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STEADY-STATE ANALYSIS OF A SYNTROPHIC ASSOCIATION OF TWO
SPECIES IN A CHEMOSTAT: THE EFFECT OF A NEW INPUT

CONCENTRATION SUBSTRATE

Y. Daoud ∗, T. Sari †, N. Abdellatif ‡ and J. Harmand §

Abstract. In this work, we study a model describing a syntrophic relationship of two microbial species with two
input substrates, including both decay terms and inhibition of the first species by an excess of the second substrate.
This model can be seen as a reduced and simplified version of the anaerobic digestion process. We discuss the
existence and stability of all equilibria and we give necessary and sufficient conditions on the control parameters
of the system (the dilution rate D and the input concentrations of the two substrates sin0 and sin1 ). By means of
operating diagrams, we describe the asymptotic behavior of the model with respect to the control parameters and we
illustrate the effect of the second input substrate.
Keywords. Microbial ecosystems, syntrophic relashionship, Mortality, Stability , Operating diagrams.

1 Introduction

The anaerobic digestion (AD) is a natural process in which organic material is converted into biogas in an environ-
ment without oxygen by the action of a microbial ecosystem. It is used for the treatment of waste or wastewater and
has the advantage of producing methane and / or hydrogen. Anaerobic digestion is a four steps process including
hydrolysis, acidogenesis, acetogenesis, and methanogenesis. In this paper, we are interested in a reduced anaerobic
digestion model with two steps, the acetogenesis and the hydrogenetrophic methanogenesis, as shown in Figure 1.
In the acetogenesis, the volatile fatty acids (VFA) are used by the acetogenic bacteria and converted into hydrogen
(H2). Then, the hydrogenotrophic methanogenic bacteria convert hydrogen to methane (CH4). Formally, we then
have the following biological reactions: one substrate s0 is consumed by one microorganism x0, to produce a product
s1. This product serves as the main limiting substrate for a second microorganism x1 as schematically represented
by the following reaction scheme:

s0
µ0−→ x0 + s1, s1

µ1−→ x1

where µ0 and µ1 are the growth functions that may depend on both substrates.
Many authors were interested in such syntrophic relationship models. M. El Hajji and al., [2], have proposed

a system of four ordinary differential equations describing a syntrophic relationship involving two populations of
bacteria: the acetogens and the methanogens.
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They generalized the model proposed by R. Kreikenbohm and al., [3], by considering general kinetics and de-
scribed the qualitative behavior of the trajectories. In this study, the authors assumed that the acetogenic bacteria is
inhibited by the hydrogen that it produces during the acetogenic phase and neglected all species specific death rates.
They demonstrated the existence of three equilibria and the global asymptotic stability of the positive equilibrium
point, under general assumptions of monotonicity.

This last model has been revisited by T. Sari and al., [4]. In this paper, the authors assumed that there are two
resources in the input influent and that for both populations, one resource is needed for growth and the other is
inhibitory. This means in practice that acetogens are inhibited by an excess of hydrogen and methanogens by an
excess of VFA. It is shown that the qualitative behavior of the system is then significantly modified.
In another paper of T.Sari and al., [5], based on the model proposed by A. Xu and al., [1], it was proved that intro-
ducing decay in the model preserves stability whatever its parameters values and for a wide range of kinetics.

Figure 1: Two steps of anaerobic digestion

In the present paper, we modify slightly the model used in [5] by adding an input term on the equation describing
the dynamic of hydrogen.

2 The model

We obtain the following model

ds0
dt

= D(sin0 − s0)− µ0(s0, s1)x0
dx0
dt

= −Dx0 + µ0(s0, s1)x0 − a0x0
ds1
dt

= D(sin1 − s1) + µ0(s0, s1)x0 − µ1(s1)x1
dx1
dt

= −Dx1 + µ1(s1)x1 − a1x1

(1)

Substrates s0 and s1 are introduced, in the chemostat, with an input concentration sin0 and sin1 respectively, and
at dilution rate D. This model includes the maintenance (or decay) terms a0x0 and a1x1. The functions µ0(., .) and
µ1(.) satisfy:

H1 For all s0 > 0 and s1 ≥ 0, µ0 (s0, s1) > 0 and µ0 (0, s1) = 0.

H2 For all s1 > 0, µ1 (S1) > 0 and µ1(0) = 0.

H3 For all s0 > 0 and s1 > 0,
∂µ0
∂s0

(s0, s1) > 0 and
∂µ0
∂s1

(s0, s1) < 0.

H4 For all s1 > 0,
dµ1
ds1

(s1) > 0.
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Hypothesis H1 signifies that no growth can take place for species x0 without the substrate s0. Hypothesis H2
means that the intermediate product s1 is necessary for the growth of species x1. Hypothesis H3 means that the
growth rate of species x0 increases with the substrate s0 but it is self-inhibited by the intermediate product s1.
Hypothesis H4 means that the growth of species x1 increases with intermediate product s1 produced by species x0.
Note that this defines a syntrophic relationship between the two species.

Proposition 2.1. For every non-negative initial condition, the solution of (1) has non-negative components and is
positively bounded and thus is defined for every positive t.

�

3 Steady-state analysis

A steady-state of (1) is a solution of the following nonlinear algebric system obtained from (1) by setting the right-
hand sides equal to zero:

D(sin0 − s0)− µ0(s0, s1)x0 = 0 (2)

−Dx0 + µ0(s0, s1)x0 − a0x0 = 0 (3)

D(sin1 − s1) + µ0(s0, s1)x0 − µ1(s1)x1 = 0 (4)

−Dx1 + µ1(s1)x1 − a1x1 = 0 (5)

A steady-state E = (s0, x0, s1, x1) exists if and only if all its components are non-negative. From equation (3)
we deduce that:

x0 = 0 or µ0(s0, s1) = D + a0

and from equation (5) we deduce that:

x1 = 0 or µ1(s1) = D + a1

We obtain the four equilibria:
SS0: x0 = 0, x1 = 0 where both species are washed out.
SS1: x0 > 0, x1 = 0, where species x1 is washed out while x0 survives.
SS2: x0 > 0, x1 > 0, where both species survive.
SS3: x0 = 0, x1 > 0, where species x0 is washed out while x1 survives.
For the description of the steady-states , we need the following notations. Since the function s1 7→ µ1(s1) is

increasing, it has an inverse function y 7→M1(y), so that, for all s1 ≥ 0 and y ∈ [0, supµ1(·)[

s1 = M1(y)⇐⇒ y = µ1(s1)

Let s1 be fixed. Since the function s0 7→ µ0(s0, s1) is increasing, it has an inverse function y 7→M0(y, s1), so that,
for all s0, s1 ≥ 0, and y ∈ [0, supµ0(·, s1)[

s0 = M0(y, s1)⇐⇒ y = µ0(s0, s1)

Proposition 3.1. Assume that assumptions H1–H4 hold. Then (1) has at most four steady-states:

• SS0 =
(
sin0 , 0, s

in
1 , 0

)
It always exists.

• SS1 = (s01, x01, s11, 0), where s01 is the solution of the equation:
µ0(s01, (s

in
0 + sin1 )− s01) = D + a0.

x01 = D
D+a0

(sin0 − s01) and s11 = (sin0 + sin1 )− s01.
It exists if and only if sin0 > M0

(
D + a0, s

in
1

)
.
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• SS2 = (s02, x02, s12, x12), where s02 = M0 (D + a0,M1(D + a1)),
x02 = D

D+a0

(
sin0 − s02

)
, s12 = M1(D + a1) and x12 = D

D+a1

(
(sin0 + sin1 )− s02 − s12

)
.

It exists if and only if sin0 > M0 (D + a0,M1(D + a1)) and sin0 + sin1 > M0 (D + a0,M1(D + a1)) +
M1(D + a1).

• SS3 =
(
sin0 , 0,M1(D + a1),

D
D+a1

(
sin1 −M1(D + a1)

))
It exists if and only if sin1 > M1(D + a1).

�

With respect to [5], a new steady-state SS3 eventually exists.
In the next section, we analyse the steady-state local stability.

4 Stability analysis

The stability of the steady-states is given by the sign of the real part of eigenvalues of the Jacobian matrix or by the
Routh-Hurwitz criteria (in the case of SS2). In the following, we use the abreviations LES for locally exponentially
stable.

Proposition 4.1. Assume that assumptions H1–H4 hold. Then the local stability of steady-states of (1) is given by:

• SS0 is LES if and only if sin1 < M1(D + a1) and sin0 < M0

(
D + a0, s

in
1

)
.

• SS1 is LES if and only if sin0 + sin1 < M0 (D + a0,M1(D + a1)) +M1(D + a1).

• SS2 is LES if it exists.

• SS3 is LES if and only if sin0 < M0 (D + a0,M1(D + a1)).

�

We define the functions:

F0(D) = M0

(
D + a0, s

in
1

)
F1(D) = M1(D + a1) +M0(D + a0,M1(D + a1))
F2(D) = M0(D + a0,M1(D + a1))

(6)

Notice that
sin1 < M1(D + a1)⇐⇒ D > µ1(s

in
1 )− a1

The results are summarized in Table 1.

Steady-state Existence condition Stability condition
SS0 Always exists sin0 < F0(D) and D > µ1(s

in
1 )− a1

SS1 sin0 > F0(D) sin0 + sin1 < F1(D)
SS2 sin0 + sin1 > F1(D) and sin0 > F2(D) Always Stable
SS3 µ1(s

in
1 ) > a1 and D < µ1(s

in
1 )− a1 sin0 < F2(D)

Table 1: Existence and local stability of steady-states.

If sin1 = 0 the condition µ1(sin1 ) > a1 is not satisfied and SS3 does not exist.

Because of lack of space, we give only a sketch of the proof: For SSi, i = 0, 1 and 3, the Jacobian of the
system is analytically obtained and its eigenvalues are determined explicitely. Conditions of them to be negative
(reported in the last column of Table 1) are directly obtained from these analytical computations. For SS2, we use
the Routh-Hurwitz criterion adapted from [5].
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5 Operating diagram

The operating diagram shows how the system behaves when we vary the three control parameters sin0 , sin1 and D.
Let F0(D), F1(D) and F2(D) be the functions defined by (6). We define the curve γ20 of equation sin0 = F0(D), the
curve γ10 of equation sin0 = F1(D)−sin1 and the curve γ00 of equation sin0 = F2(D). We denote D = µ1(s

in
1 )−a1,

see Table 1.
These curves with the line D = D separate the operating plane (sin0 , D) in at most six regions as shown in Fig. 4,
labelledR1, · · · ,R6. The results of Proposition 4.1 are summarized in the next theorem which shows the existence
and local stability of the steady-states SS0, · · · , SS3 in the regionsR1, · · · ,R6 of the operating diagram, for a given
sin1 .

If µ1(sin1 ) < a1 then we have always F0(D) < F1(D)− sin1 , ifµ1(sin1 ) > a1 and D > D then we have always
F0(D) < F1(D)− sin1 and if µ1(sin1 ) > a1 and D < D then we have always F2(D) < F0(D).

Theorem 5.1. The existence and stability properties of the system (1), in the plane (sin0 , D), are summarised in the
following tables:

Condition Region SS0 SS1 SS2 SS3
sin0 < F0(D) (sin0 , D) ∈ R1 S

F0(D) < sin0 < F1(D)− sin1 (sin0 , D) ∈ R2 U S
F1(D)− sin1 < sin0 (sin0 , D) ∈ R3 U U S

Table 2: The cases µ1(sin1 ) < a1

Condition Region SS0 SS1 SS2 SS3
D > D & sin0 < F0(D) (sin0 , D) ∈ R1 S

D > D & F0(D) < sin0 < F1(D)− sin1 (sin0 , D) ∈ R2 U S
D > D & F1(D)− sin1 < sin0 (sin0 , D) ∈ R3 U U S
D < D & sin0 > F0(D) (sin0 , D) ∈ R4 U U S U

D < D & F2(D) < sin0 < F0(D) (sin0 , D) ∈ R5 U S U
D < D & sin0 < F2(D) (sin0 , D) ∈ R6 U S

Table 3: The cases µ1(sin1 ) > a1

The letter S (resp. U ) means that the corresponding equilibrium is LES (resp. unstable). The absence of letter
means that the equilibrium does not exist.

�

These results are essentially the same then those presented in Table 1. Notice that Table 2 is identical to the Table 2
of [5], it corresponds to the case where the concentration sin1 is small or equal to zero. Table 3 emerges due the pres-
ence of sin1 , it appears three new regions of existence of equilibrium SS3. Moreover, in the regions Ri, i = 1, · · · , 6,
there is only one steady-state stable and all other equilibria are unstable or not even exist.
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6 Simulations

The stability regions of steady-states are given by the operating diagram in the plane (sin0 , D) in Figure 2, 3, 4 and
5, for different values of sin1 . For the simulations, we use the following growth functions:

µ0 (s0, s1) =
m0s0
K0 + s0

1

1 + s1/Ki
, µ1 (s1) =

m1s1
K1 + s1

For the operating diagrams in Figure 2, 3, 4 and 5, we use the parameters given in Table 4.

Parameters Units Nominal Value
m0 d−1 0.52
K0 kg COD/m3 0.124
m1 d−1 2.10
K1 kg COD/m3 0.25
Ki kg COD/m3 0.035
a0 d−1 0.02
a1 d−1 0.02

Table 4: Nominal parameters values.

The inverse functions M1(.) and M0(., s1) of the functions µ1(.) and µ0(., s1) can be calculated explicitly: we have

y ∈ [0,m1[ 7→M1(y) =
K1y

m1 − y
,

y ∈
[
0,

m0

1 + s1/Ki

[
7→M0(y, s1) =

K0y
m0

1+s1/Ki
− y

The functions F0(D) , F1(D) and F2(D) are given explicitly by

F0(D) =
K0(D + a0)(1 +

sin1
Ki

)

m0 − (D + a0)(1 +
sin1
Ki

)

F1 (D) =
K1(D + a1)

m1 − (D + a1)
+

K0(D + a0)(1 + M1(D+a1)
Ki

)

m0 − (D + a0)(1 + M1(D+a1)
Ki

)

F2 (D) =
K0(D + a0)(1 + M1(D+a1)

Ki
)

m0 − (D + a0)(1 + M1(D+a1)
Ki

)

(7)

F0 is defined if

D <
m0 − a0(1 +

sin1
Ki

)

1 +
sin1
Ki

and
(m0 − a0)Ki

a0
≥ sin1

.
F1 and F2 are defined if

D < m1 − a1

and
(Ki −K1)D2 + ((Ki −K1)(a0 + a1)−Ki(m1 +m0))D + ((m0 − a0)Ki(m1 − a1)− a0a1K1) > 0

.
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Figures 2, 3, 4 and 5 illustrate the operating diagrams for increasing values of sin1 . When sin1 is small, namely sin1 = 0.005,
the most important regions are the regions Ri, i = 1, 2, 3, (see Fig. 2). These regions correspond to those obtained in the case
sin1 = 0, see (Fig. 1 of [5]). Increasing sin1 leads to the emergence of the existence region of equilibrium SS3 Ri, i = 4, 5, 6
and to the reduction of the region R2 and R3, (see Fig. 3 and 4). For sin1 = 0.05, R2 and R3 are empty, (see Fig. 5). Thus,
the input concentration of the second species leads to the emergence of a new region related to the new equilibrium SS3 and to
changes in the size of the existence and stability regions of the other equilibria.

Figure 2: Operating diagram of the model (1) for sin1 = 0.005

Figure 3: Operating diagram of the model (1) for sin1 = 0.01
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Figure 4: Operating diagram of the model (1) for sin1 = 0.03

Figure 5: Operating diagram of the model (1) for sin1 = 0.05

Discussion:
Including sin1 in the model changes slightly the operating diagram of [5]. When sin1 increases, D̄ increases ( it may be verified
that dD̄

dsin1
> 0). The stability region of SS2 under the curve γ00 remains the same ( γ00 does not depend to sin1 ). On the other

side, the stability region R6 of SS3, which corresponds to the extinction of the second species, increases in size.

The last operating diagrams were obtained by fixing sin1 and varying the control parametersD and sin0 , it would be interest-
ing to fix sin0 and to describe the existence and the asymptotic behavior of the equilibria by operating diagrams in the plane (sin1 ,
D). Note that we performed only the local stability of the equilibria in this paper. The global stability is under investigation.
Another interesting question, which is the object of a future work, is to consider the effect of an inhibition on the second species
which can be modeled by a growth function µ1(·) of Haldane type, for instance.
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