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Abstract.
We investigate the connection between two classical models of phase transition phenom-

ena, the (discrete size, Markov chain or infinite set of ODE) Becker-Döring equations and

the (continuous size, PDE) Lifshitz-Slyozov equation. Contrary to previous studies, we

use a weak topology that includes the boundary of the state space, allowing us to rigor-

ously derive a boundary value for the Lifshitz-Slyozov model. This boundary condition

depends on a particular scaling and is the result of a separation of time scales.

1 Introduction

We address the link between two models of coagulation-fragmentation describing different stages of

cluster growth. The Becker-Döring (BD) model [1] represents the microscopic stages, and describes

the size repartition of clusters (or aggregates) using a discrete structure variable i ∈ N∗, according to

the set of chemical reactions

C1 +Ci
ai−−−⇀↽−−−
bi+1

Ci+1 , i ≥ 1 , (1)

whereCi stands for the clusters consisting of i particles andC1 the free particles. Here, the coefficients

ai > 0 and bi+1 > 0 denote respectively the rates of aggregation and fragmentation.

In the limit of a large number of particles, the time evolution of the concentration of clusters subject to

the set of chemical reactions (1) is given by the solution of an infinite system of ordinary differential

equations. Namely, the deterministic BD model is given, for all t ≥ 0, by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d
dt
C1(t) = −2 j1(t) −

∑
i≥2

ji(t) ,

d
dt
Ci(t) = ji−1(t) − ji(t) , i ≥ 2 ,

(2)

with

ji(t) = aiC1(t)Ci(t) − bi+1Ci+1(t) , i ≥ 1 , (3)
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where the restriction ai = O(i) is imposed to ensure global existence, see [2, 7]. The initial condition

is subjected to (Ci(0))i≥1 ⊂ R+, and
∑
i≥1

iCi(0) =: M < ∞.

Alternatively, considering a finite number of particles, such model (1) may be interpreted mathemati-

cally as a Markov Chain on a finite subset of a lattice. Denoting by Y+i (resp. Y−i ) the standard Poisson
process associated to the aggregation (resp. fragmentation) reaction of clusters of size i ≥ 1 (resp.

i ≥ 2), the stochastic version of the BD model is given for t ≥ 0 by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1(t) = C1(0) − 2J1(t) −

∑
i≥2

Ji(t) ,

Ci(t) = Ci(0) + Ji−1(t) − Jk(t) , i ≥ 2 ,
(4)

with

Ji(t) = Y+i
( ∫ t

0

aiC1(s)(Ci(s) − δ1i )ds
)
− Y−i+1

( ∫ t

0

bi+1Ci+1(s)ds
)
, i ≥ 1 , (5)

where δ1i = 1 if i = 1 and δ1i = 0 if i ≥ 2. The initial condition is subjected to (Ci(0))i≥1 ⊂ N, and∑
i≥1

iCi(0) =: M < ∞.

The second model is the Lifshitz-Slyozov (LS) model [3, 6, 8], and describes the cluster growth at a

macroscopic scale. The size of the clusters are represented by a continuously varying variable x > 0.

If f (t, x) denotes the size distribution function, the LS model is given by

∂t f (t, x) + ∂x[(a(x)u(t) − b(x)) f (t, x)] = 0 , t ≥ 0 , x > 0 ,

u(t) +
∫ ∞

0

x f (t, x) = const. =: m , t ≥ 0 ,

(6)

where a(x) and b(x) are respectively the aggregation and fragmentation rates. Note that in such a

model, u(t) plays the analog role of the concentration of free particles C1(t) in the BD model. If

a(x)u(t) − b(x) > 0 near x = 0, such formulation lacks a proper boundary condition at x = 0. It is the

goal of this work to derive such boundary condition, using a rescaling of either Eq. (2) or Eq. (4).

2 Rescaling and results

2.1 Rescaled equations

The classical approach to operate a scaling is to write the equations in a dimensionless form. We

follow [9] and introduce the following characteristic values:

•T : characteristic time, •A1 : characteristic value for a1,
•C1 : characteristic value for C1, •B2 : characteristic value for b2,
•C : characteristic value for Ci, for i ≥ 2, •A: characteristic value for ai, i ≥ 2,

•Mc : characteristic value for M, •B: characteristic value for bi, i ≥ 3.

We introduce the scaling parameter ε > 0 and assume the following choices of relation:

C/C1 = ε
2 , AC1T = BT =

1

ε
, Mc/C1 = 1 , A1 = ε

2A , B2 = ε
ηB , (7)

with η ∈ [0, 1] to be chosen later. Thus, we define the dimensionless quantities

τ = t/T , uε(τ) = C1(τT )/C1 , cεi (τ) = Ci(τT )/C , mε = M/Mc , (8)
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and (we use different letters at the boundary to emphasize this point)

αε := a1/A1 , βε := b2/B2 , and aεi = ai/A , bεi+1 = bi+1/B , i ≥ 2 . (9)

We define the macroscopic reaction rates and fluxes

aε(x) :=
∑
i≥2

aεi 1Λεi (x) , bε(x) :=
∑
i≥3

bεi 1Λεi (x) , and jε(τ, x) =
∑
i≥2

(aεi u
ε(τ) − bεi+1)1Λεi (x) ,

where Λεi = [(i − 1/2)ε, (i + 1/2)ε). The clusters quantities given by (2) (resp. by (4)) are now

represented by a continuously varying variable x > 0, and we let, for all t ≥ 0 and all ε > 0,

f ε(τ, x) =
∑
i≥2

cεi (τ)1Λεi (x) , x ≥ 0 . (10)

Hence, using relations (7)-(8)-(9) the deterministic BD system (2)-(3) reads, for all τ ≥ 0,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
dτ

uε = −ε jε1 − ε
∑
i≥1

jεi ,

d
dτ

cεi =
1

ε

[
jεi−1 − jεi

]
, i ≥ 2 ,

(11)

where the rescaled fluxes are defined by

jε1 = α
ε(uε)2 − βεεηcε2 , and jεi = aεi u

εcεi − bεi+1c
ε
i+1 , i ≥ 2 . (12)

Then, for each ε > 0 and all ϕ ∈ W1,∞
loc such that ∂xϕ ∈ L∞, we have from Eq. (11)-(12) for all τ ≥ 0

∫ +∞
0

f ε(τ, x)ϕ(x) dx =
∫ +∞
0

f in,ε(x)ϕ(x) dx +
∫ τ

0

jε1(τ)
1

ε

∫
Λε

2

ϕ(x) dxds

+

∫ τ

0

∫ +∞
0

[
aε(x)uε(s) f ε(s, x)Δεϕ(x) − bε(x) f ε(s, x)Δ−εϕ(x)

]
dx ds , (13)

with Δhϕ(x) = (ϕ(x + h) − ϕ(x))/h for h ∈ R and uε(τ) +
∫ ∞

0

x f ε(τ, x) dx = mε.

Similarly, using additionally C = 1, with relations (7)-(8)-(9) the stochastic BD system (4)-(5) reads⎧⎪⎪⎪⎨⎪⎪⎪⎩
uε(τ) = uε(0) − 2ε2Jε1(τ) +

∑
i≥2

ε2Jεi (τ) ,

cεi (τ) = cεi (0) + Jεi−1(τ) − Jεi (τ) , i ≥ 2 ,
(14)

with the rescaled flux

Jε1(τ) = Y+1
( ∫ τ

0

ε−1αεuε(s)(uε(s) − ε2)ds
)
− Y−2
( ∫ t

0

ε−1βεεηcε2(s)ds
)

Jεi (τ) = Y+i
( ∫ τ

0

ε−1aεi u
ε(s)cεi (s)ds

)
− Y−i+1

( ∫ t

0

ε−1bεi+1c
ε
i+1(s)ds

)
, i ≥ 2 .

(15)

Then, from Eq. (14)-(15), we obtain the stochastic infinitesimal generator of f ε constructed by

Eq. (10),

Lεψ( f ) =
ψ( f + 1Λε

2
) − ψ( f )
ε

αεuε(uε − ε2) + ψ( f − 1Λεi ) − ψ( f )
ε

βεεηcε2

+
∑
i≥2

ψ( f + 1Λεi+1 − 1Λεi ) − ψ( f )
ε

aεi u
εcεi +

∑
i≥3

ψ( f − 1Λεi + 1Λεi−1 ) − ψ( f )
ε

bεi c
ε
i , (16)
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where cεi = ε
−1 ∫

1Λεi
f (t, x)dx, i ≥ 2, and uε = mε − ∫ x f (t, x). In particular, with ψ( f ) = 〈 f , ϕ〉 and

ϕ ∈ Cb, we obtain an L2-martingale given by

Mε,τ,ϕ :=

∫ +∞
0

f ε(τ, x)ϕ(x) dx −
∫ +∞
0

f in,ε(x)ϕ(x) dx

−
∫ τ

0

[αεuε(s)(uε(s) − ε2) − βεεηcε2(s)]
1

ε

∫
Λε

2

ϕ(x) dxds

−
∫ τ

0

∫ +∞
0

[
aε(x)uε(s) f ε(s, x)Δεϕ(x) − bε(x) f ε(s, x)Δ−εϕ(x)

]
dx ds .

2.2 Results

To obtain the convergence of { f ε}, we use the measure space X := {ν ∈ M f (R
+) :
∫ ∞
0

xν(dx) < +∞},
equipped with the weak topology, that is { f ε(x)dx} converges to μ in X if

∫ ∞

0

(1 + x)ϕ(x) f ε(x)dx→
∫ ∞

0

(1 + x)ϕ(x)μ(dx) , ∀ϕ ∈ Cb([0,+∞)) .

We assume standard convergence properties of the reactions rates αε, βε, aε(·) and bε(·) towards (resp.)
α, β, a(·) and b(·), together with convergence of the initial condition uε and f in,ε(·) towards (resp.) uin
and μin(·). In order to derive the boundary condition, we need to know precisely the behavior of the

rate functions near 0. For that, we suppose there exist ra, rb ∈ [0, 1], and a, b > 0 such that

0 ≤ ra < 1 , ra ≤ rb ,

a(x) ∼0+ axra , b(x) ∼0+ bxrb ,

aε(εi) = a(εi) + o((εi)ra ) , i ≥ 2 , bε(εi) = b(εi) + o((εi)rb ) , i ≥ 3 .

where o is the Landau notation in ε→ 0+ (independent on i). We also define the critical quantity

ρ := lim
x→0+

b(x)
a(x)

= lim
x→0+

b
a
xrb−ra ∈ [0,+∞) .

Under reasonable assumptions on the macroscopic reaction rates, we are able to prove (see [4]) com-

pactness property on f ε in X (for both the deterministic Eq. (13) and the stochastic Eq. (16)) Then,

for any convergent subsequence, we prove that the candidate limit μ ∈ C([0,T ];X) and u ∈ C([0,T ])
satisfy, for all ϕ ∈ C1

c(0,+∞)) and t ≥ 0

∫ ∞

0

ϕ(x)μ(t, dx) =
∫ ∞

0

ϕ(x)μin(dx) +
∫ t

0

∫ ∞

0

ϕ′(x)(a(x)u(s) − b(x))μ(t, dx) ds ,

u(t) +
∫ ∞

0

xμ(t, dx) = m .
(17)

Note that Eq. (17) is formally the weak form of Eq. (6). Moreover, for any T > 0 such that the limit

satisfies inft∈[0,T ] u(t) > ρ, then for all ϕ ∈ C1
b([0,+∞)) and t ≥ 0

〈μ(t), ϕ〉 = 〈μin, ϕ〉 +
∫ t

0

∫ ∞

0

ϕ′(x)(a(x)u(s) − b(x))μ(t, dx) ds + ϕ(0)
∫ t

0

N(s) ds . (18)
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Figure 1. Agreement between numerical simulations and our limit theorem. We plot the time evolution of

the (rescaled) number of free particles uε(t) (left) and the total (rescaled) number of clusters 〈 f ε(t, ·), 1〉 (middle)

for different ε (see legend), together with the deterministic solution (in black) of the moment equations obtained

from the weak form of the LS equation (18) with respectively ϕ = x and ϕ = 1. Right, we plot one snaphshot

at time t = 1 of the size distribution function f ε(t, ·) for ε = 5.10−4, together with the numerical solution of the

LS equation (standard upwind scheme). We used the scaling given in Section 2.1 with constant rate coefficients

aε(x) ≡ 1 and bε(x) ≡ 2, αε = 1, and βε = 1, under incoming characteristics, i.e u(0) = m = 3 > ρ = b
a = 2.

with for all t ∈ [0,T ]

N(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αu(s)2 i f η > ra

αu(s)2
2ηu(s)

2ηu(s) + β
i f η = ra < rb

αu(s)2
au(s) − b

au(s) − b + β/2η
i f η = ra = rb

0 i f η < ra < rb

(19)

Thus the precise expression of the boundary condition Eq. (19) is dependent on the behavior of the

rate functions near 0 and on the scaling factor η, that measures the relative speed of the fragmentation

rate for i = 2 with the fragmentation rates for i > 2 (equal to rb for the latter). The case η = 1 > ra
was treated for the stochastic Eq. (16) in [4] and all cases for the deterministic Eq. (13) in [5].

3 Illustration and Discussion

We illustrate our theoretical results with the help of a numerical simulation, see Figure 1. We show

the good agreement between the rescaled solution of the stochastic BD system (14) and the limit

given by Eq. (18). The importance of deriving such results is both numerical, in order to design fast

numerical scheme to approximate large discrete system, and theoretical, to derive steady-state and

time-dependent properties of the original discrete system from a (simpler) continuous one [10, 11].

In our scaling, each cluster of size initially i ≥ 2 is seen as a cluster of size roughly iε ∈ R+, and
our scaling consists in an acceleration of the fluxes (by 1/ε) in Eq. (11) (resp. Eq. (14)) so that it can

reach an “infinite” size i = x/ε in finite time. This requires a large amount of free particles, of order

1/ε2 compared to the amount of clusters. The first aggregation rate a1 has been rescaled differently

for the others for i ≥ 2. This is due to the particular role played by the free particles in the BD model.

Indeed, since we have assumed a large excess of free particles compared to the number of clusters (to
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form large ones), to keep such properties through time, one has to “slow down” the first nucleation

rate a1, that transform free particles into clusters (of size 2). If this is not satisfied, we hypothesize

that the pool of free particles would deplenish, leading to a different version of the LS, namely the

Lifshitz-Slyozov-Wagner model (work in progress, see also [7]).

From those previous work [7, 9], the originality of our work [4] resides in being able to derive the

boundary condition of the limit equation. Such boundary condition is needed when the characteristics

of the transport equation are incoming (i.e. the small clusters tend to grow). This result was obtained

as an averaging result. In order to form large clusters, we have to accelerate the fluxes (by 1/ε). Then,
each individual size, and a fortiori the minimal size i = 2, evolves in a fast time scale. By proving a

quasi steady-state result, we were able to prove that each discrete size tend to equilibrate to a value

given by the stationary state of an auxiliary system, very similar to the original deterministic BD

model (but in a linear version).

Finally, second order approximation and large deviation phenomena of the stochastic discrete BD

system (14) were observed numerically [10]. In particular, when the formation of large cluster is

(asymptotically) very unlikely, the latter appears as a large deviation from the mean-field limit and

gives a suitable framework to describe phase transition phenomena, as inherent infrequent stochastic
processes, in contrast to classical nucleation theory. The precise quantification is left for future work.
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