Distinct disease phenotypes produced by a de novo generated synthetic prion strain: Conformational instability before adaptation

Fabio Moda, - Nhat Tran Tanh Le, Tommaso Virgilio, Samanta Mazzetti, Suzanna Aulic, Luisa Palamara, Ilaria Campagnani, Olivier Andréoletti, Fabrizio Tagliavini, Giuseppe Legname

To cite this version:


HAL Id: hal-02742119
https://hal.inrae.fr/hal-02742119
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
increased in wild-type (wt) MoPrP. To test these mutants in vitro, we produced recombinant proteins and carried out a fibrilization assay and compared the lag phases duration among different constructs. The results clearly show that the constructs with tyrosine (H95Y, H110Y, or H95,110Y) required shorter lag phases to aggregate compared to wt MoPrP. Based on these data, we could conclude that substitution of histidine by tyrosine residues at non-OR region can enhance PrPC-PrPSc conversion process, and that the non-OR copper-binding site may possess a critical role in this process.

P.124: Distinct disease phenotypes produced by a de novo generated synthetic prion strain: Conformational instability before adaptation

Fabio Moda¹, Nhat Tran Tanh Le², Tommaso Virgilio¹, Samanta Mazzetti¹, Suzanna Aulic², Luisa Palamara¹, Ilaria Campagnani¹, Olivier Andréoletti³, Fabrizio Tagliavini¹, and Giuseppe Legname²

¹IRCCS Foundation “Carlo Besta” Neurological Institute; Milan, Italy; ²Scuola Internazionale Superiore di Studi Avanzati (SISSA); Trieste, Italy; ³UMR INRA-ENVIT; Physiopathologie Infectieuse et Parasitaire des Ruminants; Ecole Nationale Vétérinaire de Toulouse; Toulouse, France

Prions are infectious proteins that possess multiple self-propagating structures, which define different strains. The structural information for strain diversity is contained in the folding of the pathological isoform, PrPSc. Following an in vitro protocol, recombinant mouse PrP (recMoPrP) was converted to ultrastructurally different amyloid fibrils without any seeding factor. One of these preparations (recMoPrP#4) efficiently propagated in PMCA using the brains of mice overexpressing PrPC (Tga20) as substrate. RecMoPrP#4 was able to infect either GT1 or N2a cell lines causing the conversion of endogenous PrPC to PK-resistant forms. We next assessed the ability of recMoPrP#4 to propagate in vivo after intracerebral inoculation in CD1 mice. The animals did not show any evident prion-like pathology and were culled at the end of their lifespan. The brain of these mice was either used for (i) a second passage transmission or (ii) analyzed by PMCA. The latter revealed the presence of PK-resistant PrP with an uncommon biochemical profile when compared to that of known murine prion strains. This amplified isolate was intracerebrally injected in CD1 mice, which developed disease after a relative short incubation time (~160 days). Immunohistochemical and biochemical analysis revealed the presence of three different PK-resistant prion isolates able to produce a subset of completely different pathologies. The biochemical profiles of the isolates that accumulated in the CNS of these animals were distinct from that of the original amyloid used as inoculum. These results indicate that synthetic prions can assume multiple intermediate conformations before adapting and converging to stable strains.

P.125: Distinct strains of Aβ prions implicated in rapidly progressive Alzheimer disease

Mark Cohen, Chae Kim, Tracy Haldiman, Mohamed ElHag, Curtis Tatsuoka, Shulin Zhang, Jonathan Haines, Alan Lerner, and Jiří Safar*

Case Western Reserve University; Cleveland, OH USA

Because over 75% of phenotypic variance of late onset Alzheimer disease (AD) remains unexplained by currently identified risk genes, we aimed to investigate the prion paradigm of AD, specifically the role of structure of the brain amyloid β (Aβ) in remarkably variable rates of clinical decline. Using a tandem of novel biophysical methods, we inventoried and analyzed conformational structural characteristics of Aβ in the cortex of 48 cases of sporadic AD with distinctly different disease durations, and correlated the data with clinical profiles