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ABSTRACT

Cellular motility is a fundamental biological process. Progress

in the fields of gene silencing and high-throughput (HT) mi-

croscopy provide us with the tools to study its molecular basis

and potential perturbators.

The primary contribution of this paper is to present

MotIW, a generic workflow for single cell motility study

in HT time-lapse screening data. We successfully apply it to

a simulated screen, as well as a genome-wide screen. Fur-

thermore, MotIW enables the identification of eigth motility

patterns into which all trajectories from this dataset divide up

into, without any prior model of cell motion.

Index Terms— High-content (high-throughput) screen-

ing, pattern recognition and classification, data mining

1. INTRODUCTION

Cell motility plays a key role in many physiological processes

including embryonic development or immune response, and

is also involved in tumor invasion and metastasis. It is a com-

plex cellular process, regulated by many genes in multiple

signaling pathways.

Many assays have been specifically designed to study cell

migration mechanisms They typically consist in a perturba-

tion (e.g. gene overexpression or downregulation) and a mea-

sure of the resulting phenotype in terms of cellular motil-

ity. Examples include analysis of cell traces on coated lay-

ers while overexpressing genes of interest [1], wound heal-

ing assays for the investigation of gene silencing effect on

cell population migratory behaviour [2], or cell tracking in

low-throughput time-lapse experiments while silencing key

genes [3]. However, a systematic study of single cell motility

has not yet been performed at a genome-wide scale.
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The contribution of this paper is to present MotIW

(Motility study Integrated Workflow), and its application

to motility gene discovery. A generic methodological frame-

work, MotIW enables to quantitatively study cell motility at

single cell resolution in HT data. It consists of cell tracking,

cell trajectory mapping to an original feature space, and out-

lier experiment detection (cf figure 1). We show the power

of our method by applying MotIW to simulated data, which

allows us to estimate recall and precision to be expected on

real data. We then apply this workflow to a previously pub-

lished genome-wide RNAi1 screen, the Mitocheck dataset. It

is composed of 200,000 videos of human cell populations,

each of them showing the outcome of a single gene knock-

down [4]. We thus identify a list of genes whose silencing

impacts cell motility and which therefore might play a role

in this process. On top of that, MotIW also produces an on-

tology of cell trajectories in this dataset: without any prior

assumption on cell motion, we are able to identify eight types

of cell trajectories. The remainder of this paper is organized

as follows : Section 2 gives a brief presentation of MotIW,

and Section 3 discusses its application to simulated data and

the Mitocheck screen.

2. WORKFLOW OVERVIEW

In this section, we present MotIW, our workflow for the

automatic and quantitative analysis of video sets from time-

lapse microscopy-based screens. Figure 1 summarizes its

different steps. Briefly, for each video, object segmentation

and features are extracted using methods we have previously

published and which are implemented in Cell Cognition2[5].

Cells are tracked using a new machine-learning based track-

ing procedure, described in section 2.1 . The trajectories

1RNA interference: a technique which uses small interfering RNA

(siRNA) for gene silencing.
2An open-source software, developed in collaboration with the IMBA

(Vienna, Austria). It is publicly available at http://cellcognition.org/.
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Fig. 1. Overview of MotIW. Images are acquired and segmented. Object features are extracted, which are used for cell tracking.

Trajectory feature distributions enables to detect if cell motility was modified by chemical exposure.

are then mapped to a feature space described in section 2.2.

Presented in section 2.3, an original statistical procedure then

enables the detection of experiments in which single cell

motility is significantly different than that in control movies.

2.1. Cell tracking

Cell tracking faces several challenges in videos from high

content screens like Mitocheck, such as high phenotypic

inter-cell variability. Furthermore, the algorithm has to han-

dle apparitions, disparitions, divisions and fusions3. Finally,

to be applicable in a screening context, as little prior knowl-

edge as possible shall be used regarding cell motion. There-

fore, we have extended a non-parametric structured learning

approach from [6].

The extended model works as follows : each object in

each image is characterized by its position, its orientation and

a set of 230 features including geometric, shape and texture

features [5]. In this approach, the tracking model matches ob-

jects in consecutive frames by assigning them the most likely

behaviour in the set of possible matching events

E = {move, appear, disappear, split, merge}. The optimal

matching is defined as the one that maximizes a likelihood

function, which depends on match features and on weights for

each feature. This results in a bi-partite graph matching prob-

lem; it is solved by an integer linear program. The weights

are learned by a support vector machine using annotated tra-

jectories, following the formulation of [6].

The extension compared to [6] lies in the choice of match

features. Furthermore, we enabled the tracking model cali-

bration using partial annotation from different experiments.

Finally, the original work took neither three object-split, nor

three object-merge into account. We added these possibilities

to the set of matching events: they are important in a screen-

ing context, where aberrant cell divisions may occur.

To validate MotIW’s cell tracking procedure, we compare

it to Cell Cognition’s constrained nearest-neighbour (CNN)

tracking algorithm, and to [7] as implemented in Cell Profiler,

on a training set with approximately 32,000 matches. The lat-

ter come from both control experiments and experiments with

significantly altered phenotypes according to [4]. As shown

in Table 1, MotIW outperforms the other two methods.

3This event results from occlusion or segmentation errors.

Algorithm Mean recall (%) Mean precision(%)

CNN 72.7 62.8

Jaqaman et al. [7] 78.3 73.0

MotIW 91.1 91.5

Table 1. Mean recall and precision on all types of matches E

(10-fold cross-validation)

2.2. Trajectory features

Once cell trajectories are captured, we extract a set of 15 fea-

tures from each trajectory. Robust and precise features are

needed to account for the partial stochasticity of cell migra-

tory behaviour. We use three types of features, as illustrated

in table 2.

On top of classical features such as mean squared dis-

placement, we have designed features to quantify the tem-

porary straightness of a track and the propension of a cell

to go from random walk to directed motion. The feature

”track curvature” measures temporally local similarity to a

line, whereas the feature ”diffusion adequation” quantifies

how well a diffusive model applies to the track. The feature

”movement type” is the power to which time relates to trav-

eled distance [8]. All formulae will be detailed in a longer

article about the workflow.

Goal Examples of feature

Particle motion features Diffusion coefficient, movement

type

Other global features Track curvature

Averaged local features Mean squared displacement,

mean signed turning angle

Table 2. Feature types with examples

2.3. Statistical procedure

HT screening data is organized in batches of experiments

which have been performed simultaneously. Each batch in-

cludes a set of negative controls.Due to a non-negligible batch

effect, an experiment can only be compared with controls of

the same batch in most of the cases.

Let us consider an experiment i. Following to trajec-

tory feature extraction, it can be summarized as a set of fea-
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Fig. 2. Comparison of cluster distributions between controls (Ctrl) and experiments (Exp) for the eight trajectory clusters which

were identified in the Mitocheck dataset. The clusters are in the same order as in figure 3.

ture distributions. The comparison of these distributions with

those of controls from the same batch Bi, using Kolmogorov-

Smirnov 2-sample test, provides a list of p-values.

A final statistic Si combining the p-values of all features

is obtained by Fisher’s formula:

Si = −2
∑

featuref ln(p-val[f ])

As the features are not independent, Fisher’s combined prob-

ability test cannot be directly used. Instead, the same statis-

tic is computed by comparing one control experiment from

Bi which was not used in the previous comparison, to the

other controls from Bi. Then, the comparison of the distribu-

tion of S statistics obtained from control-experiment compar-

isons, to the distribution of S statistics obtained from control-

control comparisons, will permit the computation of empiri-

cal p-values. It enables to detect hit experiments with regard

to single cell motility. False discoveries are controlled us-

ing the Benjamini-Hochberg procedure [9]. An experimental

condition, i.e. a siRNA, is detected if more than 50% condi-

tion replicates are detected.

3. RESULTS

We first evaluate MotIW on simulated data (see 3.1). We

then apply it to the whole genome-wide screen Mitocheck [4],

which enables us to identify an ontology of 2D cell trajecto-

ries (see section 3.2). In this latter screen, each gene was tar-

geted by three different siRNAs, and each experimental con-

dition was tried in triplicate.

3.1. Application to a simulated screen

In a first step, three simple types of cell trajectories were de-

signed: random, fast-random, curbed-directed, and two more

complex ones: one in which cells alternate straight-directed

motion in ±180◦ directions, and one in which cells alternate

between random and straight-directed motion.

In a second step, five experimental condition types were

designed, each with different trajectory type distributions.

”Normal” movies account both for control movies and ex-

periments in which cell motility is similar to that of controls.

They contain 80% of random trajectories, and a mix of the

four other trajectory types. This reflects our observation

that in real data, all movies contain all possible types of cell

trajectories (see fig. 2). All other condition types contain

from 50 to 65% random trajectories, the rest being completed

according to the movie type. For example, condition type

”fast” is composed of 30% of fast-random trajectories, 60%

of random trajectories, and a mix of the three other trajectory

types. The number of trajectories in each movie was drawn

at random in real data, and the number of trajectory of each

type in each movie was drawn from the corresponding movie

type multinomial distribution.

The third step was the simulation of approximately 50,000

experimental conditions (distributed on 130 plates). Each

condition was simulated in three separate experiments, as in a

plausible experimental setup. On each plate, between 5% and

15% of the experiments were selected to be other than ”nor-

mal” movies. Our workflow successfully recognized more

than 98% of the experiments, as detailed in table 3.

Recall (%) Precision (%)

Experiment detection 99.2 98.9
Condition detection 99.5 100.0

Trajectory clustering 91.4± 2.1 89.4± 4.8

Table 3. Results from the application of MotIW to simulated

data

Our simulation pipeline was also used to estimate how

useful our trajectory feature set is to capture the differences

between different types of trajectory motion. Hence, we also

simulated 500 samples of each of the trajectory types and ex-

tracted their features. We then applied k-means to this data

set. Due to the fact that many simulation parameters (e.g.

each track length) are chosen at random, and that k-means’

results are depending on its initialization, we repeated this

procedure 10 times. The results are presented in table 3.

3.2. Application to the Mitocheck dataset

When we applied MotIW to the Mitocheck dataset, we were

able to identify the experiments which significantly deviate

from control movies (5%; 7, 153 out of 144, 909). It amounts

to 1, 180 genes (out of 17, 816), some of which are known to
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Fig. 3. Characterization of our ontology of trajectories. Each

column is a single cell trajectory ; trajectories are grouped by

cluster label. 1,000 trajectories were randomly selected per

trajectory cluster.

be involved in cellular motility, such as RhoA (Ras homolog

family, member A) or CDK5 (cyclin-dependent kinase 5).

Prior to MotIW’s design was the question to know

whether there exists an ontology of cell trajectories. We could

not obtain any valuable clustering from pooling trajectories

from the whole dataset, as measured by how the silhouette

score and cluster cohesion index vary with respect to the num-

ber of clusters [10]. The approach proved successful when

pooling trajectories from MotIW’s detected experiments, as

this smaller dataset is enriched in rare trajectories.

It enabled us to identify eight clusters. Each column of

fig. 3 corresponds to one cell trajectory, for which the rows

show the standard scores of a subset of features. Interestingly,

there is more than speed for differenciating trajectory types.

For example, types 2 and 3 present very similar mean squared

displacements and space length. However, trajectory curva-

tures are different: the features mean curvature and straigth-

ness index (another measure of trajectory curvature) are quite

distinct between the two clusters.

This can be observed in the Supplementary movie, where

cells whose trajectory belongs to cluster 2 (green) are much

straighter than those belonging to cluster 3 (red). In this

video, cells whose trajectory passed the trajectory quality

control have a dot, whose colour corresponds to its cluster as

indicated in fig. 3.

4. CONCLUSION

This paper presents a generic methodological framework for

studying single cell motility in a high-throughput setup. It

combines single cell tracking, newly designed trajectory fea-

tures and an original statistical procedure. Furthermore, it is

unsupervised: cell motion types were infered from the data

without using any prior knowledge. As cell population mi-

gration during embryogenesis and metastasis are thought to

be led by some leader cell, it is crucial to study single cell

motility. Therefore, studying single cell motility ideally com-

plements previous studies on population migration.

In a next step, we are going to apply this workflow to

newly generated Environmental Toxicology data in order to

identify environmentally relevant chemicals which perturb

cell motility.
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