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Abstract: Since the 50 last years, the rapid development of modern agriculture in industrialised countries has
considerably affected the quality of water resources, up tothe point to jeopardise the capacity of rural territories
to produce drinking water. Hence, there has been interest within the field of agronomy to study complex nitrogen
biogeochemical interactions over a long time period. Nevertheless, if the agronomists are able to produce very
accurate models at different scales, they have a limited number of available tools in order to cope with quality
measurements in water sources for which very little information about the geological information is available. It
prevents the specialists of being affirmative about the prediction of their current actions on the water quality. By
opposition, system identification can deliver dynamical models from measured data: they cannot be generalised
but offer strong insight without anya priori. This applicative paper introduces a data-driven model software for
both modelling the nitrogen propagation in drinking water and offering new decision tools to stakeholders.

Keywords: data-driven modelling, nitrogen propagation, drinking water quality.

1 INTRODUCTION

Agriculture is challenged by large scale issues, like impacts of land system changes on the preservation of envi-
ronmental resources, urging agronomy to evolve. Landscapeagronomy has been proposed as new perspective to
address these issues (Benoı̂t et al., 2012). In European Union, the WFD (Water Framework directive) is built on a
strict basis: water policy is a result based policy. Therefore, States and Agencies have to maintain water in a good
state, link to chemical norms and dates to obtain these results (2000/60/EC, 2000). It has hence become compul-
sory to deal with two main parameters to help decision makersin this domain: the evolution of concentration and
the level of chemical contents at precise dates (2015, 2021,2025). This work is hence dedicated to water quality
depletion or improvement.

During the past decades many different models have been proposed in order to analyse the complex biogeochem-
ical behaviour of Nitrogen (N) in agricultural soils. In (Manzoni and Porporato, 2009), 250 different models are
classified in terms of mathematical features such as spatialand temporal scale or isotropy approximations. These
models take into account different phenomena (denitrification, biomass growth and decay, water flux ...) and there-
fore require the tuning of a large number of parameters. Theyalso require quite a large number of input such as the
type of culture (cereals,vegetables...), the N density at different depths or the soil type (Bacsi and Zemankovics,
1995; de Willigen and Neeteson, 1985). Hence, they are mostly exclusively validated on dedicated experimental
parcels (Cavero et al., 1999; Bacsi and Zemankovics, 1995; de Willigen and Neeteson, 1985), where each required
information is available from measurements. The strength of those models is their deep physical insight and the
respect of a modelling protocol allowing their generalisation to other parcels.

Nevertheless, their main drawback is their inability to be tuned on parcels where some of the required knowledge
is unavailable: in this case, some assumptions are required, which can average favourably at large scales, but that
cannot be applied at smaller scales such as catchment or parcels scales (Del Grosso et al., 2006). In the presented
application, the only available information is the compulsory N concentration measure in drinkable water sources.
There is not any knowledge about the depth of these sources, the surface of water they drain, their flow or the
soil type. Modelling and understanding the N propagation into the water is a challenging issue in such a situation
which actually represents the most realistic scenario in most of drinkable sources.

In opposition to the traditional approaches, a “top-down” approach is proposed in this paper: the model is de-
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termined using the measured data and despite some slight vocabulary divergences, these approaches link directly
to the field of system identification. The field of system identification uses statistical methods to build mathe-
matical models of dynamical systems from measured data. Their are many environmental fields where system
identification was successfully used, and one of the most prosperous field related to the presented application is
the rainfall/runoff modelling (Laurain et al., 2010; Youngand Beven, 1994).

This paper main contribution is to propose a data-driven model, along with its physical validation process. The ob-
tained model aims at bridging the gap between the modelling possibilities with regards to slow/complex dynamics
effects and the stakeholders expectations. It is organisedas follows. In Section 2, the issues and dead-end of tradi-
tional modelling and nitrogen propagation are detailed. InSection 3, the proposed data-driven model is explained
along with some algorithmic aspects. Finally, the results are exposed and validated using physical principles in
Section 4.1. Conclusions and some future directions of research are given in Section 5.

2 PROBLEM FORMULATION

The 2000 European Directive, the Water Framework Directive(WFD), proposed three new articles: preservation
of water bodies as a whole (taking into account non-point pollution instead of only point-source pollution), an im-
posed schedule, and objectives defining quantified results aiming for the ecological restoration of the environment.
This text is complex (because it includes several types of regulatory tools), ambitious, and is a cornerstone of the
European Union’s environmental policy. However, its application is delicate for a number of countries (Dworak
et al., 2009) in which achieving consistency within the law has followed other pathways or which do not know
how to achieve this result. France partially conformed to this directive only 6 years later through its Law on Water
and Aquatic Environments (Dworak et al., 2009) where for thefirst time in French law, the notion of non-point
pollution appeared.

In 1990, nitrate peaks reaching 70 mgNO3-/L (exceeding the European drinking standard of 50 mgNO3-/l) caused
a lively debate on management strategies to deal with this N contamination. The public service delegated for water
proposed a strategy to protect all of the sources used for drinking water. With the European directive in mind,
a collective action called “Ferti-Mieux” started on the sources of the Haut-Saintois plateau (800 ha= 8km2),
Lorraine, France. A list of agricultural new practices has been proposed to farmers and many of them ( 85 %
of cultivated surface) adopted these improvements to protect water resources. The main changes are i) farmyard
management through low amount of compost (less than 20 t/ha/y) and ii) mineral fertilisation control taking into
account soil mineralization (the global decreasing of input is 60 kg N/ha/y). These improvements are near from
other European agricultural improvement operations for water quality protection (Kunkel et al., 2010; Lam et al.,
2011).

Since then, six sources are monitored by measuring the N concentration at a fortnight rhythm during 20 years by
technicians of Inra research unit (Lionel Caudy, Gilles Rouyer and Damien Foissy). The samplings have been
realised directly in the source catchment, with all the legal security processes. The location of these sources
is characterized by an agricultural landscape. The land useis: Forests (12 %), small rural roads (4 %) and
agricultural fields (84 %). Hence, the pollution sources areonly diffuse pollution one, without any building and
houses in the watersheds. In this paper, due to space restrictions, we focus on two of these sources which nitrate
ion concentrationCN (t) is displayed in Figure 1 in grey. It must be noticed that the same modelling strategy with
similar results was applied on all the available data. The goal is to study the link between the practice changes
and the water quality. As there is not any available model of water dynamics in this karstic zone, and no N
concentration measure in the soil is available, we propose adata-driven modelling strategy.

3 THE PROPOSED TOOL : DATA -DRIVEN MODEL

3.1 The physical-based modelling problem

In practice, long-time trend forecasting and decision helprequires a dynamical model able to simulate the con-
centration in the water with respect to some given scenario.Nevertheless, in the presented problem, no model is
available to link the agricultural N mass to the actual N concentration measured in the water. Should there be one,
it would also not be possible to tune it in order to fit the current measured data : indeed, none of the N input have
been measured. Hence, the commonly used modelling technique for this problem is to use a simplistic polyno-
mial fit such as exposed in Figures 1 in red. Unfortunately, such a static model indicates the current trend but is
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Figure 1: Measured nitrogen concentrationCN
1 (t) andCN

2 (t) in two similar sourcesS1 andS2 along with a3rd

order polynomial approximationMN
1 (t) andMN

2 (t)

not suitable for future forecasting. Finally and most importantly, despite the similar region, soil and agricultural
policy, it appears that the polynomial curves indicate opposite results for these two sources: no conclusion can be
drawn from this measured data.

3.2 The data-driven modelling problem

The solution proposed in this paper relies on the identification of a model under its transfer function form which
offers the ability to interpret a posteriori the data-driven model in physical or ecological terms: this process is
theso-calleddata-driven mechanistic modelling (Young and Beven, 1994). The main advantages in using such a
modelling paradigm are:

• A simplified model is obtained without requiring any physical assumption or model reduction. The obtained
model might not even be possibly derived from physical assumptions. Nonetheless, only a physics-based
validation and its capacity to predict physical phenomena legitimate its validity.

• If a very simple model is obtained, it also means that a sourcecan be characterised using only a small set of
parameters, helping a lot in terms of data compression in bigdata contexts.

• Finally, even though the obtained model cannot be directly applied to other sources without measures, the
data-driven mechanistic process can be applied directly toany kind of relationship (rainfall/runoff...), at any
scale as soon as some measures are available.

Regarding the specific nitrogen propagation problem, from asystem theory viewpoint, two main issues have to be
dealt with and are not detailed here due to space restrictions:

1 The lack of nitrogen input: none of the nitrogen soil concentration is measured. Consequently, a preliminary
data-mining phase has been realised. It is based on a simple correlation analysis and the result is a possi-
ble correlation betweenCN (t) and both the raw rainfallR(t)(mm/day) and the temperatureT (t) (oC)
(downloaded from the European Climate Assessment website,Source 741, (Tank and Coauthors, 2002).

2 System identification is dedicated to dynamical models: the drift represented by the polynomial approxima-
tion MN (t) varies too slowly to be identified from a reduced set of data and needs to be removed. Hence,
the considered output isCN

c (t) = CN (t) − MN (t).

The proposed model which is the main contribution of this paper is described by the following so-called Output-
Error model:

M

{

CN
c (t)=

b1

s+a1

Rc(t) +
β1

s + α1

Tc(t) + e(t), (1)
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where s is the Laplace variable ande(t) is assumed to be a white noise stochastic process.CN
c (t),Rc(t)

and Tc(t) are the centred Nitrogen concentration, rainfall and temperature respectively, defined asCN
c (t) =

CN (t)−MN (t), Rc(t) = R(t)−mean(R(t)) andTc(t) = T (t)−mean(T (t)). b1, a1, α1, b1 are the parameters
to be identified and they fully characterise the presented structure. The same structure was proposed from the data
for all the sources analysed in this study (6 in total). Hence, this dynamical model is a simple first order model,
with two inputs and one output. Please note that other more complicated models such as nonlinear Hammerstein
and Wiener structures along with nonparametric approaches(Support Vector Machines) have been tested. Nev-
ertheless, probably due to the amount of noise and the relatively low number of data points, the results were not
significantly better (or worse), lead to an harder interpretation, and therefore, the simplest structure was retained.

This model implies that the temperature and the rainfall should affect consistently the nitrogen concentration in
water. This statement can naturally not be derived from any physical logic. Hence, one would think that this type
of model does not have any legitimacy. However, should this model be physically validated (temperature could be
correlated to an actual N source), it would be very interesting in the sense that temperature and rainfall are widely
available measures. Before drawing any conclusion identification must be performed. Nonetheless, identification
is not a trivial matter either in such context. While the whitenoise assumption is fair when measurement noise is
the major perturbation source, the problem is more complicated here : noise on the inputs (the rain and the tem-
perature are not measured exactly above the considered parcel), missing inputs, system approximation... Hence,
the identification needs to be robust to noise modelling errors. For this application, the so-called simplified refined
instrumental variable algorithm (SRIVC) (Young and Jakeman, 1980) has been chosen. It hands out unbiased es-
timates in case the true noise is zero mean, independently ofits distribution and it was successfully used in many
other environmental applications (Laurain et al., 2010; Young and Beven, 1994). Consequently, before presenting
the results, here are all the steps necessary for the identification of the proposed N propagation model:

Step 1: Force all the data to the same sampling period : in our applicationCN (t) was sampled every
15 days, and was linearly interpolated to fit the one day sampling period of the rainfall and
temperature.

Step 2: Compute the polynomial curve and subtract it to the original measured data.
Step 3: Split the data into a identification dataset and a validation dataset.
Step 4: Use the identification dataset to identify a linear structure using the SRIVC func-

tion (a free Matlabrversion can be downloaded with the Contsid Toolbox at
http://www.cran.uhp-nancy.fr/contsid/) using different model orders.

Step 5: Use the validation dataset in order to choose the mostsuitable order (for example using
Young’s Information criterion (Young and Jakeman, 1980) and display the obtained model
(resulting here in (1)).

The obtained results are provided in the next section.

4 MODEL VALIDATION

4.1 Physical propositions

In this section, the identification results are depicted in the form of physical propositions and data fit. Before
detailing the results, it must be emphasised here that noa priori has been used in order to build this model and
it has been solely built using commonly measured data. The identification data has been chosen as a period of 4
years between 1997 and 2001 as they contain the most different rainfall scenarii and the rest is used for validation
purpose . The coefficients of the identified models for the twopresented sources are exposed in table 1. Naturally,

Source rainfall temperature
a1 b1 α1 β1

S1 0.016 −0.050 0.021 0.0007
S2 0.003 −0.023 0.007 0.0002

Table 1: Identified parameters
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the equations are not homogenous and therefore, the absolute value of these parameters are of little interest.
Nevertheless, it can be seen that theb1 coefficients are negative for both sources (and actually allother studied
sources). This indicates a negative static gain on the rainfall transfer function. The exact opposite statement can
be concluded for the temperature transfer function.

The simulated output of the identified model can be computed.The estimation data, validation data and simulated
output are exposed in Figure 2. Two striking facts appear from the simulation results. Even though these two
parcels behave differently from the trend perspective, their dynamic is actually quite similar. The identified model
outputs are actually nearly identical for both of these sources. Furthermore, the model output fits quite well the
original data (at least from in the estimation dataset) considering that the rainfall and temperature are not actual
sources of nitrogen. In order to quantify this fit, a local score inspired from the NASH score (Nash and Stucliffe,
1970) is used and is defined as:

NASH(tk) = 1 −
||ĈN

c (tk) − CN
c (tk)||2k−N,k+N

‖ĈN
c (tk) − mean(CN

c )‖2
k−N,k+N

. (2)

whereĈN
c (tk) is the output simulated from the identified model and the notation ||.||2k−N,k+N depicts theℓ2

norm on the samples betweenk − N andk + N . Here,N is chosen as 365 days. In other words, the presented
score represents the NASH score on a local 2 years long windowon each time samplek. It must be noticed that
NASH = 1 means perfect fit,NASH = 0 means that the simulated output is only as predictive as the output
average, whileNASH < 0 means that the simulated output is not predictive.
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Figure 2: Original centred concentrationCN
c (t) (estimation data in green and validation data in grey) alongwith

the model output simulated from the rainfall and temperature data, for sourcesS1 (left) andS2 (right).

The fitting score quantification is displayed in Figure
3. It quantitatively appears now that both sources (ac-
tually all studied sources) evolve from a non-predictive
to a predictive zone around 1994. From a system the-
ory viewpoint, it could be argued that the obtained fit is
rather poor. Nevertheless, the main unpredicted part is
located in the high frequencies which is not surprising
considering the relatively high sampling period taken
for concentration measurements with respect to rainfall
and temperature. Finally, by taking into account that the
true model inputs are unknown, this models fits the data
really well.
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Figure 3: Local NASH score forS1 andS2
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To sum it up, the result of the data-driven modelling are the following physical statements:
H1: The rainfall acts negatively on the nitrogen concentration.
H2: The temperature acts positively on the nitrogen concentration.
H3: The dynamic behaviour ofS1 andS2 are similar.
H4: The sources undergo a major change around the beginning of year 1994, even

though this year was not used for identification.

4.2 The physical validation

In agronomy, temperature is a good indicator of vegetation growth season. In our temperate zones, the6◦C is the
basis of two main phenomena: vegetation growth, and nitratemineralization in the soil. Therefore, temperature
is used as an indicator of biological activity in the fields, which is strongly involved in soil nitrification which
validates H1. For agronomists, rainfall minus evapotranspiration is a pertinent indicator of nitrate movement in the
soils and in the aquifer: without rainfall, N are stable in the soils while with high level of rainfall, they are moving
through the soils to the aquifers. When the amount of rain is low, the N solubility being high, the concentration
of N will raise in the water. On the contrary, if the amount of rain is high, once the N soil nitrification decreases
under a critic mass, the N concentration will decrease. Thisfact strongly validates H2. Consequently, these two
variables are in the heart of N leaching model and strongly correlated to N inputs (Brisson et al., 2010).

For our situation, these sources are situated very closely in the same geographic location on this karstic plateau
with a similar situation in terms of climate and soil behaviours: they should behave the same (H3). Finally, the
only change on these parcels is the farmers’ practice changes, from a high level of inputs until 1992, to a strong
decreasing in 1993 with the initiation of “Ferti-Mieux” local water resource management operation. For all studied
sources, it seems that the simple proposed model is able to emphasise this change clearly in time despite the fact
that thisa priori knowledge was not used in the modelling process (H4).

Consequently, while this model could not have been possiblyderived from physical reasoning, it seems that it is
strongly supported by the physical validation. This model takes as an input only natural measurements. Naturally,
it means that this model is unable to emphasize agriculturalpractice changes when most of the nitrogen source
take origins from human activity. That could also mean that this model indicates how naturally behaves the source.
More data would be needed in order to assess this statement. While some of the dynamics are well predicted by
this model, the slow trends and the high frequencies phenomena could though not be captured. Hence, either
the trends are caused by earlier data and a slower dynamic integrative effect is present or they are caused by
measures taking place in the unmodelled high-frequencies phenomena. In order to study the latter assumption,
a high frequency sampled-data would be needed and the current acquisition might not be sufficient to assert the
future behaviour of the sources. Nevertheless, should the proposed model represent a natural behaviour, then the
closer the N concentration to this model output, the more likely to see the N concentration decrease at some point.
However, Further study is needed for this purpose.

5 CONCLUSIONS

In conclusion, a data-driven model has been proposed for nitrogen propagation in drinking water.It must be well
understood that such an approach can be applied only on instrumented lands as the model drives the model defini-
tion. Hence, it does not require the same amount of a priori asphysical based-model, but it has other limitations.
For example, an identified model cannot therefore not be directly extended to other similar parcels as its param-
eters cannot be directly linked to any actual physical process. Nevertheless, it was shown that most of the yearly
dynamics could be predicted by solely using the rainfall andtemperature when the human nitrogen source is low,
giving a completely different insight on the system as usual. It can be pointed out that this data was not acquired
for system identification purposes and therefore, the method can be considered as applicable on commonly avail-
able data. Even though the data-driven model does not represent any physical relationship it still can be validated
from physical principles. The fact that it is able to detect achange in the agricultural policy from strong nitrogen
loads to considerable decreased loads could even support the fact that this model can well represent the natural
behaviour of a source. The more the model fits, the more the source is natural. Nevertheless, deeper investigations
are required in order to validate this assumption. Hence, the presented model could not estimate yet the long terms
trends. Nevertheless, the current trends might be a residual of past effects. Should it be the case, and depending on
the time constants (which might be several dozens of years) the trends will never be possibly forecasted. However,
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should this model represent the naturalness of a source, then it would give the stakeholders a tool to assess the
naturalness of their watershed and assert whether the current trends are caused by current policies or not.
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