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Promotion of cooperation when benefits come in the future: A

water transfer case

January 22, 2016

Abstract

A country with a surplus river basin cooperates with a country with a deficit river basin

in a joint investment project to build a water canal. The benefits from the existence of the

canal are realized when cooperation halts and countries will have the opportunity to engage

in a non-cooperative water market game. We define an imputation distribution procedure to

share the “burden” from cooperation. Investment costs while cooperation must be allocated

according with future benefits from the water market. With this principle we prove that

the cooperative solution is time consistent. Further, we can obtain the instantaneous side-

payment scheme which makes the imputation distribution procedure feasible.

JEL Classification: F18, C73.

Keywords: Cooperative differential game, non-cooperative differential game, imputation

distribution procedure, instantaneous side-payment, time-consistent solution.

1 Introduction

This paper analyzes the dynamic cooperation between two countries or regions in order

to build a canal which connects a donor river basin, with higher precipitation rates, and

a recipient river basin, with greater water productivity. This joint investment program

presents two main characteristics. Firstly, cooperation does not lead to an immediate reward,

but only after a first period in which the two parts have to pay the costs of building the

canal. Secondly, the delayed benefits from cooperation are known by cooperating agents

and they are typically asymmetric. The efficiency gains linked to the flow of water from a

surplus basin to a deficit basin with greater water productivity, can be realized thanks to

the water market created by the water canal.

Some examples of already operative schemes or ongoing projects of water transfer can
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be found, usually within a specific country:1 The Tagus-Segura Transfer Project in Spain,

the Snowy River Scheme in Australia, the São Francisco Interlinking Project in Brazil, the

Olmos Transfer Project in Peru or the South-North Water Transfer Project in China. Some

of them are still ongoing projects, which full implementation may take some decades, or

even end-up as fail projects. These projects have been promoted by a central government.

Much less frequent are the examples of water transfers between river basins located in

different countries, like the transfer from the Kosi river in Nepal to the Ganges in India and

Bangladesh, or the Lesotho Highlands Water Project (drawn out by corruption) between

Lesotho and South Africa (geographically condemned to get along with each other). This

reflects the difficulties tied to the obliged cooperation between two governments who have to

determine how to share the the costs of the joint project, and how to distribute these costs

along the often lengthy construction period. Maybe better examples of these difficulties

are the failed projects, like the Rhone-Barcelona aqueduct proposed to supply the city of

Barcelona in Spain with water from the Rhone river in France (see, Lopes (2008)). We

will focus on the economic aspects that help maintain the agreement to build the canal

although, as pointed out by Lopes (2008), the obstacles to the transfer between countries

are also political or institutional.

The bulk of the literature on river water management involving two regions/countries

and non-cooperative game theory is on water-sharing under an upstream/downstream con-

figuration (see, for example, Ambec and Ehlers (2008), Bhaduri and Barbier (2008), Am-

bec and Sprumont (2002), or Kilgour and Dinar (1995, 2001)). However, the problem

of a water transfer between two river basins has some specificities not present in the up-

stream/downstream literature. The donor river basin must be characterized by a surplus of

water inflows, and the recipient basin by a deficit. Besides this asymmetry, water productiv-

ity is higher in the recipient. Further two additional features are also present in most of the

examples highlighted above. The recipient might have access to alternative sources of water,

by investing in infrastructures which can help to increase available water for the economy

(examples could be desalination plants, projects to save water, to reduce pipelines leaking,

or investment in recycling). The transfer brings environmental consequences mainly, but

not exclusively, for the donor. If the relative cost of the alternative water supplies is low,

and/or the magnitude of the environmental damages linked to the water transfer is high,

then the inter-basin transfer might be unfeasible.

For the particular example of the Tagus-Segura transfer, Ballestero (2004) presents a

1Some of these projects transfer water from one river basin to another river, some others transfer the water to

dams in the mountains (for irrigation and to generate hydroelectricity), or towards a specific region for municipal

water supply, industry and irrigation.
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static demand-supply model, later extended to a dynamic setting in Cabo et al. (2014).

This latter studies the interaction between donor and recipient regions as a non-cooperative

differential game, which defines the water market as a bilateral monopoly. Further, it also

includes the environmental damage caused by the transfer in the donor region, and the

alternative water supplies available for the recipient. It is assumed nonetheless, that the in-

frastructure required to transfer the water between the two river basins is already operative.2

Under this assumption the water market equilibrium is dynamically analyzed. By contrast,

with a broader perspective, and particularly when the transfer involves governments from

two different countries, we consider important to address the previous coordination problem

associated with the joint investment required to built the canal.

The central question in static cooperative game theory of how to distribute the gains from

cooperation between the cooperating players, is extended by the dynamic cooperative game

theory to study the distribution of these gains not only among players but also across time.

In particular, how to distribute the surplus from cooperation across time to guarantee that

no player has an incentive to deviate from cooperation,at any point in time (the cooperative

payoffs to go surpass the non-cooperative payoffs to go). This concept is usually referred

to as time consistency.3 A widespread mechanism to guarantee the time consistency of the

cooperative solution is to select a solution concept specifying each player’s share of the total

cooperative payoff, and define a payoff distribution procedure, as stated in Petrosjan (1997),

to decompose over time the individual total payoff, in such a way that time consistency is

preserved (see Zaccour (2008) for a review). This is not the unique mechanism to guarantee

time consistency,4 but it constitutes the basis to implement a time consistent solution in

this paper.

Contrary to the standard literature, in our setting cooperation does not lead to immediate

payoffs gains. More to the contrary, cooperation to invest in the construction of the canal,

represents a costs for both players, not only instantaneously, but maintained through the

whole period of cooperation. In fact, the gains from cooperation only start to dwell once

the water starts to flow through the canal, and with it the efficiency gains. But this is

precisely the exact moment at which the joint investment cooperation halts. Therefore, the

2For this case study, 230 km network of canals, aqueducts and tunnels were built by the Spanish central

government to transfer water from the Tagus basin in the center of Spain to the Segura basin in south-eastern

Spain.
3As stated in Zaccour (2008), it has been also named as sustainability of cooperation, dynamic individual

rationality, dynamic stability, durability of an agreement, or agreeable solution.
4Other mechanisms can be found in the literature, like incentive strategies proposed by Ehtamo and

Hämaläinen (1986, 1989, 1993), or design the cooperative agreement satisfying the property of being at equilib-

rium (see, for example Rincón-Zapatero et al. (2000)).
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first question that must be addressed is how to share the “losses” from cooperation when

its benefits will only be materialized when cooperation ceases to exist, and the two parts

engage in a non-cooperative trade relationship in the water market. Thus, assuming that

the aggregated (discounted) gains from the existence of the water canal surpasses the global

economic and environmental costs of the joint investment project, our main research question

is: how shall the investment costs be shared between the two parts and distributed across

time to guarantee the time consistency of the cooperate solution? That is, to guarantee that

no player deviates from cooperation and the canal is actually finished.

To analyze this question we define a differential game with two different regimes. The

two countries jointly invest to build the canal within a first period, which length will be

determined by the intensity of the investment paths. The cooperative objective function

includes current investment costs as well as future benefits. These latter in the form of a

scrap function defined as the sum of the value functions of the two players in the subsequent

game. Within this subsequent period of infinite length the canal is operating and the two

countries play a non-cooperative differential game as in Cabo et al. (2014). By comparing

this latter with a baseline scenario of no transfer, we observe asymmetric surpluses for the

two players from the existence of the canal. Therefore, we can compute each player share in

the total gains stemming from the existence of the canal. This share helps us to link current

investment costs while cooperation and future benefits. The cooperative solution concept

proposed in this paper is based on the central idea that at each time within cooperation,

each player’s payoffs to go must be equal to his payoffs to go in case of defection (and hence

no transfer), plus a share of the total surplus to go. And this share is defined by the player’s

share in total gains from the existence of the canal (computed at the moment when the

canal start to be operative). In consequence, the proposed method assigns each cooperating

player a contribution (to the joint investment required to build the canal) dependent on his

share in total gains (obtained in the second period when the canal is operative). With this

principle we are capable to define an Imputation Distribution Procedure (IDP) specifying

what each player should be contributing at each moment through the cooperative period

in order to guarantee time consistency. Further, we also provide the instantaneous transfer

scheme through the whole cooperative period that makes this IDP possible.

The paper is organized as follows. Section ?? describes the problem and presents the

model. Section ?? presents the main contribution of the paper: the definition of an imputa-

tion distribution procedure that guarantees the time consistency of the cooperative solution

and which can be attained through an instantaneous side-payment scheme. Section ?? shows

our results for a linear quadratic example. Finally Section ?? concludes the paper.
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2 The model

This section describes a two-regimes differential game between a (donor) country/region

which river basin is characterized by relatively high precipitation rates and relatively low

productivity of water and a (recipient) country/region with lower precipitations and highly

productive uses. If the two countries cooperate within a first period and build a canal, this

would make possible a inter-basin water transfer henceforth. In this water market the donor

will transfer surplus water for a price, although it will experience an environmental damage

due to the deterioration of its water quality. The recipient will pay the price for the water

transfer which can be utilized to enhance production, and will also allow reductions in the

investments on subsidiary water production, water savings or water recycling. We assume

henceforth that the savings from lower investments plus the increments in production in the

recipient surpass the environmental losses in the donor plus the costs of building the canal,

leading to a rise in the Kaldor-Hicks efficiency. This is a necessary condition for the regions

to cooperate and build the canal.

We first present the main hypotheses to describe the economic and environmental aspects

of the relationship connecting these two regions. Then we present the non-cooperative game

played within a second period when the canal is already operative, and analyze the dynamic

determination of quantity and price in the water market. Finally, we present the cooperative

period when countries jointly invest to build the canal.

2.1 The donor and the recipient

This section describes the trade market made possible by the existence of the canal. We

follow the main assumptions in Cabo et al. (2014). No uncertainty is included in the model,

assuming that a constant surplus of water still remains in the donor region after covering

demands. Without the canal this surplus flows through the donor’s river basin. However,

if an aqueduct is built, an amount τ(t) of the surplus could be transferred through to

the recipient. Before the transfer, the inhabitants in the donor region would enjoy the

environmental amenities or environmental services of what we denote a pristine river. By

contrast, the decrease in the water level provoked by the water transfer would decrease

these amenities at an increasing rate. Thus, the environmental amenities can be represented

by E(τ(t)), with E(0) > 0, E′(τ(t)) < 0 and E′′(τ(t)) < 0. As compensation the donor

receives a monetary payment, p(t), from the recipient for each unit of water transferred.

The instantaneous welfare function for the donor is then expressed as:5

F d(p(t), τ(t)) = E(τ(t)) + p(t)τ(t). (1)

5Here and henceforth, superscript d/r refers to donor/recipient respectively.
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Due to the relatively higher water productivity in the recipient, this region will be willing

to pay for the water transferred from the donor. Nevertheless, apart from the transfer, the

recipient has an alternative and often subsidiary way to increase its volume of available

water. It can invest in the equipment required for either water saving (reducing water use

or water leakage from the distribution network), water recycling (use of gray water), or

water production (like desalination plants). The usable water capacity, x(t), is defined as

the capacity to produce, recycle or save water using current equipment (measured in cubic

meters). Capacity increases with new investments and decreases with depreciation:

ẋ(t) = s(t) − δx(t), x(0) = x0 ≥ 0,

wit δ > 0 the depreciation rate and s(t) the investment to replenish and further increase

current capacity.

In the recipient region, welfare comes from the amount of available water: either water

transferred, τ(t), or the region’s usable water capacity, x(t). Welfare increases with the

amount of available water at a decreasing rate. Investments in new capacity are increasingly

costly, which can reflect increasing transaction costs and/or incremental cost of successive

projects to produce, save or recycle water. Finally, instantaneous welfare decreases with

transfer payments to the donor. Hence, the welfare function of the recipient is expressed by:

F r(p(t), τ(t), x(t), s(t)) = Q(τ(t), x(t)) − p(t)τ(t) −C(s(t)) (2)

with Q(τ, x) concave in τ and x, C ′(s) > 0 and C ′′(s) > 0. For shortness of presentation we

assume that the water inflow in the recipient river basin is null. We believe that non of the

results would be affected if instead, a constant inflow of water were assumed in the recipient

river basin.

The problem must be solve backwards. First, we present the non-cooperative differential

game of infinite duration, starting at moment T , when the canal starts to be operative.

The value functions of donor and recipient in the water market game, played within period

[T,∞), must be taken into account to compute the cooperative solution of a joint investment

program to build the canal, within a first period [0, T ).

2.2 The non-cooperative water market game within [T,∞)

This subsection presents the dynamic interaction between the donor and the recipient regions

starting at time T when the canal starts to be operative. The time paths for the amount

and the price of the water transfer are determined from the supply and demand decisions

taken by donor and recipient as described in Cabo et al. (2014). The donor determines the

supply of water, τd, in order to maximize the stream of welfare discounted at a constant
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rate, ρ, within an infinite time horizon:6

max
τ
∫

∞

T
[E(τ) + pτ] e−ρ(t−T )dt. (3)

Correspondingly, the recipient must decide on the demand for water, τ r, from the donor

and on the investment, s, in usable water capacity, to maximize discounted welfare:

max
τ,s
∫

∞

T
[Q(τ, x) − pτ −C(s)] e−ρ(t−T )dt, (4)

s.t.: ẋ(t) = s(t) − δx(t), x(T ) = xT ≥ 0. (5)

The recipient is a farsighted player whose maximization problem is subject to the evolution of

usable water capacity in (??). By contrast, the donor behaves as a static or myopic player.7

Price is determined by the optimal supply and demand decisions and by the Market clearing

condition:

τd(p) = τ r(p).

Assuming that a feedback Nash equilibrium for this problem exits,8 we denote V i(xT ) the

value function of player i ∈ {d, r}, with an initial stock of usable water capacity given by

x(T ) = xT . To have an insight of each player’s incentive to invest in the construction of the

canal, these values must be confronted with each player’s accumulated gains in absence of

an aqueduct to transfer the water, and under the assumption of an identical initial stock of

usable water capacity, xT .

With no water transfer, the donor would not face any optimization problem and his

profit reads:9

V dNT =
F d(0,0)

ρ
.

The recipient would choose the investment in usable water capacity to solve the optimal

control problem:

V rNT (xT ) = max
s
∫

∞

T
F (0,0, x, s)e−ρ(t−T )dt = max

s
∫

∞

T
[Q(0, x) −C(s)] e−ρ(t−T )dt, (6)

subject to (??).

Condition 1 We first assume10 that there exists a set A ⊆ R+ such that

V i(xT ) > V
i
NT (xT ), ∀xT ∈ A, i ∈ {d, r} .

Condition ?? states that both players are better off if the canal exists. This gives them both

an incentive to cooperate in a joint investment project to build the canal.

6Here and henceforth, the time argument is omitted when no confusion can arise.
7Problem (??) could be written as: max

τ
[E(τ) + pτ] .

8The game is analytically solved in Cabo et al. (2014) under a linear quadratic specification for functions

E(τ), Q(τ, x), and C(s).
9subscript NT refers to “no transfer” scenario.

10For the linear quadratic game proposed in Cabo et al. (2014), Condition ?? is satisfied for A = [1/α,+∞).
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2.3 The joint investment project to build the canal within [0, T )

Within a first period [0, T ), the two regions cooperate in a joint investment project to

build the canal. At any time t ∈ [0, T ), each country i invests an amount Ii(t) at a cost

Ci(Ii(t)). The joint investment contributes to increase the length of the aqueduct already

built, measured by the stock variable K(t). The canal is finished once it reaches its full

length, when the accumulated stock K(t) reaches the value K. Thus, the duration, T , of

this cooperative period is determined by the intensity of investments, and by the magnitude

of the canal represented by constant K. Within this period, the cooperating agents must

also decide the investment on alternative water supply, s(t). The incentive to invest in the

stock of usable water capacity is reduced by the expectations of a future water transfer of

infinite duration. The cooperative maximization problem can be written as:

max
Id,Ir,s,T

∫

T

0
[F d(0,0) + F r(0,0, x, s) −Cd(Id) −Cr(Ir)]e−ρtdt + SC(x(T )), (7)

s.t.: ẋ = s − δx, x(0) = x0 ≥ 0, (8)

s.t.: K̇ = Id + Ir, K(0) =K0, K(T ) =K, (9)

where the scrap value is given by the present value of the addition of the value functions of

donor and recipient in the non-cooperative differential game played a la Nash from T to ∞,

considering feedback strategies as presented in section ??:

SC(x(T )) = [V d(x(T )) + V r(x(T ))]e−ρT .

Assuming that this problem has a solution,11 the value function of the cooperative game is

denoted as:

VC(x0) = ∫
T

0
[F d(0,0) + F r(0,0, xC, sC) −C

d
(IdC) −C

r
(IrC)]e

−ρtdt + SC(xC(T )), (10)

where sC(t), I
d
C(t) and IrC(t) are the optimal investment paths of the cooperative game

(??)-(??), and xC(t) the cooperative stock of usable water capacity which solves equation

(??) for the optimal investment path sC(t). The level xC(T ), reached by this stock when

the players cooperate from 0 till moment T at which the canal is finished, also defines

the starting stock of usable water capacity for the subsequent non-cooperative water market

game. Note that this value function collects the accumulated payoff of the two regions within

the first cooperative period, plus what they get within the subsequent non-cooperative game,

included in the scrap value SC(x(T )).

A necessary conditions for the two players to agree to cooperate in the joint investment

program is:

11For the lineal quadratic case, the solutions is computed in the Appendix.
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Condition 2 Overall global rationality or Kaldor-Hicks efficiency:

VC(x0) > V
d
NT(x0) + V

r
NT(x0). (11)

The accumulated payoffs globally for the two players if they coordinate their efforts and

build a canal within a first period utilized henceforth, VC(x0), must be greater than the

addition of the accumulated payoffs for the two regions if the canal is never initiated and

no transfer ever take place, V dNT(x0) + V
r
NT(x0).

Overall global rationality is a requirement for the agreement to arise. However, it cannot

guarantee that an agreement for the joint investment project is reached and maintained until

its finalization. Next section presents a mechanism which guarantees the time consistency

of the cooperative solution. This property ensures the formation of a coalition to build

the canal, and guarantees that no region has an incentive to deviate from the cooperative

solution at any time before the completion of the canal.

3 Time consistency of the cooperative solution

After defining some notation and recalling the different definitions of rationality, this section

first proposes a sharing rule and an associated side-payment to guarantee that globally, each

region is better off if the canal is built. Secondly, this sharing rule is extended to an

imputation distribution procedure to guaranty time consistency. This imputation is feasible

based on an instantaneous side-payment scheme.

Next we define the instantaneous welfare for the two regions under the assumption that

they behave optimally. First we consider the no transfer scenario (subscript NT ), in which

no water transfer ever takes place. Then, if players agree to jointly invest to build the canal,

there is a fist period [0, T ), of cooperation (subscript C), in which both regions invest to

build the canal, followed by a second period from T on (no subscript), when the water

transfer is available and a water market is established.

wdNT=F
d
(0,0), wrNT(t)=F

r
(0,0, xNT(t), sNT(t)), ∀t ≥ 0, (12)

wdC(t)=F
d
(0,0) −Cd(IdC(t)), wrC(t)=F

r
(0,0, xC(t), sC(t)) −C

r
(IrC(t)), ∀t ∈ [0, T ],(13)

wd(t)=F d(p(t), τ(t)), wr(t)=F r(p(t), τ(t), x(t), s(t)), ∀t > T, (14)

All control and state variables are at their corresponding optimal values. Further, the price

and quantity of the water market are also at their equilibrium values.

Remark 1 In the no transfer scenario, the donor enjoys the constant environment ameni-

ties linked with a pristine river, while the recipient, with no possibility to get water from the

donor, invests in its stock of water capacity.
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By contrast, if the regions agree to build the canal, within the first period of joint invest-

ment, the donor still enjoys the full environmental amenities and has to pay the investment

costs of the infrastructure. The recipient also bears the investment cost associated with the

construction of the canal, while its incentive to invest in the stock of water capacity is reduced

by the expectation of future transfers. Finally, when the canal is built, the donor transfers

water to the recipient at a price fixed by their dynamic interaction in the water market.

At any time t wihin the cooperative period [0, T ],we may define the payoffs to go when

cooperating regions decide either to continue with cooperation or alternatively to suspend the

agreement indefinitely. If regions maintain cooperation and finish the canal at T , allowing

the transfer of water from this time on, under bilateral trade, the payoffs to go from this

time t ∈ [0, T ] on, and for each region region i ∈ {d, r} would read:

W i
(t) = ∫

T

t
wiC(u)e

−ρ(u−t)du + ∫
∞

T
wi(u)e−ρ(u−T )du,

or equivalently:

W i
(t) = ∫

T

t
wiC(u)e

−ρ(u−t)du + V i(xC(T ))e−ρ(T−t), ∀t ∈ [0, T ], ∀i ∈ {d, r}. (15)

Alternatively, regions might cease cooperation at this time t before the canal is finished,

and stick to their no-transfer strategies henceforth (no water trading ever takes place). The

payoffs to go starting at this time t would read:

W i
NT(t) = ∫

∞

t
wiNT(u; t)e−ρ(u−t)du, ∀t ∈ [0, T ], ∀i ∈ {d, r}.

Or equivalently:

W i
NT(t) = ∫

T

t
wiNT(u; t)e−ρ(u−t)du + V iNT(xNT(T ; t))e−ρ(T−t), ∀t ∈ [0, T ], ∀i ∈ {d, r}. (16)

with wdNT(u; t) = wdNT constant, and wrNT(u; t) = F r(0,0, xNT(u; t), sNT(u; t)).

Assuming that the two regions have agreed to cooperate from the beginning to time t

prior to the completion of the canal, they have been investing IdC and IrC in the canal and

sC in the stock of usable water capacity. Hence, this stock has reached level xC(t). If they

maintain cooperation the optimal investment in usable water capacity is still given by sC

and this stock evolves to reach xC(T ) when the canal is finished. Conversely, if they halt

cooperation, the optimal investment in this stock is now driven by sNT and the stock evolves

differently. Its initial value is given by xC(t), and for that reason the optimal path followed

by this stock in this second scenario will depend on the time t, when cooperation ended as

well as the current time after defection xNT(u; t), u ≥ t. Obviously, at time T , the values

xNT(T ; t) and xC(T ) are not necessarily the same.

Taking into account these definitions, at any time t ∈ [0, T ] we can define the surplus to

go from cooperation from this time on for player i as:

Si(t) =W i
(t) −W i

NT(t), ∀t ∈ [0, T ], ∀i ∈ {d, r}. (17)
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And the total surplus to go from cooperation from this time on as:

S(t) =W d
(t) +W r

(t) −W d
NT(t) −W

r
NT(t) ∀t ∈ [0, T ]. (18)

3.1 Overall rationality

With the notation above, Condition ?? can be written as W i(T ) > W i
NT(T ) or Si(T ) > 0

for i ∈ {d, r} and xC(T ) in a nonempty set. Correspondingly Condition ?? of overall global

rationality can be written as W d(0) +W r(0) > W d
NT(0) +W

r
NT(0) or S(0) > 0. The total

investment costs of building the channel plus the environmental costs associated with the

water transfer must be lower than the aggregate gains from the water transfer, which is

equivalent as having a positive total surplus from cooperation. However, overall global

rationality is not sufficient for cooperation, overall individual rationality is further required:

W i
(0) >W i

NT(0)⇔ Si(0) > 0, ∀i ∈ {r, d}. (19)

In general this condition is not fulfilled. Because we are assuming Condition ?? of overall

global rationality, at least one of the regions is better off if the canal is jointly built (its

opponent is worse off). We assume from now on that player i is worse off, while player −i is

better off:

Si(0) ≡W i
(0) −W i

NT(0) < 0, S−i(0) ≡W −i
(0) −W −i

NT(0) > 0. (20)

Then, according to the Kaldor-Hicks compensation criterion, it is always possible to define

a compensation payment or a side-payment from region −i to region i, in the scenario in

which the canal is built, that leaves everyone as well off and at least one better off as

under the scenario in which the project is not implemented. Thus, the project leads to a

Pareto improvement. The more straightforward and often used side-payment is to follow

the egalitarian principle12. As equation (??) shows, the game analyzed here is particular in

the sense that cooperation leads to immediate losses (investment costs to build the canal),

and it is followed by a second non-cooperative period which will determine each player’s

gains from the existence of the canal. Instead of the egalitarian principle, our proposal is

that each player contribution to the construction of the canal should be determined by his

share in the total gains once the canal is operative. Thus, we define the i-th share in the

total gains which stem from the canal as:

φi =
V i(xC(T )) − V iNT(xC(T ))

V i(xC(T )) + V −i(xC(T )) − V iNT(xC(T )) − V −i
NT(xC(T ))

=
Si(T )

S(T )
, i ∈ {d, r} (21)

12In this case the side-payment is defined as a payment from −i to i equal to half the surplus gained by −i plus

half the losses suffered by i when the canal is jointly built. This guarantees that each player attains an equal

share of the global surplus from cooperation.
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¿From Condicion ?? immediately follows that φi ∈ (0,1). This fraction φi is defined as the

surplus for player i divided by the total surplus associated with the existence of the canal.

From this definition, it is immediately obvious that W i(T ) =W i
NT(T )+φiS(T ). This share

is computed by comparing accumulated gains when the canal exists with accumulated gains

if a canal is never built. Therefore, it does not take into consideration the costs incurred

within the cooperating period. Our main idea is to define a global side-payment from player

−i to i in order to guarantee that this equation is also valid at the initial time. Each player’s

payoff to go under cooperation, including the side-payment, vi(0), must equate his payoffs

to go in the case of no cooperation and no transfer plus a share of the total surplus to go

at time 0. With this share given by the players gains attached to the existence of the canal,

φi:

vi(0) =W i
(0) + SD =W i

NT(0) + φ
iS(0), (22)

v−i(0) =W −i
(0) − SD =W −i

NT(0) + φ
−iS(0). (23)

While S(T ) represents the surplus associated with the existence of the canal, S(0) takes

into account the gains from the existence of the canal, but also the investment costs within

the first cooperative period. By construction, at time T each player receives what he would

have gained without the canal, plus a different share of the global surplus from the existence

of the canal. According to expressions (??)-(??) this statement must be equally valid at

the beginning of the cooperative agreement. Thus taking into account all investment costs

to build the canal, it must still be true that each agent gets what he would have gotten

without the canal plus a share from the global surplus to go, identical to the share whe

the canal is finished. In consequence, each player must contribute according to its future

benefits stemming from the canal.

¿From (??)-(??) the global side-payment immediately follows:

SD = φi[W −i
(0) −W −i

NT(0)] + φ
−i
[W i

NT(0) −W
i
(0)], i ∈ {r, d}, (24)

defined as the addition of the i-th share of the total gains of region −i plus the −i-th share

of the losses of region i.

Corollary 2 By labeling the donor as i and the recipient as −i, the side-payment from

recipient to donor would read:

SD = φd[W r
(0) −W r

NT(0)] + φ
r
[W d

NT(0) −W
d
(0)]. (25)

Might the recipient had losses and the donor gains, then SD would be negative, and would

represent a side-payment from donor to recipient.13

13We have assumed Si(0) < 0 and S−i(0) > 0, and hence the side-payment goes from player −i (who is better
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This subsection has presented one possible rule to share the global surplus from cooper-

ation. The associated side-payment guarantees overall individual rationality. However, in a

dynamic context, overall individual rationality is not sufficient for cooperation. Further, the

cooperative solution must be time consistent. The basic idea behind the global side-payment

will be utilized in the following subsection to distribute the side-payment as a continuous

stream from 0 and until the canal is finished, in such a way that time consistency is attained.

The following subsection extends the sharing rule, φi, to decompose the total cooper-

ative payoff between regions and over the time interval [0, T ] in such a way to guarantee

time consistency. We also present an instantaneous side-payment scheme which makes this

distribution possible.

3.2 Time consistency

The cooperative solution is time consistent if individual rationality is satisfied in every

subgame starting at any time along the cooperative solution.

Definition 1 The cooperative solution with no prior side-payment would be time consistent

if

Si(t) ≡W i
(t) −W i

NT(t) ≥ 0, ∀t ∈ [0, T ], ∀i ∈ {d, r}.

This is clearly not the case since in (??) we are assuming that one of the players is initially

worse off under cooperation. However, even if individual overall rationality were satisfied

by both players, time consistency would not be guaranteed. More conditions are needed.

Condition ?? or Kaldor-Hicks efficiency assumption implies S(0) > 0. An additional

necessary condition for time consistency is a non-negative surplus to go at any time t ∈ [0, T ),

assumed henceforth:

Condition 3

S(t) =W d
(t) +W r

(t) −W d
NT(t) −W

r
NT(t) ≥ 0 ∀t ∈ [0, T ].

Given the specification of the problem, investment costs are distributed along the initial

cooperative period. By contrast, the benefits from the existence of the canal arise when

cooperation ends. As times runs within the interval [0, T ] costs are being paid while the

benefits are yet to come. It is then very likely14 that the surplus to go increases with time

and hence S(0) > 0 should imply S(t) > 0 for any t ∈ [0, T ]. If it is initially beneficial to build

the canal, S(0) > 0, it seems plausible that it will be beneficial at any intermediate time to

off with the cooperative agreement) to player i (who is worse off). The same analysis is valid if instead Si(0) > 0

and S−i(0) < 0.
14Although it has not been proved.
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continue with the construction of the canal. Therefore, Condition ?? can be regarded as

either irrelevant or not much more demanding than Condition ??.

In order to define a side-payment scheme within interval [0, T ], we first decompose the

total players’ payoffs to go under cooperation after the side-payment, vi(0), as the value

function of each region at time T when the canal is finished, plus a stream of payoffs from 0

to T . This latter is denoted in the literature as an imputation distribution procedure (IDP),

πi(t), ∀t ∈ [0, T ], which verifies:

vi(0) = ∫
T

0
πi(u)e−ρudu + V i(xC(T ))e−ρT , ∀i ∈ {d, r}. (26)

Definition 2 Let us define the payoffs to go for an IDP, πi(u), as:15

vi(t) = ∫
T

t
πi(u)e−ρ(u−t)du + V i(xC(T ))e−ρ(t−T ), ∀t ∈ [0, T ], ∀i ∈ {d, r}, (27)

assuming that cooperation has lasted till t, and xC(T ) is the stock of water capacity at the

time, T , when the canal becomes operative. This IDP is time consistent under condition:

vi(t) =W i
NT(t) + φ

iS(t), ∀t ∈ [0, T ], ∀i ∈ {d, r}. (28)

While the payoffs to go are defined in (??), time consistency requires that they satisfy (??).

The proof that there exists an imputation distribution procedure which satisfies the two

definitions for the payoffs to go in (??) and (??) is split in two parts. First, we prove that

vi(T ) satisfies both definitions. And second we prove that16 v̇i(t) coincide under the two

expressions for any t ∈ [0, T ).

Lemma 3 Expressions (??) and (??) evaluated at T , both lead to vi(T ) = V i(xC(T )).

Proof. From (??) it is immediately obvious. From (??) it follows:

vi(T ) =W i
NT(T ) + φiS(T ) = V iNT(xC(T )) +

V i(xC(T )) − V iNT(xC(T ))

S(T )
S(T ) = V i(xC(T )),

for all i ∈ {d, r}.

Proposition 4 The values of v̇i(t) for all t ∈ [0, T ) under the two definitions (??) and (??)

are identical under the IDP:

πi(t) = wiNT(t) + φ
is(t) + φiΘ−i

(t) − φ−iΘi
(t), ∀t ∈ [0, T ), i ∈ {r, d}, (29)

with s(t) = wiC(t) +w
−i
C (t) −wiNT(t) −w

−i
NT(t), the instantaneous surplus from cooperation at

time t (typically negative), and Θi
(t) = ∫

T

t
ẇiNT(u; t)e−ρ(u−t)du+(V iNT)

′

xNT
ẋNT(T ; t)e−ρ(T−t).

15See, for example, Zaccour (2007).
16A dot always represents the derivative w.r.t. t.
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Proof. Computing the time derivatives in expressions (??) and (??) we get:

Ẇ i
(t) = −wiC(t) + ρW

i
(t),

Ẇ i
NT(t) = −w

i
NT(t)+ρW

i
NT(t)+∫

T

t
ẇiNT(u; t)e−ρ(u−t)du+(V iNT)

′

xNT
ẋNT(T ; t)e−ρ(T−t). (30)

And hence,

Ṡ(t) = −s(t)+ρS(t)−[(V iNT)
′

xNT
+ (V −i

NT)
′

xNT
] ẋNT(T ; t)e−ρ(T−t)−∫

T

t
(ẇiNT(u; t) + ẇ−i

NT(u; t)) e−ρ(u−t)du

Taking this into account, the time derivatives of expressions (??) and (??) read:

v̇i(t) = −πi(t) + ρvi(t), (31)

v̇i(t) = −wiNT(t) + ρv
i
(t) − φis(t) +[φ−i (V iNT)

′

xNT
−φi (V −i

NT)
′

xNT
] ẋNT(T ; t)e−ρ(T−t)

−φi ∫
T

t
ẇ−i

NT(u; t)e−ρ(u−t)du + φ−i ∫
T

t
ẇiNT(u; t)e−ρ(u−t)du. (32)

And these two expressions equate for the IDP in (??)

Corollary 5 By labeling the donor as i and the recipient as −i, the IDP can be written as:

πd(t) = wdNT(t) + φ
ds(t) + φdΘr

(t), ∀t ∈ [0, T ), (33)

πr(t) = wrNT(t) + φ
rs(t) − φdΘr

(t), ∀t ∈ [0, T ). (34)

For the recipient Θr(t) represents the effect of a marginal delay in defection (or a marginal

extension of cooperation), on the path of investment on usable water capacity and, in con-

sequence, on the evolution of the stock of usable water capacity and hence, on the flow of

instantaneous welfare of the recipient from this time t (of defection) on. One might expect

that, as cooperation last longer, (t increases approaching T ), the cooperative stock of water

capacity constituted under cooperation would rise higher, which would reduce the incentive

to invest in this stock in the after-defection-no-transfer scenario from t to T . This will

reduce the costs of investment within this period. Conversely, a shorter non-cooperative

period, T − t, would imply a smaller stock of water capacity at time T , which would imply

a reduction in the payoffs to go from this moment on.17

As for the donor, since he has no decision to make after the moment t when coopera-

tion stops, logically, there will be no marginal effects associated with delays in the time of

defection, Θd(t) = 0,∀t ∈ [0, T ).

An crucial result from the definition of the IDP in (??) is that πi(t) + π−i(t) = wiC(t) +

w−i
C (t). The instantaneous payoffs provided by the IDP for the two players matches the in-

stantaneous joint cooperative payoff at any time t ∈ [0, T ). In consequence an instantaneous

17The complete effect of a marginal delay in defection on the payoffs to go for region i has two other components

as shown in (??). The payoffs to go are reduced in the instantaneous payoff corresponding to time t, −wiNT(t), (if

fact they are increased because the instantaneous payoff is typically negative). Secondly, the initial time t moves

forward, payoffs to go are valued later and then the value increases by ρW i
NT(t).
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or continuous side-payment from country −i to country i, sd(t), can be defined from 0 to T

in such a way to guarantee that each country gets the instantaneous payoff defined by the

IDP in (??).

Proposition 6 The instantaneous side-payment from player −i to player i is given by

sd(t) = φi[w−i
C (t) −w−i

NT(t)] + φ
−i
[wiNT(t) −w

i
C(t)] + φ

iΘ−i
(t) − φ−iΘi

(t). (35)

which satisfies that18 πi(t) = wiC(t) + sd(t) and π−i(t) = w−i
C (t) − sd(t) for all t ∈ [0, T ).

Corollary 7 Labeling the donor by i and the recipient by −i, then the instantaneous side-

payment from recipient to donor can be written as:

sd(t) = φd[wrC(t) −w
r
NT(t)] + φ

r
[wdNT(t) −w

d
C(t)] + φ

dΘr
(t), ∀t ∈ [0, T ). (36)

A negative value of sd(t) would represent a side-payment from donor to recipient.

We can distinguish two parts in the instantaneous side-payment in (??). The first part is

the addition of the donor’s share, φd, of the recipient instantaneous gains from cooperation

(typically negative due to the investment costs to build the canal) and the recipient’s share,

φr, of the donor instantaneous saving if they do not cooperate to build the canal (typically

positive). This part corresponds to the instantaneous version of the global side-payment, SD,

in (??). The only difference being that, in overall terms, the construction of the canal and

its ulterior utilization are assumed to be beneficial for the recipient and detrimental for the

donor; however in instantaneous terms, countries incur in costs throughout the cooperative

period when the canal is being built. Therefore, the instantaneous payoffs under cooperation

are typically lower than under no transfer.

The second part of this instantaneous side-payment is given by the donor’s share of the

marginal effect of a delay in defection on the stream of instantaneous payoffs for the recipient

(assuming that cooperation ends before the construction of the canal), φdΘr(t).

An alternative expression for the instantaneous side-payment in (??) would be:

sd(t) = φd [Ẇ r
NT(t)−ρW

r
NT(t)−(Ẇ

r
(t)−ρW r

(t))]+φr[Ẇ d
(t)−ρW d

(t)−(Ẇ d
NT(t)−ρW

d
NT(t))]

(37)

Note that Ẇ i
NT(t)−ρW

i
NT(t) and Ẇ i(t)−ρW i(t) denote the temporal evolution of the payoffs

to go, not linked to discounting under either the no transfer solution or the cooperative

scenario, at time t ∈ [0, T ). Thus, the first term in brackets in (??) represents the gap in the

temporal evolution of the recipient’s payoffs to go under no transfer and cooperation. That

is how much faster the recipient’s payoffs to go increase under the no transfer case than

under cooperation.19 Correspondingly, the second term in brackets shows how much faster

18Negative values of sd(t) would represent side-payments from player i to player −i.
19In fact, one might expect that the payoffs to go would decrease under the no transfer solution and increase

under cooperation. Hence, this term is likely to be negative.
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the donor’s payoffs to go are increased in the cooperative scenario than in the no transfer

solution (a likely positive term).

4 Application: specific functional forms

The dynamic of the usable water capacity in (??) is linear. Therefore, to have an analytically

tractable problem we consider here the following quadratic form for the instantaneous profit

function, as in Cabo et al. (2014). For the donor,

F d(p, τ) = Ed(τ) + pτ = c(R −
τ2

2R
) + pτ, c > 0,

with R > 0 the constant water surplus in the donor’s river basin. In the absence of water

transfer, environmental amenities increase linearly with the water surplus: cR. Further, we

consider that the marginal reduction in environmental amenities is inversely proportional to

this surplus, while proportional to the water transferred: cτ(t)/R.

For the recipient, output increases with at a decreasing rate the total quantity of water

(either the usable water capacity or the transfer). This is represented by the quadratic term

in τ + x. Further, we also consider quadratic costs of investment in usable water capacity.

F r(p, τ, x, s) = d(τ + x − α
(τ + x)2

2
) − pτ − β

s2

2
d,α, β > 0.

For illustration purposes, we consider parameter’s values20 which guarantee conditions ??,

?? and ?? under which both players are better off if a canal exists, the project to build

the canal improves overall global welfare, and in fact, the surplus to go from cooperation is

positive at any time within cooperation. The equilibrium for the non-cooperative game can

be found in Cabo et al. (2014), and the cooperative solution is presented in the Appendix.

For the chosen parameters we obtain:

T ∗ = 30.76, xTC = 47.97, φd = 0.344, φr = 0.656, S(0) = VC(x0)−(V
d
NT(x0) + V

r
NT(x0)) = 1972.79.

However, although we assume overall global rationality, we also consider that cooperation

increases the recipient’s accumulated welfare, Sr(0) = V rC (x0) − V
r
NT(x0) = 2048.06, but de-

creases the donor’s accumulated welfare Sd(0) = V dC (x0)−V
d
NT(x0) = −75.26. In consequence,

without side-payment, this latter would not agree to cooperate to build the canal.

The surplus to go under cooperation is depicted in Figure ??, which shows that Condition

??, S(0) > 0, and ??, S(t) ≥ 0, for all t ∈ [0, T ], are satisfied.

Figure ?? displays the payoffs to go if the countries accept cooperation, W i, and under

the no transfer scenario (when no canal is ever built) W i
NT . This figure shows that at the

20c = 4.7084, d = 2.1275, ρ = 0.001, δ = 0.1, R = 593.67, α = 0.0135, as in Cabo et al. (2014). And

x(0) = 0, zd = zr = 10 K0 = 0, K̄ = 100.
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beginning of the cooperative period, the donor’s payoffs to go would be higher if he deviates

from cooperation to the no transfer scenario. Thus, the cooperative solutions is not time-

consistent, and would never be implemented unless an adequate mechanism gives the donor

an incentive to cooperate.

Figure ?? shows how the payoffs to go are modified if the instantaneous side-payment

in (??) is implemented. The payoffs to go after the side-payment, vi(t), correspond to the

IDP in (??). These are greater than their respective payoffs to go under the alternative no

transfer scenario in case of defection. Therefore, this IDP is time consistent. Countries will

stick to their cooperative investment strategies and the canal will be finished.

S(t)

S(0) = 1972.79

Figure 1: Surplus to go at t.

W r(t)

W r
NT(t)

W d(t)

W d
NT(t)

Figure 2: Payoff to go at t, under cooperation vs. no transfer.

5 Conclusions

This paper studies the dynamic interaction between two countries with differences in precip-

itation rates and water productivity. Water inflows are relatively higher in the river basin
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W r(t)

vr(t)

W r
NT(t) W d(t)

vd(t)

W d
NT(t)

Figure 3: Payoff to go after side-payment at t, under cooperation vs. no transfer.

located in the country labeled as the donor than in the recipient country. After satisfying

local demand the donor still enjoys a flow of water surplus (assumed constant for simplic-

ity). Although this surplus is not utilized in the productive process, it is valuable because

it helps to preserve the environmental amenities provided by the river. Correspondingly,

water is highly productive in the recipient economy (one might think of different uses like

irrigation, industry, municipal water supply, etc.) but the river basin in this country suffers

from a chronic shortage of water. This country has the possibility to invest in alternative

water supplies like desalination plants, water savings or water recycling. Might the donor’s

river basin transfer part of its water surplus to the recipient’s, overall productivity could be

increased. Thus, the existence of a canal allowing this water transfer would create a water

market increasing overall productivity. The recipient would be willing to pay a price for the

water its economy demands. Correspondingly, the donor would be willing to accept a price

for the excess water transferred, as long as this price offsets the environmental losses associ-

ated with the transfer. Therefore, if the productivity of water in the recipient’s economy is

sufficiently high with respect to the losses in the environmental amenities provided by the

river in the donor’s country, then the existence of the canal, and the water market it makes

possible, may signify a gain for both regions. Nonetheless, there is no reason for these gains

to be necessarily symmetric.

This paper has addressed a question previous to the existence of the canal: Assuming

that the existence of the canal involves an asymmetric win-win situation for the two regions,

under which conditions would they agree to a first period of cooperation in a joint investment

project to build the canal? To analyze this question, we define a two-regimes differential

game between the two countries. Within a second period, when the canal exists, a non-

cooperative differential game of infinite duration describes the water market they are engaged

in. However, for the canal to exist, they must play a cooperative differential game within a

first period to jointly build the canal.
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This is an example of a cooperative game in which the benefits from cooperation only

come at the end of the game, when cooperation stops. Cooperation does not imply an

immediate reward but a burden: the investment costs of building the canal. Further, the

asymmetric benefits from the cooperation are not defined by the cooperative agreement,

but they are given by a subsequent non-cooperative differential game describing the water

market made possible by the canal. Therefore, the standard question in cooperative game

theory on how to share the gains from cooperation, is changed to a new question: how to

share the burden from cooperation taking into account future uneven gains? This sharing

rule must guarantee that the canal is actually finished. That is, it must be defined in such

a way that the cooperative solution satisfies the property of time consistency.

We assume first that the surplus from cooperation is positive (initially and at any time

within the cooperative period), and second that both players gain with the existence of the

canal. In overall terms (for the whole time period) we propose a sharing rule at the initial

time (when they start building the canal) which assigns each country its overall gains in

the case of no transfer, plus a share of the global surplus from cooperation. This share is

defined by the country’s share in total gains from the existence of the canal (attained at

time T when the canal is finished). A global side-payment is defined to guarantee that this

share is attained.

This sharing rule is extended from overall to instantaneous terms. Thus we define an

imputation distribution procedure, which satisfies that at any time within cooperation each

country’s payoffs to go equate what it would get with no transfer plus the previously-

proposed share of the global surplus to go. For this sharing rule we are able to define the

instantaneous payoffs each country should get and, more importantly, an instantaneous side-

payment under which the sharing mechanism is fulfilled. Thus, by definition, at any time

within the cooperative period, every country is better off by continuing with cooperation

than by defecting, and hence the agreement is time consistent.
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6 Appendix

6.1 Solving a LQ game when cooperation is maintained

To find a solution to the problem described in (??), (??) and (??) we define the Hamiltonian:

H(x,K, s, Ir, Id, λ, µ) = F d(0,0) + F r(0,0, x, s) −Cd(Id) −Cr(Ir) + λ(s − δx) + µ(Id + Ir).
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Assuming quadratic costs, first order conditions give:21

λ = βs, µ = zdId = zrIr,

K̇ = zd+zr

zdzr
µ,

µ̇ = ρµ,

ẋ = λ
β
− δx,

λ̇ = (ρ + δ)λ − d(1 − αx),

H(x(T ),K(T ), s(T ), (Ir)(T ), (Id)(T ), λ(T ), µ(T )) − ρ[V d(x(T )) + V r(x(T ))] = 0. (38)

The system of differential equations in x, λ

⎛
⎜
⎝

ẋ

λ̇

⎞
⎟
⎠
=
⎛
⎜
⎝

−δ 1/β

αd ρ + δ

⎞
⎟
⎠

⎛
⎜
⎝

x

λ

⎞
⎟
⎠
+
⎛
⎜
⎝

0

−d

⎞
⎟
⎠
, (39)

can be solved separately, obtaining:

⎛
⎜
⎝

x

λ

⎞
⎟
⎠
= C1

⎛
⎜
⎝

ξ1x

ξ1λ

⎞
⎟
⎠
er1t +C2

⎛
⎜
⎝

ξ2x

ξ2λ

⎞
⎟
⎠
er2t +

⎛
⎜
⎝

xp

λp

⎞
⎟
⎠
,

where

xp =
d

αd + βδ(ρ + δ)
, λp =

dβδ

αd + βδ(ρ + δ)

and ξ̄1 = (ξ1x, ξ
1
λ) and ξ̄2 = (ξ2x, ξ

2
λ) are the eigenvectors associated to eigenvalues:

r1 =
βρ −

√
β(ρ + δ)2 + 4αdβ

2
< 0, r2 =

βρ +
√
β(ρ + δ)2 + 4αdβ

2
> 0

Together with equation (??) conditions for this problem are: x(0) = x0, λ(T ) = ∂SC
∂x

(x(T )).

Taking into account a lineal-quadratic differential game as described in Cabo et al. (2014),

defining the water market after the finalization of the canal, the value functions for donor and

recipient will be second order polynomials: V i(x) = aix2/2 + bix + ci, ∀i ∈ {d, r}. Therefore,

(∂SC/∂x)(x(T )) = ∂[V d(x(T ))+V r(x(T ))]/∂x can be written as ax(T )+b, where a = ad+ar

and b = bd + bd, then these two conditions can be written as:

C1ξ
1
x +C2ξ

2
x = x0 − xp

C1(ξ
1
λ − aξ

1
x)e

r1T +C2(ξ
2
λ − aξ

2
x)e

r2T = axp − λp + b,

and the constants can be computed as functions of T : C1C(T ) and C2C(T ). For any t ∈ [0, T ],

the optimal paths for x and λ would be:

xC(t) = C1C(T )ξ1xe
r1t +C2C(T )ξ2xe

r2t + xp (40)

λC(t) = C1C(T )ξ1λe
r1t +C2C(T )ξ2λe

r2t + λp (41)

21Similarly, one might consider lineal quadratic investment costs.

22



Similarly, we can compute the optimal capital stock and its costate:

KC(t) =
K̄ − k0
eρT − 1

eρt +
k0e

ρT − K̄

eρT − 1
,

µC(t) =
zdzr

zd + zr
(K̄ − k0)ρ

eρT − 1
eρt.

And the optimal time T at which the canal must be finished given by equation (??)

6.2 Solving a LQ game with defection at time t

We analyze the no water transfer scenario when players have cooperated up to t ∈ [0, T ).

This is the standard problem but starting at (t, xC(t)). The donor faces no optimization

problem, while the recipient solves the problem:

max
s
∫

∞

t
(d(x −

α

2
x2) −

β

2
s2) e−ρudu, ẋ = s − δx.

The dynamics of the state and co-state variables is identical as in the cooperative problem,

stated in (??), which solution reads:

⎛
⎜
⎝

x(u)

λ(u)

⎞
⎟
⎠
= C1

⎛
⎜
⎝

ξ1x

ξ1λ

⎞
⎟
⎠
er1(u−t) +C2

⎛
⎜
⎝

ξ2x

ξ2λ

⎞
⎟
⎠
er2(u−t) +

⎛
⎜
⎝

xp

λp

⎞
⎟
⎠
, u > t.

where

xp =
d

αd + βδ(ρ + δ)
, λp =

dβδ

αd + βδ(ρ + δ)

and r1, r2, ξ̄
1 and ξ̄2, are the eigenvalues and eigenvectors already obtained in the cooper-

ative case. The transversality condition limu→∞ λ(u)x(u)e−ρ(u−t) = 0, requires C2 = 0. This

together with condition x(t) = xC(t) gives C1 = (xC(t) − xp)/ξ
1
x and the solutions of x and

λ for any time u after t when cooperation halts:

xNT(u; t) = (xC(t) − xp)e
r1(u−t) + xp, (42)

λNT(u; t) = (xC(t) − xp)
ξ1λ
ξ1x
er1(u−t) + λp. (43)

We can now compute the derivative of xNT(T ; t) with respect to the time t when coop-

eration ceases, used in the definition of Θi(t) in Proposition ??.

d

dt
(xNT(T ; t)) = ẋC(t)e

r1(T−t) − r1[(xC(t) − xp]e
r1(T−t)

= [sC(t) − (r1 + δ)xC(t) + r1xp]e
r1(T−t) = [λC(t)/β − (r1 + δ)xC(t) + r1xp]e

r1(T−t)

where xC and λC are given in (??) and (??), while T is obtained from (??).
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