavero et al., 1999; Bacsi and Zemankovics, 199%/itligen and Neeteson, 1985), where each required
information is available from measurements. The strenfithase models is their deep physical insight and the
respect of a modelling protocol allowing their general@ato other parcels.

Nevertheless, their main drawback is their inability to tweetd on parcels where some of the required knowledge
is unavailable: in this case, some assumptions are requitgdh can average favourably at large scales, but that
cannot be applied at smaller scales such as catchment @pacales (Del Grosso et al., 2006). In the presented
application, the only available information is the compmsN concentration measure in drinkable water sources.
There is not any knowledge about the depth of these soufvesurface of water they drain, their flow or the
soil type. Modelling and understanding the N propagatida the water is a challenging issue in such a situation
which actually represents the most realistic scenario ietrabdrinkable sources.

In opposition to the traditional approaches, a “top-dowppm@ach is proposed in this paper: the model is de-
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termined using the measured data and despite some slighbwacy divergences, these approaches link directly
to the field of system identification. The field of system idfecdtion uses statistical methods to build mathe-
matical models of dynamical systems from measured datair @& many environmental fields where system
identification was successfully used, and one of the mosgenus field related to the presented application is
the rainfall/runoff modelling (Laurain et al., 2010; Youagd Beven, 1994).

This paper main contribution is to propose a data-drivenehadiong with its physical validation process. The ob-
tained model aims at bridging the gap between the modellsgipilities with regards to slow/complex dynamics
effects and the stakeholders expectations. It is orgamiséallows. In Section 2, the issues and dead-end of tradi-
tional modelling and nitrogen propagation are detailedSéution 3, the proposed data-driven model is explained
along with some algorithmic aspects. Finally, the resulésexposed and validated using physical principles in
Section 4.1. Conclusions and some future directions ofwrebeare given in Section 5.

2 PROBLEM FORMULATION

The 2000 European Directive, the Water Framework DireddVED), proposed three new articles: preservation
of water bodies as a whole (taking into account non-poirluioh instead of only point-source pollution), an im-
posed schedule, and objectives defining quantified resaiia@for the ecological restoration of the environment.
This text is complex (because it includes several typesgilatory tools), ambitious, and is a cornerstone of the
European Union’s environmental policy. However, its aqgtiion is delicate for a number of countries (Dworak
et al., 2009) in which achieving consistency within the laas lfiollowed other pathways or which do not know
how to achieve this result. France partially conformed is directive only 6 years later through its Law on Water
and Aquatic Environments (Dworak et al., 2009) where forfitst time in French law, the notion of non-point
pollution appeared.

In 1990, nitrate peaks reaching 70 mgNO3-/L (exceeding tirefiean drinking standard of 50 mgNO3-/I) caused
a lively debate on management strategies to deal with thiztaenination. The public service delegated for water
proposed a strategy to protect all of the sources used fokidg water. With the European directive in mind,
a collective action called “Ferti-Mieux” started on the sms of the Haut-Saintois plateau (800 ha#182),
Lorraine, France. A list of agricultural new practices haetb proposed to farmers and many of them ( 85 %
of cultivated surface) adopted these improvements to gretater resources. The main changes are i) farmyard
management through low amount of compost (less than 2G/}/aad ii) mineral fertilisation control taking into
account soil mineralization (the global decreasing of trip60 kg N/haly). These improvements are near from
other European agricultural improvement operations faemguality protection (Kunkel et al., 2010; Lam et al.,
2011).

Since then, six sources are monitored by measuring the Neatration at a fortnight rhythm during 20 years by
technicians of Inra research unit (Lionel Caudy, Gilles {Ryuand Damien Foissy). The samplings have been
realised directly in the source catchment, with all the leggurity processes. The location of these sources
is characterized by an agricultural landscape. The landisis€orests (12 %), small rural roads (4 %) and
agricultural fields (84 %). Hence, the pollution sourcesarly diffuse pollution one, without any building and
houses in the watersheds. In this paper, due to space tiestsiowve focus on two of these sources which nitrate
ion concentratio©™ (¢) is displayed in Figure 1 in grey. It must be noticed that theesanodelling strategy with
similar results was applied on all the available data. Tha goto study the link between the practice changes
and the water quality. As there is not any available model afewdynamics in this karstic zone, and no N
concentration measure in the soil is available, we propaadriven modelling strategy.

3 THE PROPOSED TOOL : DATA-DRIVEN MODEL
3.1 The physical-based modelling problem

In practice, long-time trend forecasting and decision etpiires a dynamical model able to simulate the con-
centration in the water with respect to some given scen&f@vertheless, in the presented problem, no model is
available to link the agricultural N mass to the actual N @mation measured in the water. Should there be one,
it would also not be possible to tune it in order to fit the cotnmeasured data : indeed, none of the N input have
been measured. Hence, the commonly used modelling teghfoguhis problem is to use a simplistic polyno-

mial fit such as exposed in Figures 1 in red. Unfortunatelghsaustatic model indicates the current trend but is
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Figure 1: Measured nitrogen concentrat@ff (¢) andC2’ (¢) in two similar sourcess; and S, along with a3™¢
order polynomial approximation/; (t) andV/J¥ (¢)

not suitable for future forecasting. Finally and most intpatly, despite the similar region, soil and agricultural
policy, it appears that the polynomial curves indicate gifearesults for these two sources: no conclusion can be
drawn from this measured data.

3.2 The data-driven modelling problem

The solution proposed in this paper relies on the identibioabf a model under its transfer function form which
offers the ability to interpret a posteriori the data-dniv@odel in physical or ecological terms: this process is
the so-calleddata-driven mechanistic modelling (Young and Beven, 1994 main advantages in using such a
modelling paradigm are:

¢ Asimplified model is obtained without requiring any phys$issumption or model reduction. The obtained
model might not even be possibly derived from physical agtions. Nonetheless, only a physics-based
validation and its capacity to predict physical phenomegdimate its validity.

¢ If a very simple model is obtained, it also means that a soteoebe characterised using only a small set of
parameters, helping a lot in terms of data compression inldiig contexts.

¢ Finally, even though the obtained model cannot be diregthliad to other sources without measures, the
data-driven mechanistic process can be applied directnykind of relationship (rainfall/runoff...), at any
scale as soon as some measures are available.

Regarding the specific nitrogen propagation problem, fraystem theory viewpoint, two main issues have to be
dealt with and are not detailed here due to space restriction

1 The lack of nitrogen input: none of the nitrogen soil coricaion is measured. Consequently, a preliminary
data-mining phase has been realised. It is based on a simpdation analysis and the result is a possi-
ble correlation betweed’" (t) and both the raw rainfalR(t)(mm/day) and the temperaturé(t) (°C)
(downloaded from the European Climate Assessment welsgitece 741, (Tank and Coauthors, 2002).

2 System identification is dedicated to dynamical modeksditift represented by the polynomial approxima-
tion M (t) varies too slowly to be identified from a reduced set of dathraeds to be removed. Hence,
the considered output 8 (t) = CN (t) — MM (¢).

The proposed model which is the main contribution of thisgrag described by the following so-called Output-
Error model:
M {cgv(t)—bch(t) 4

s+aq s+ oy

Te(t) + e(t), (1)
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where s is the Laplace variable ane(t) is assumed to be a white noise stochastic proceS$.(t),R.(t)

and T,.(t) are the centred Nitrogen concentration, rainfall and teatpee respectively, defined &% (t) =
CN(t)— MN(t), R.(t) = R(t) —mean(R(t)) andT,(t) = T(t) —mean(T'(t)). by, a1, a1, by are the parameters

to be identified and they fully characterise the presentetisire. The same structure was proposed from the data
for all the sources analysed in this study (6 in total). Hemigis dynamical model is a simple first order model,
with two inputs and one output. Please note that other margticated models such as nonlinear Hammerstein
and Wiener structures along with nonparametric approag®gsport Vector Machines) have been tested. Nev-
ertheless, probably due to the amount of noise and thevelatow number of data points, the results were not
significantly better (or worse), lead to an harder inteigdien, and therefore, the simplest structure was retained.

This model implies that the temperature and the rainfallghaffect consistently the nitrogen concentration in
water. This statement can naturally not be derived from daygigal logic. Hence, one would think that this type
of model does not have any legitimacy. However, should tludehbe physically validated (temperature could be
correlated to an actual N source), it would be very intengsith the sense that temperature and rainfall are widely
available measures. Before drawing any conclusion ideatifin must be performed. Nonetheless, identification
is not a trivial matter either in such context. While the whitdse assumption is fair when measurement noise is
the major perturbation source, the problem is more comigiichere : noise on the inputs (the rain and the tem-
perature are not measured exactly above the consideregl)panéssing inputs, system approximation... Hence,
the identification needs to be robust to noise modellingrerteor this application, the so-called simplified refined
instrumental variable algorithm (SRIVC) (Young and Jakem®80) has been chosen. It hands out unbiased es-
timates in case the true noise is zero mean, independeritly ditribution and it was successfully used in many
other environmental applications (Laurain et al., 201Qynpand Beven, 1994). Consequently, before presenting
the results, here are all the steps necessary for the idatitifn of the proposed N propagation model:

Step 1.  Force all the data to the same sampling period : ingplicationC™ (¢) was sampled every
15 days, and was linearly interpolated to fit the one day sagpleriod of the rainfall and
temperature.

Step 2: Compute the polynomial curve and subtract it to tiggral measured data.

Step 3:  Split the data into a identification dataset and a@atabn dataset.

Step 4: Use the identification dataset to identify a lineaucstre using the SRIVC func-
tion (a free Matla®version can be downloaded with the Contsid Toolbox at
http://ww. cran. uhp- nancy. fr/ cont si d/ ) using different model orders.

Step 5: Use the validation dataset in order to choose the suitstble order (for example using
Young's Information criterion (Young and Jakeman, 1980] display the obtained model
(resulting here in (1)).

The obtained results are provided in the next section.

4 MODEL VALIDATION
4.1 Physical propositions

In this section, the identification results are depictedhia ftorm of physical propositions and data fit. Before
detailing the results, it must be emphasised here that pgori has been used in order to build this model and
it has been solely built using commonly measured data. Téwtification data has been chosen as a period of 4
years between 1997 and 2001 as they contain the most diffeiefall scenarii and the rest is used for validation
purpose . The coefficients of the identified models for thepwasented sources are exposed in table 1. Naturally,

Source rainfall temperature
ai \ by ai ‘ B

S1 0.016 | —0.050 || 0.021 | 0.0007
So 0.003 | —0.023 || 0.007 | 0.0002

Table 1: Identified parameters



V. Laurain et al. / Data-driven modelling for water resourcelity over long term trends

the equations are not homogenous and therefore, the absalute of these parameters are of little interest.
Nevertheless, it can be seen that thecoefficients are negative for both sources (and actuallgthiér studied
sources). This indicates a negative static gain on thealhindnsfer function. The exact opposite statement can
be concluded for the temperature transfer function.

The simulated output of the identified model can be compukbd.estimation data, validation data and simulated
output are exposed in Figure 2. Two striking facts appeanftiee simulation results. Even though these two
parcels behave differently from the trend perspectiver thenamic is actually quite similar. The identified model
outputs are actually nearly identical for both of these sesir Furthermore, the model output fits quite well the
original data (at least from in the estimation dataset) icmmg that the rainfall and temperature are not actual
sources of nitrogen. In order to quantify this fit, a localrecimspired from the NASH score (Nash and Stucliffe,
1970) is used and is defined as:

G2 (t) = O (IR s v

NASH(t) =1 - — L= .
|CE () — mean(CN) |7y o n

(@)

where CN(t;) is the output simulated from the identified model and the e[|}y ., v depicts thefs
norm on the samples betweén- N andk + N. Here,N is chosen as 365 days. In other words, the presented
score represents the NASH score on a local 2 years long windosach time sample. 1t must be noticed that
NASH = 1 means perfect fitN ASH = 0 means that the simulated output is only as predictive as ulgub
average, whileVASH < 0 means that the simulated output is not predictive.

10+ Original Original
— Simulated 101 — Simulated

-10+

_15 |-
1990 1992 1994 1996 1998 2000 2002 1990 1992 1994 1996 1998 2000 2002

Figure 2: Original centred concentrati6i" (t) (estimation data in green and validation data in grey) alwitiy
the model output simulated from the rainfall and temperatiata, for sources; (left) and.S; (right).

1

The fitting score quantification is displayed in Figi %%
3. It quantitatively appears now that both sources 0.6
tually all studied sources) evolve from a non-predic 0.4}
to a predictive zone around 1994. From a system 02l
ory viewpoint, it could be argued that the obtained f
rather poor. Nevertheless, the main unpredicted p:
located in the high frequencies which is not surpris
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for concentration measurements with respecttorai ~ -0.6f
and temperature. Finally, by taking into accountthat  -o.sf
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Figure 3: Local NASH score fa$; and.S;
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To sum it up, the result of the data-driven modelling are tilefing physical statements:
H1: The rainfall acts negatively on the nitrogen concerdrat
H2: The temperature acts positively on the nitrogen comea&an.
H3: The dynamic behaviour ¢f; and.S, are similar.
H4: The sources undergo a major change around the beginfiyjegan1994, even
though this year was not used for identification.

4.2 The physical validation

In agronomy, temperature is a good indicator of vegetatiowth season. In our temperate zones,@h€ is the
basis of two main phenomena: vegetation growth, and nitréteralization in the soil. Therefore, temperature
is used as an indicator of biological activity in the fieldiigh is strongly involved in soil nitrification which
validates H1. For agronomists, rainfall minus evapotraasipn is a pertinent indicator of nitrate movement in the
soils and in the aquifer: without rainfall, N are stable ie #oils while with high level of rainfall, they are moving
through the soils to the aquifers. When the amount of rainvis tbe N solubility being high, the concentration
of N will raise in the water. On the contrary, if the amount aiiris high, once the N soil nitrification decreases
under a critic mass, the N concentration will decrease. fHusstrongly validates H2. Consequently, these two
variables are in the heart of N leaching model and stronglsetated to N inputs (Brisson et al., 2010).

For our situation, these sources are situated very cloadlyel same geographic location on this karstic plateau
with a similar situation in terms of climate and soil behav& they should behave the same (H3). Finally, the
only change on these parcels is the farmers’ practice clsafigen a high level of inputs until 1992, to a strong
decreasing in 1993 with the initiation of “Ferti-Mieux” latwater resource management operation. For all studied
sources, it seems that the simple proposed model is ablegbasise this change clearly in time despite the fact
that thisa priori knowledge was not used in the modelling process (H4).

Consequently, while this model could not have been possiblived from physical reasoning, it seems that it is
strongly supported by the physical validation. This modkes as an input only natural measurements. Naturally,
it means that this model is unable to emphasize agriculpragtice changes when most of the nitrogen source
take origins from human activity. That could also mean thistinodel indicates how naturally behaves the source.
More data would be needed in order to assess this statemeiile $8me of the dynamics are well predicted by
this model, the slow trends and the high frequencies phenaroeuld though not be captured. Hence, either
the trends are caused by earlier data and a slower dynaregrative effect is present or they are caused by
measures taking place in the unmodelled high-frequendieagmena. In order to study the latter assumption,
a high frequency sampled-data would be needed and the tacguisition might not be sufficient to assert the
future behaviour of the sources. Nevertheless, shouldrityigogsed model represent a natural behaviour, then the
closer the N concentration to this model output, the momdyiko see the N concentration decrease at some point.
However, Further study is needed for this purpose.

5 CONCLUSIONS

In conclusion, a data-driven model has been proposed fargeih propagation in drinking water.lt must be well
understood that such an approach can be applied only onrmstited lands as the model drives the model defini-
tion. Hence, it does not require the same amount of a priguhgsical based-model, but it has other limitations.
For example, an identified model cannot therefore not betjrextended to other similar parcels as its param-
eters cannot be directly linked to any actual physical pgecélevertheless, it was shown that most of the yearly
dynamics could be predicted by solely using the rainfall emperature when the human nitrogen source is low,
giving a completely different insight on the system as uslialan be pointed out that this data was not acquired
for system identification purposes and therefore, the nietlo be considered as applicable on commonly avail-
able data. Even though the data-driven model does not agrany physical relationship it still can be validated
from physical principles. The fact that it is able to detechange in the agricultural policy from strong nitrogen
loads to considerable decreased loads could even suppdddhthat this model can well represent the natural
behaviour of a source. The more the model fits, the more thes@snatural. Nevertheless, deeper investigations
are required in order to validate this assumption. Henespthsented model could not estimate yet the long terms
trends. Nevertheless, the current trends might be a rdsiflpast effects. Should it be the case, and depending on
the time constants (which might be several dozens of ydaegjénds will never be possibly forecasted. However,
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should this model represent the naturalness of a sourae,ittiuld give the stakeholders a tool to assess the
naturalness of their watershed and assert whether thenttr@ads are caused by current policies or not.
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