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ABSTRACT: This study aimed to compare results of 
genome-wide associations obtained from various 
methodologies for GWAS when applied to two lines of 
broiler chicken. Each line contained >250k birds with up to 3 
traits and ~5k genotypes with a 60k SNP chip. Methods 
included single-step GWAS, single marker model and 
BayesB. Manhattan plots were based on variances of 20-SNP 
segments, as shorter segments produced noisy plots. Only a 
few segments explained >1% of the additive variance. One 
segment explained >20% variance in BayesB but 3% with 
ssGWAS and <1% with a single marker model. In two lines, 
no major segment overlapped for any trait. When analyses 
used slices of generations (1-3,2-4,3-5,1-5), variances for the 
same segment varied greatly.  The plots were more distinct 
with a new data set that included >16k genotypes, but no 
segment explained >1.5% of the variance.  Strength of 
associations strongly depends on methodologies and details 
of implementations.  
Keywords: ssGBLUP; GWAS; SNP variance 
 
 

Introduction 
 

A few years ago NIFA supported a research project 
on genomic selection in broiler chicken. In this project, two 
lines of broiler chicken from Cobb were genotyped and 
phenotyped over a few generations of selection in order to 
determine gains from genomic selection.  As this project 
coincided with the development of a single-step GBLUP 
(ssGBLUP) methodology at UGA, many tests of ssGBLUP 
used the data from this project (e.g., Chen et al. (2011); 
Simeone et al. (2012)).  

 
Initially, the interest was in genomic selection and 

comparisons of (G)EBV.  Later, the single-step methodology 
was extended to GWAS (Wang et al. (2012)). This paper 
documents experiences with GWAS using ssGBLUP and 
other methodologies mainly in application to the Cobb data 
set. 

 
Materials and Methods 

 
Single-step genomic association study - ssGBLUP 

and ssGWAS. The ssGBLUP method is a modification of 
BLUP with the numerator relationship matrix A-1 matrix 
replaced by H-1 (Aguilar et al. (2010)): 

 

H-1=A-1+
0 0
0 G-1-  A22

-1   

 
where A22 is a numerator relationship matrix for genotyped 
animals and G is a genomic relationship matrix. The last 
matrix can be created following VanRaden (2008) as: 

G = ZDZ’q, 
where Z is a matrix of gene content adjusted for allele 
frequencies, D is a weight matrix for SNP (initially D = I), 
and q a normalizing factor. Such a factor can be derived 
either based on SNP frequencies (VanRaden (2008)), or by 
ensuring that the average diagonal in G is close to that of A22 
(Vitezica et al. (2011)). The latter method was used in this 
study. Briefly, SNP effects and weights for GWAS can be 
derived as follows (Wang et al. (2012)): 
 

1) Let D = I in the first step. 
2) Calculate G = ZDZ'q. 
3) Calculate GEBV for entire data set using 

ssGBLUP. 
4) Convert GEBV to SNP effects u : u =

qDZ' ZDZ'q
-1
a , where a is the GEBV of 

animals which were also genotyped. 
5) Calculate SNP weights: di=ui

22pi(1-pi). 
6) Normalize SNP weights to remain the total 

genetic variance constant. 
7) Loop to 2. (ssGWAS1) or 4. (ssGWAS2). 

 
Step 4 is based in the equivalence between GBLUP 

and SNP-based models (VanRaden (2008)). The SNP 
weights were calculated iteratively either looping through 
steps 4-6 (called as ssGWAS1) or through steps 2-6 (called 
as ssGWAS2). Iterations with both scenarios increase 
weights of SNP with large effects and decrease those with 
small effects, essentially regressing them to the mean.  

 
Experiences with simulated data using ssGBLUP 

(Wang et al. (2012)) indicated that ssGWAS1 was more 
suitable for identification of SNPs with the largest effects 
while ssGWAS2 was superior for more accurate GEBV. 
Also, the highest correlations with QTLs were lower with 
individual SNP effects but much higher with an average of 8 
adjacent SNPs. Similar findings were reported with a method 
based on GBLUP (Sun et al. (2011)).  

 
Implementation of ssGWAS. All runs of ssGWAS 

in this study used programs of the BLUPF90 family (Misztal 



et al., (2002)), with modifications by Aguilar et al (2014). 
The BLUPF90 family includes programs for variance 
component estimation and for genetic/genomic evaluation.  
Genomic models are aided by two new components: 
preGSf90 and postGSf90 (Aguilar et al. (2014)). preGSf90 
adds processing of genotypes including extensive quality 
control for up to 150k genotypes. postGSf90 adds conversion 
from GEBV to SNP effects, computations of marker weights, 
and creation of Manhattan plots using moving or overlapping 
windows. With a new sparse matrix package (Masuda et al., 
(2014)), REML programs run multitrait models with ≥20k 
genotypes.  Efforts to extend the programs to very large 
number of genotypes are underway (Misztal et al., (2014); 
Fragomeni et al., (2014)).    

 
Data. The data for the USDA experiment were 

provided by Cobb-Vantress Inc. (Siloam Springs, AR). It 
included two lines of broiler chicken, each with > 250k 
animals across five generations. Phenotypes were available 
for body weight, breast meat, and leg score. Approximately 
5k animals were genotyped using a 60k SNP chip, with about 
1k genotyped animals per generation; quality control with the 
genotypes included removing Z chromosome SNPs from 
analyses. More accurate description of the data at an interim 
stage of selection is available in Chen et al. (2011). 

 
Analyses. Methodologies compared included 

ssGWAS1 and ssGWAS2, a single marker model (SMM) 
implemented by WOMBAT (Meyer and Tier (2012)), and 
BayesB (Meuwissen et al. (2001)) implemented by GenSel 
(Fernando and Garrick (2009)) with π = 0.9. Comparison of 
genomic regions identified between methods was based on 
plots of genetic variances explained by local SNP regions (20 
SNPs). 
 

Results and Discussion 
 

Comparisons of methods based on body weight.  
Manhattan plots for ssGWAS (3rd iteration), SMM and 

BayesB are presented in Figure 1. In the first iteration, results 
from ssGWAS1 were noisy with many small peaks. After 3 
iterations the noise was greatly reduced with results similar to 
that of WOMBAT, but with only 4 out of the top 10 regions 
in common. In contrast, for BayesB, the noise was also 
eliminated but to a greater degree, resulting in a plot that was 
dominated by a single region explaining 23.1% of the genetic 
variance. This same region was found by ssGWAS1, and 
with the same rank, but the amount of genetic variation 
attributed to the region was only 3%. These results highlight 
that detected associations and strength of association, 
strongly depends on methodologies and details of 
implementations. BayesB appears to overly shrink regions to 
zero, while overestimating the amount of genetic variation 
attributed to the remaining SNP effects. Lately, several 
scientists reported large variations in estimates by BayesB 
and similar methods (Hulzen et al. (2012); J. Taylor, (2013; 
pers. Comm.)).  

 
Are Manhattan plots similar across lines? 

Identification of QTLs in one species suggests that 
Manhattan plots have peaks across lines and even breeds.  
Figure 2 shows Manhattan plot for 3 traits (Wang et al. 
(2013)) using ssGWAS1.  Several peaks explaining > 1% of 
the genetic variation were found for body weight, however, 
peaks for lines 1 and 2 are on different chromosomes. No 
strong peaks have been observed for breast meat and leg 
score, and each region for these traits explained < 1% of total 
genetic variance. Breast meat and leg scores seemed to 
follow the infinitesimal model. Different peaks for the two 
lines for body weight suggest different selection goals, or 
fixation of alleles within lines. Plots for all traits contain few 
peaks, and no peak clearly overlaps with the other line.  Eitan 
and Soller ((2013)) discussed why the additive variance is 
maintained despite an intensive selection. While major genes 
at a time become fixed, other genes become major genes. 
Subsequently, the additive model is a good approximation for 
a few generations, but epistasis becomes important over 
many generations.  

 
Figure 1. Manhattan plots for Body Weight in chicken obtained by ssGWAS1, Single marker model, and BayesB  



 

 
Figure 2. Manhattan plots for body weight, breast meat and leg score in Line 1 obtained by ssGWAS1 
 

 

 
Figure 3. Manhattan plots for body weight, breast meat and leg score in Line 2 obtained by ssGWAS1 



Are Manhattan plots similar during selection? 
The purpose of a study done by Fragomeni et al. (2014) was 
to determine whether the top SNP segments that explain the 
most variance are stable over multiple generations. The data 
set was one line of the broiler chicken with phenotypes for 
body weight, breast meat, and leg score.  SNP effects were 
calculated by ssGWAS1 (3rd iteration) using genotypes from 
generations 1-3, 2-4, 3-5, and 1-5 (Figure 3). Variances were 
calculated for segments of 20 SNP. Ten segments for each 
trait were identified that explained the largest fraction of the 
variance in any combination of generations. All the segments 
explained > 0.5% and few explained > 1 % of the total 
variance. In all the segments the variance explained varied 
greatly among the combinations of generations. In many 
cases, a segment identified as top for one combination of 
generations explained < 0.1% variance for the remaining 
combinations. Thus, even the top SNP segments identified 
for a population in broiler chicken may have little predictive 
power for genetic selection in the following populations. 

 
Why SNP segments and their effects change? 

Large changes in the variance of SNP windows could be 
indirectly due to small effective population size and 
subsequent low number of independent chromosome 
segments. According to Goddard (2009), the number of such 
segments is   q=2NeL/log⁡(4NeL) , where Ne is effective 
population size and L is the length of chromosome in 
Morgans. Assuming Ne=50 (lower range showed in 
Andrescu et al. (2007)) and L=39, q=435. Subsequently there 
are > 100 SNP per 1 chromosome segment, if we apply the 
formula in this dataset. Since the boundaries of segments are 
not fixed but change with populations and additional 
information, the effects of those segments change as well. 
Additional issue is high prediction error variance.  

 

Noisy plots: reality or too small data sets? One 
reason for few peaks in Manhattan plots could be insufficient 
data although 5k genotypes constitutes a substantial data set.  
Following the USDA project, Cobb followed with 
genotyping in a broiler line, which included about 200k birds 
with genotypes for >15k birds.  Their data was analyzed as 
an effort to test a BayesC-like algorithm for ssGWAS. In this 
algorithm, only weights for the top 20 SNP were allowed to 
change, with the standard weight of 1.0 for the remaining 
SNP (Zhang et al. (2014)). Figure 5 contains Manhattan plot 
for new ssGWAS and BayesC for one trait. With the larger 
number of genotypes the peaks are clearer, however, the 
biggest window explains <1% or <2.5% variance depending 
on the method.  

 
Can we see large peaks for highly selected 

populations? High peaks in Manhattan plots can be due to 
many factors including changes in gene frequencies and 
pleiotropy. Intensive selection such as in broiler chicken 
should lead to fixation of major QTL if that QTL has a 
positive effect on all selected traits. However, a QTL with 
positive effect on one trait may have a detrimental effect on 
other traits, with a total economic value close to 0. Therefore 
the QTL may not reach fixation. For example, in many 
studies involving milk yield in Holsteins, Manhattan plots 
show strong peaks close to DGAT1 gene even for small data 
sets despite strong selection in dairy. This is because both 
alleles of DGAT1 have been selected, either for large fat 
content or for large milk yield, and also perhaps for another 
traits. Tsuruta et al. (2014) performed GWAS for milk yield 
and mortality rate using a Holstein data set with 35k 
genotypes and > 6M phenotypes.  The biggest region for both 
milk and mortality was for the region close to DGAT1. If 
present, pleiotropy can cause serious issues in GWAS 
(Solovieff et al. (2013)). Another possibility is that a low 

	
  
Figure 4. Manhattan plots for Body Weight by GWAS1 calculated with genotypes for generations 1-3, 2-4, 3-5, 
and 1-5 



frequency (but of large effect) allele becomes more frequent 
and is easily detected. Yet another possibility is that the QTL 
interacts with the genetic background or the environment so 
that at some point it becomes of large effect. In general, 
mutation continuously generates low frequency alleles that 
are not strongly selected or detected until they reach 
intermediate frequencies. 
 

Conclusion 
 
For traits of broiler chicken in this study, few 

windows explain more than 1% of the additive variation, the 
windows variance may change greatly over time, and no 
major windows may be common across lines. Detected 
associations and strength of association strongly depend on 
methodologies and details of implementations. However, 
very large peaks do largely agree across methodologies. 
More clear associations require large number of genotypes, 
however, the variance explained by one windows is likely to 
be too small for use in selection. The ssGWAS is a young but 
potentially useful tool for GWAS when the population 
contains large number of genotypes and especially if models 
of analyses are complex.  
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Figure 5. Manhattan plots a new data set containing > 16k genotypes obtained by ssGWAS2 (default and with option to 
modify weights for the top 20 SNP only) and BayesC with π = 0.99. 


