

Characterization of milk protein aggregates as a function of casein micelles/whey proteins ratio by Asymmetrical Flow Field Flow Fractionation (AF4) coupled with Multiangle Laser Light Scattering (MALLS)

Thibault Loiseleux, Agnès Rolland-Sabaté, Thomas Croguennec, Catherine Garnier, Sophie Guilois-Dubois, Marc Anton, Alain Riaublanc

▶ To cite this version:

Thibault Loiseleux, Agnès Rolland-Sabaté, Thomas Croguennec, Catherine Garnier, Sophie Guilois-Dubois, et al.. Characterization of milk protein aggregates as a function of casein micelles/whey proteins ratio by Asymmetrical Flow Field Flow Fractionation (AF4) coupled with Multiangle Laser Light Scattering (MALLS). Association francophone des techniques separatives (AFSEP), Jun 2016, Nantes, France. 2016. hal-02742435

HAL Id: hal-02742435 https://hal.inrae.fr/hal-02742435v1

Submitted on 3 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

a 0.6

ັ້ສ 0.4

pail 0.2

ş 0 0

Characterization of milk protein aggregates as a function of casein micelles/whey proteins ratio by Asymmetrical Flow Field Flow Fractionation (AF4) coupled with Multiangle Laser Light Scattering (MALLS)

Thibault LOISELEUX¹, Agnès ROLLAND-SABATE¹, Thomas CROGUENNEC², Catherine GARNIER¹, Sophie GUILOIS¹, Marc ANTON¹ and Alain RIAUBLANC¹

¹ UR1268 INRA, Biopolymers Interactions Assemblages, Nantes, France

1.E+07 🖉

1.E+06 물

Mw (g.mol⁻¹)

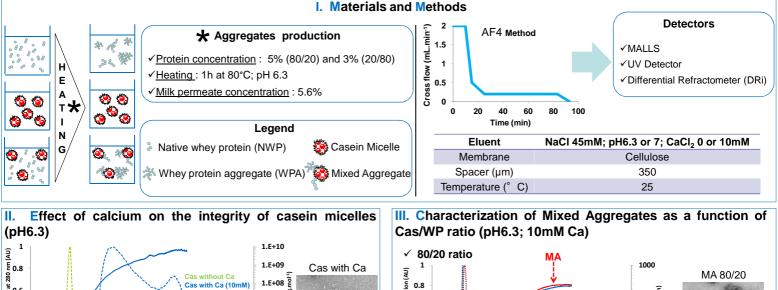
4.0.10⁹

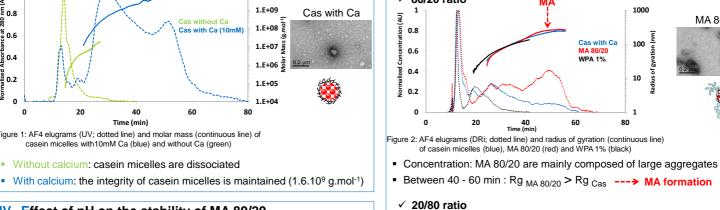
3.7.10⁹

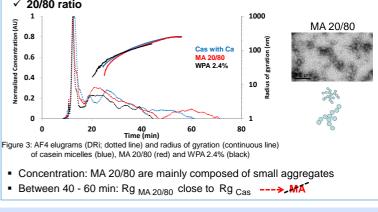
Mw (g.mol⁻¹)

1.6.10⁹

-Adsorption of WPA on the Cas


1.E+05


80


² UMR 1253 INRA, Science and technology of milk and egg, Rennes, France

Introduction : Currently, most of dairy emulsions at neutral pH contain thickening or gelling agent for improving their texture. However, manufacturers are more and more seeking for the substitution of these food additives by natural ingredients like proteins. During heat treatment of milk, whey proteins are denatured and can interact with casein micelles (Cas) to form Mixed Aggregates (MA). In dairy emulsions, MA are able to adsorb at the oil-water

interface and texturize emulsions by connecting oil droplets¹. In this way, MA could be an alternative to additives used in dairy emulsions. The casein micelles/whey proteins (Cas/WP) ratio is a key parameter for the production of MA. Asymmetrical Flow Field Flow Fractionation coupled with MALLS could be an interesting method to define the best Cas/WP ratio (80/20 or 20/80) to use. Moreover, this technique can be used to determine the stability of MA to calcium concentration change and pH variation.

in the pH range 6.3-7 allowing them to be used as food additive substitutes in neutral dairy products. AF4-MALLS is an interesting alternative to characterize MA in comparison with size exclusion chromatography where caseins interact with the stationary phase and are retained on the column.

Conclusions and Perspectives : MA are mainly produced using the 80/20 Cas/WP ratio whereas only pure whey protein aggregates are obtained with the other ratio. However, in the absence of calcium, casein micelles are dissociated and no MA is observed. On the contrary, MA are stable

40

Time (min)

Figure 1: AF4 elugrams (UV; dotted line) and molar mass (continuous line) of

casein micelles with10mM Ca (blue) and without Ca (green)

Without calcium: casein micelles are dissociated

IV. Effect of pH on the stability of MA 80/20

pH: MA 80/20 are stable regardless the pH

Mixtes 80/20

pH 7

pH 6.3

Micelle

pH 7

Radius: Rg _{MA 80/20} > Rg _{Cas}

Molar Mass: Mw MA 80/20 > Mw Cas

60

Rg (nm)

184.9

190.6

Rg (nm)

147

Reference: 1. Surel, C., Foucquier, J., Perrot, N., Mackie, A., Garnier, C., Riaublanc, A., & Anton, M. (2014). Composition and structure of interface impacts texture of O/W emulsions. Food Hydrocolloids, 34, 3-9.

Rue de la Geraudière 44300 Nantes France Tél. : + 33 2 40 67 50 00

