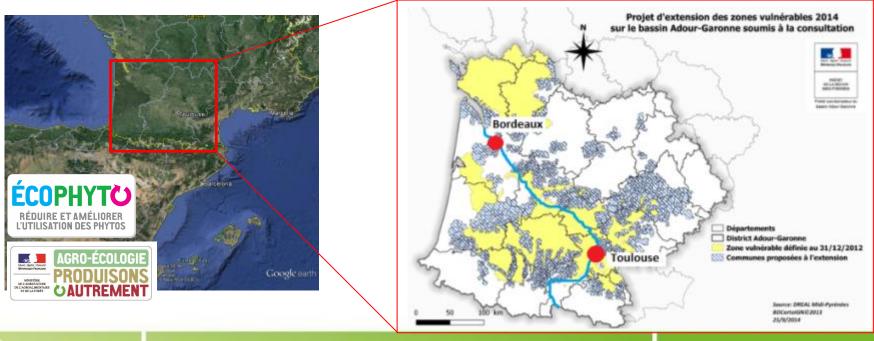
Synthesis on the effects of grain legume insertion and cereal-grain legume intercrops in low input cropping systems in Southern France

Justes E.¹, Plaza-Bonilla D.^{1,2}, Bedoussac L.^{1,3}, Gavaland A.⁴, Journet E-P.¹, Léonard

J.⁵, Mary B.⁵, Nolot JM.^{1,4}, Perrin P.¹, Peyrard C.⁵, Raffaillac D.¹, Tribouillois H.¹


¹ INRA, UMR AGIR, Toulouse-Auzeville (France), ² CSIC EEAD Zaragoza (Spain), ³ ENSFEA Toulouse (France), ⁴ INRA, UE Auzeville (France), ⁵ INRA, UR AgroImpact Laon (France)

Eric.Justes@toulouse.inra.fr (starting next month: eric.justes@inra.fr)

Introduction (i)

- Garonne valley: devoted to arable crops production (rainfed & irrigated)
- Traditional crop rotation: wheat sunflower (9-10 months bare fallow)
- Farmers applied high N fertilization rates on Durum Wheat (for high protein content): area declared vulnerable/sensitive to nitrate pollution
- French national plan for reducing pesticide use: target of "minus 50%"
- Legumes: a pillar towards the paradigm of agroecology (Duru et al., 2015)

AGroécologie - Innovations - TeRritoires

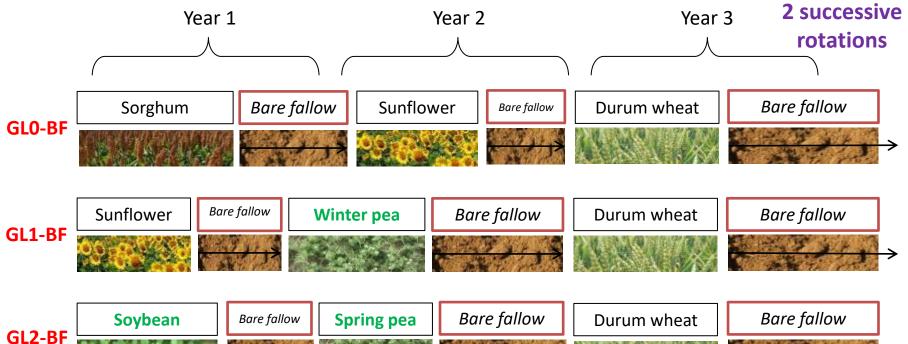
Eric Justes et al. ISL2 – Troia (Portuga 14rd October 2016

Introduction (ii) and main questions

The inclusion of legumes in arable cropping systems represents a good strategy to reduce current N fertilizer- dependency, reduce GHG emissions at cropping system level (local) and at <u>global scale</u> (e.g. Jensen et al., 2012). Crop diversification with legumes also contributes to a range of ecosystem services (e.g. Giller, 2001; Voisin et al. 2014).

Main questions investigated here:

- 1) Which are the **impacts** of the increase in the **use of grain legumes** in the arable rotations managed under conventional tillage **on**:
 - Agronomic performances of the cropping system scale?
 - ✓ Soil organic carbon (SOC) and nitrogen (SON) dynamics?
 - ✓ N₂O emissions and GHG balance?
- 2) Which is the **role** played by the concomitant insertion of **cover crops** in legume-based arable systems on the key processes (N recycling)?
- 3) Is **intercropping** an efficient way to insert legumes in cropping systems?


Eric Justes et al. ISL2 – Troia (Portugal) 3 of 32 14rd October 2016

Materials and methods: i) Experimental design (INRA)

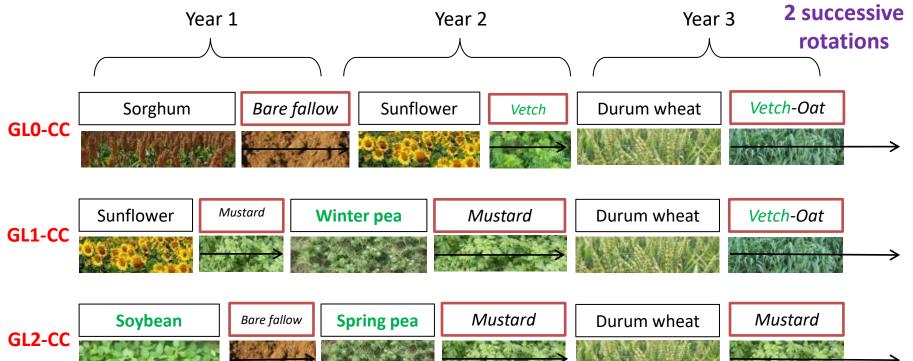
Experimental design (LGBI established with the FP6 EU GLIP project / 2004-2010)

Establishment: 2003. Auzeville (SW France). Rainfall: 685 mm; Temperature: 13.7 °C; PET: 905 mm **Split-plot design with three blocks.** Subplot size: 200 x 15 m.

Soil (0-30 cm): pH: 7.0; organic C: 8.7 g kg⁻¹; clay-loam texture (37, 36 and 27% for sand, silt, clay)

GL0, GL1 and GL2: no, one and two grain legumes in a 3-year rotation

BF: bare fallow


Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

Materials and methods: i) Experimental design 2

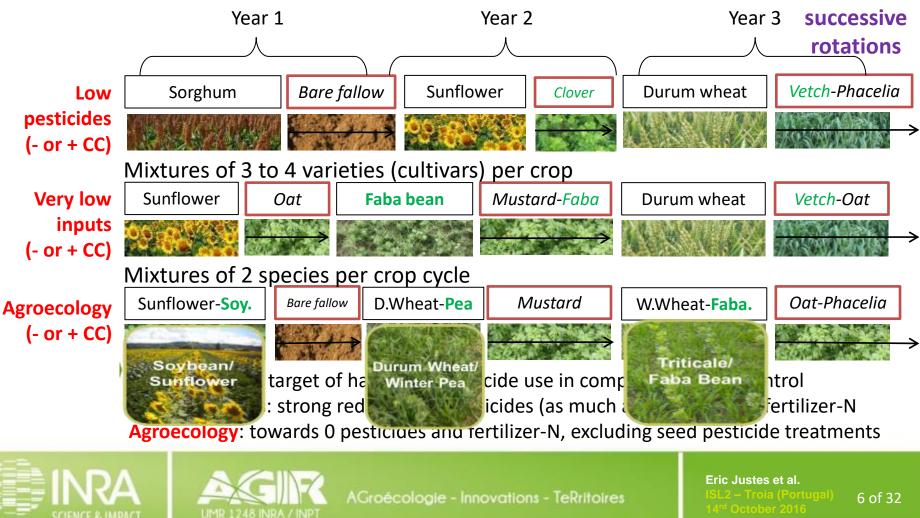
Experimental design (LGBI established with the FP6 EU GLIP project / 2004-2010)

Establishment: 2003. Auzeville (SW France). Rainfall: 685 mm; Temperature: 13.7 °C; PET: 905 mm **Split-plot design with three blocks.** Subplot size: 200 x 15 m.

Soil (0-30 cm): pH: 7.0; organic C: 8.7 g kg⁻¹; clay-loam texture (37, 36 and 27% for sand, silt, clay)

GL0, GL1 and GL2: no, one and two grain legumes in a 3-year rotation

BF: bare fallow



Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

Materials and methods: i) Experimental design 3

- New experimental design called MicMac-design (2010-2016); AIM: To finally design ••• agroecological prototypes of arable cropping systems
- And to improve the multicriteria analysis: soil/proxy air biodiversity (microbial analysis) 2 other [DNA]+ macro-fauna)

SCIENCE & IMPACT

Materials and methods: *ii) Protocol and measurements*

Crop management based on decision rules to adjust technical acts notably N applications to the soil, crop status and preceding crop

Plant/crop and Soil samplings and analysis (all cash and cover crops)

- Biomass and Yield
- N uptake and N₂ fixation by legumes
- Soil water and mineral N
- Soil organic C and N

Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

NO₃⁻

7 of 32

 N_2

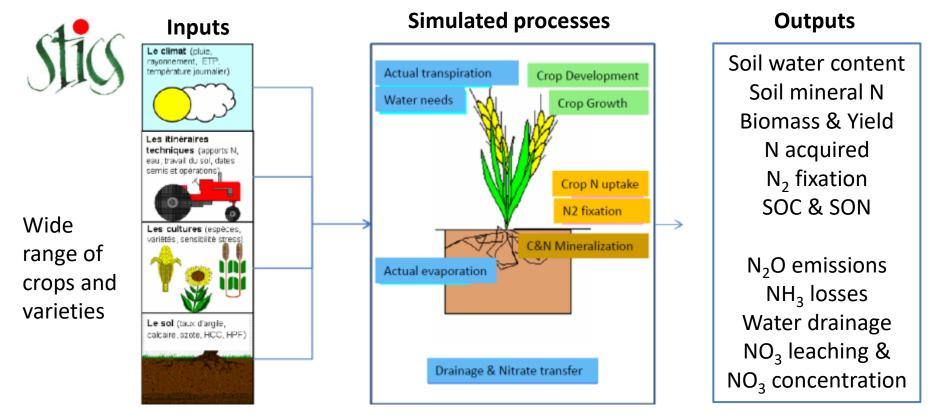
Materials and methods: *iii) GHG measurements*

N₂O samplings and analysis (2010-2016 only; 6 treatments/year)

- Automatic chambers and spectrometers (N₂O and CO₂ direct analysis) in field
- Daily "continuous" (4 times a day) measurements during crop cycle and fallow period

Soil water potential and temperature in upper layers (-10 & -20 cm)

- Temperature sensors (measurements each 10 minutes)
- TDR sensors for water potential (measurements each 10 minutes)



AGroécologie - Innovations - TeRritoires

Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

Materials and methods : iv) Modelling to complete data

Calibration and validation of the STICS soil-crop model (Brisson et al. 1998, 2003; 2008) to simulate different soil and crop processes (Water-C-N budgets)

Version v8.3 validated for a wide range of species & sites (Coucheney at al., 2015)
 Modified for improving N₂O emissions (Bessou et al. 2010; Plaza-Bonilla et al., 2016)

Eric Justes et al. ISL2 – Troia (Portugal 14rd October 2016

Main results: 5 take-home messages (from our INRA experiment in Toulouse)

- ball

Projet MicMac-Design

Main results: 1) N balance and N preceding effect of G. legumes

Grain yield (t/ha)

Cropping system	Cash crop	N rate (kg N ha ⁻¹ yr ⁻¹)	Rotation N rate (kg N ha ⁻¹ 3 yr ⁻¹)	
GLO-BF	Sorghum	82		
	Sunflower	55	303	
	Durum wheat	166		
GL0-CC	Sorghum	82	295	
	Sunflower	55		
	Durum wheat	158		
GL1-BF	Sunflower	6		
	Winter pea		126 🗖	-58%
	Durum wheat	¹²⁰ pre-e	emptive com-	
	o (1		ion in dry years	
GL1-CC	Sunflower	6	<u> </u>	
	Winter pea		151	-49%
	Durum wheat	145		1070
GL2-BF	Soybean			
	Spring pea		117 📉	-61%
	Durum wheat	117		-01/0
GL2-CC	Soybean			
	Spring pea		130	
	Durum wheat	130		-56%

Yield of Durum Wheat (at the optimal fertilized N rate)

8 N-fertizer dosis 7 162 147 107 140 114 147 6 5 4 3 2 1 0 no CC no CC no CC oat-vetch mustard mustard sunflow er w inter pea spring pea 0 GL 1 GL 2 GL

Durum wheat yield & fertilizer-N rate

- > Yield of durum wheat higher after w. pea
- N release from CC residues not always compensate pre-emptive competition for soil mineral-N
- Rate of fertilizer-N must be sligtly increased after CC to reach the same yield

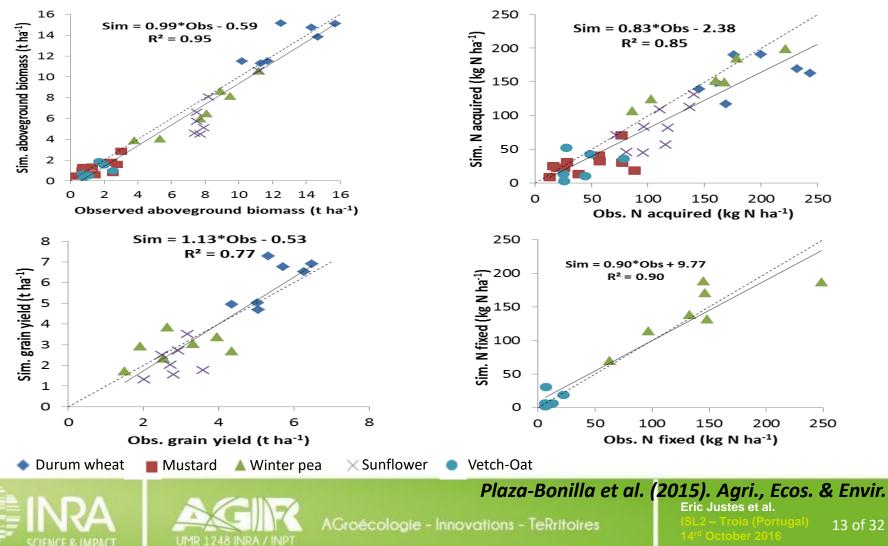
Plaza-Bonilla et al. (2015). Agri., Ecos. & Envir.

AGroécologie - Innovations - TeRritoires

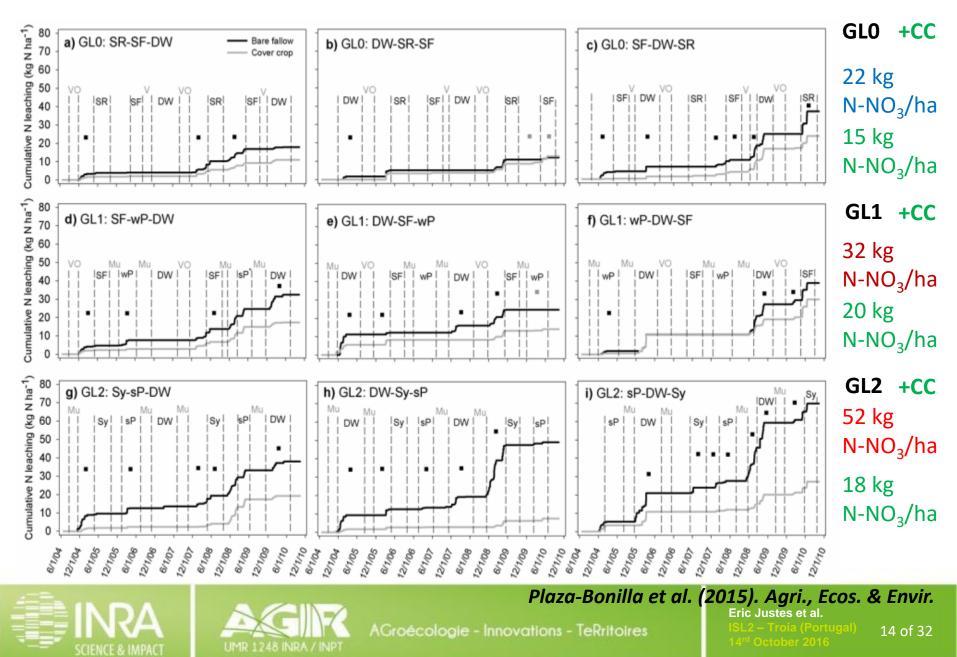
Eric Justes et al. ISL2 – Troia (Portugal) 11 of 32 14rd October 2016

Main results: 5 take-home messages

1) Pea / Fababean as a preceding crop increased durum wheat grain production by 8% compared to sunflower as a preceding crop with a mean reduction of N fertilization of 45 kg N ha⁻¹. No effect of soybean vs cereal...



AGroécologie - Innovations - TeRritoires


Eric Justes et al. ISL2 – Troia (Portuga 14rd October 2016

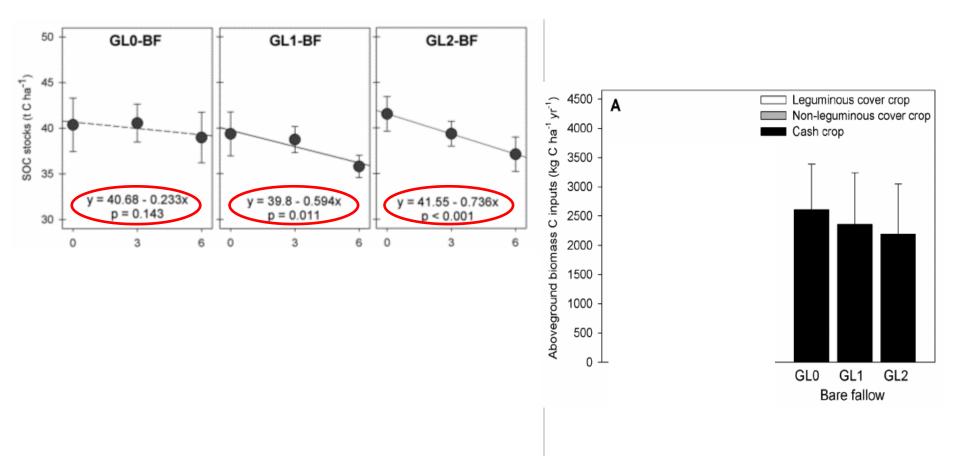
Main results: 2) STICS is relevant to simulate H₂0-C-N- cycles

STICS soil-crop Model was found robust and accurate: allow to simulate water, C and N fluxes with a good confidence: outputs used to complete the field measurements

Cumulative nitrate leaching higher with legumes (rotation scale)

Main results: 5 take-home messages (our experiment...)

- 1) Pea / Fababean as a preceding crop increased durum wheat grain production by 8% compared to sunflower as a preceding crop with a mean reduction of N fertilization of 45 kg N ha⁻¹. No effect of soybean vs cereal...
- 2) NO₃ leaching simulated using the STICS model was higher when increasing the number of GL (from 22 to 52 kg N ha⁻¹ after two rotation cycles of 6 years, for 0 to 2 grain legumes respectively).


AGroécologie - Innovations - TeRritoires

Eric Justes et al. ISL2 – Troia (Portuga 14rd October 2016

SOC stocks decreased with G. legumes (0-30 cm depth : plough layer)

Using a mixed effects statistical model: random effect to intercept (differences between replications on initial SOC and SON) and fixed effect to slope.

SCIENCE & IMPACT

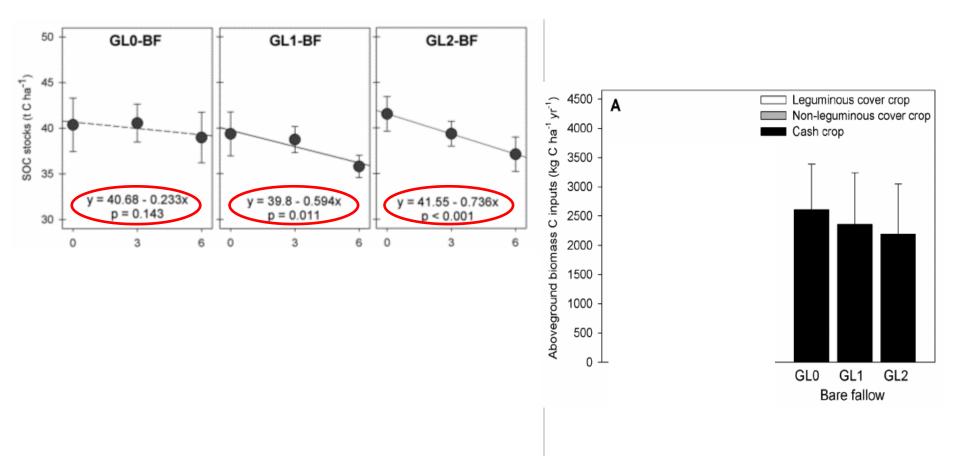
Plaza-Bonilla et al. (2016). Soil Till. Res.

AGroécologie - Innovations - TeRritoires

Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

Main results: 5 take-home messages (our experiment...)

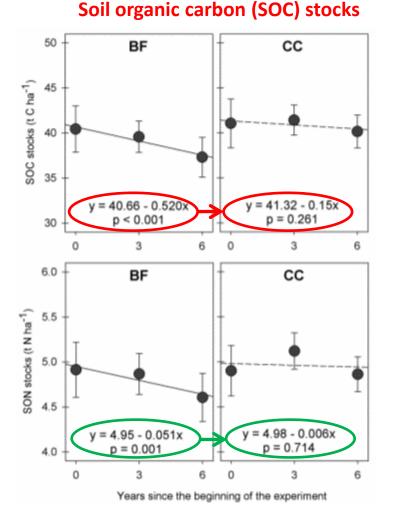
- Pea / Fababean as a preceding crop increased durum wheat grain production by 8% compared to sunflower as a preceding crop with a mean reduction of N fertilization of 45 kg N ha⁻¹. No effect of soybean vs cereal...
- 2) NO₃ leaching simulated using the STICS model was higher when increasing the number of GL (from 22 to 52 kg N ha⁻¹ after two rotation cycles of 6 years, for 0 to 2 grain legumes respectively).
- 3) Inserting GL in the rotations significantly affected the amount of C and N inputs to the soil that were lower than with cereals and consequently led to a decrease in soil organic-C (SOC) and –N contents.



SOC stocks decreased with G. legumes (0-30 cm depth : plough layer)

Using a mixed effects statistical model: random effect to intercept (differences between replications on initial SOC and SON) and fixed effect to slope.

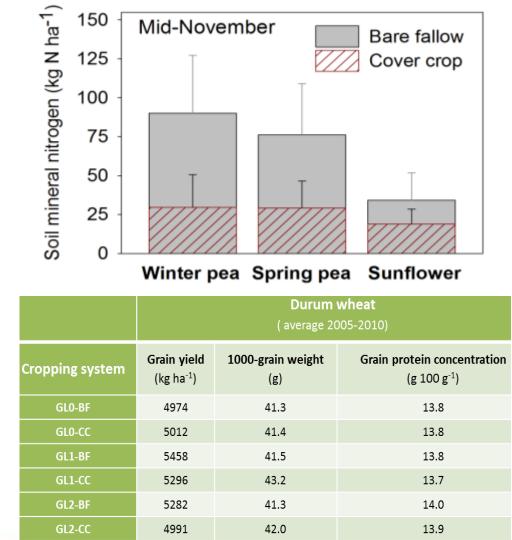
SCIENCE & IMPACT



Plaza-Bonilla et al. (2016). Soil Till. Res.

AGroécologie - Innovations - TeRritoires

Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016


Main Results: 4) Benefits of cover crops in legume-based rotations

Soil organic nitrogen (SON) stocks

SCIENCE & IMPACT

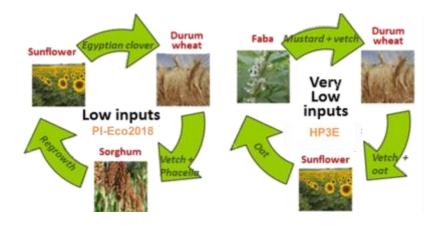
UMR 1248 INRA / INP

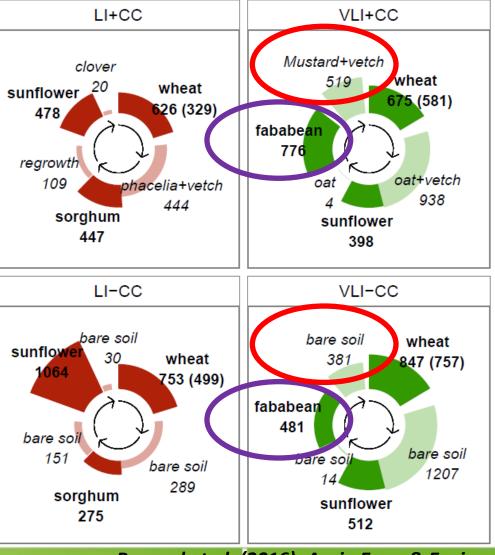
Plaza-Bonilla et al. (2015; 2016). AGEE, STR Eric Justes et al.

AGroécologie - Innovations - TeRritoires

ISL2 – Troia (Portugal) 14rd October 2016

Main results: 5 take-home messages (our experiment...)

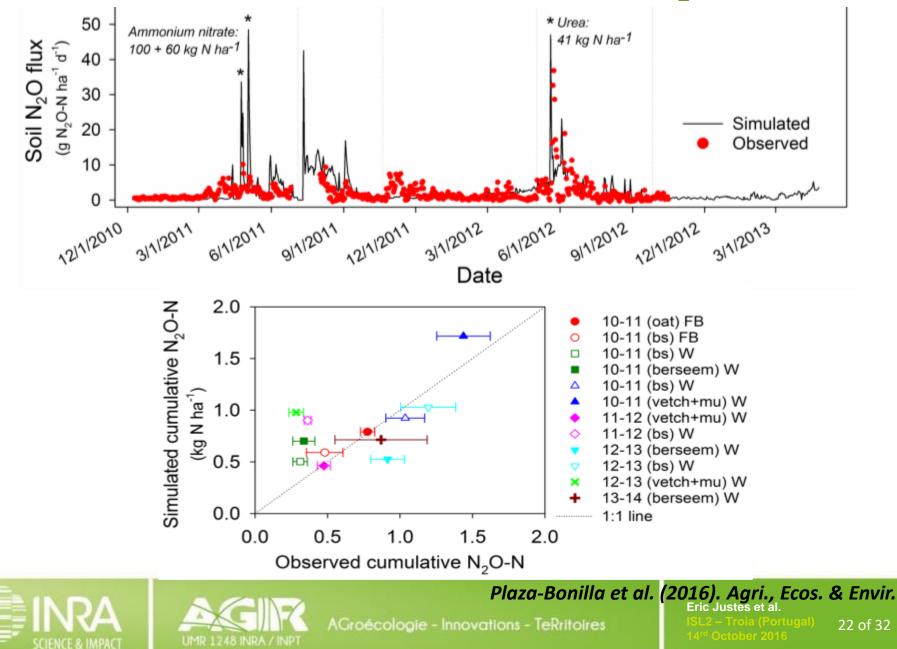

- Pea / Fababean as a preceding crop increased durum wheat grain production by 8% compared to sunflower as a preceding crop with a mean reduction of N fertilization of 45 kg N ha⁻¹. No effect of soybean vs cereal...
- 2) NO₃ leaching simulated using the STICS model was higher when increasing the number of GL (from 22 to 52 kg N ha⁻¹ after two rotation cycles of 6 years, for 0 to 2 grain legumes respectively).
- 3) Inserting GL in the rotations significantly affected the amount of C and N inputs to the soil that were lower than with cereals and consequently led to a decrease in soil organic-C (SOC) and –N contents.
- 4) However, Cover Crop insertion in legume-based cropping systems led to:
 - i. reduced NO₃ leaching (from 15 to 18 kg N ha⁻¹)
 - ii. mitigated SOC loss, and
 - iii. did not affect durum wheat grain protein concentration or yield.



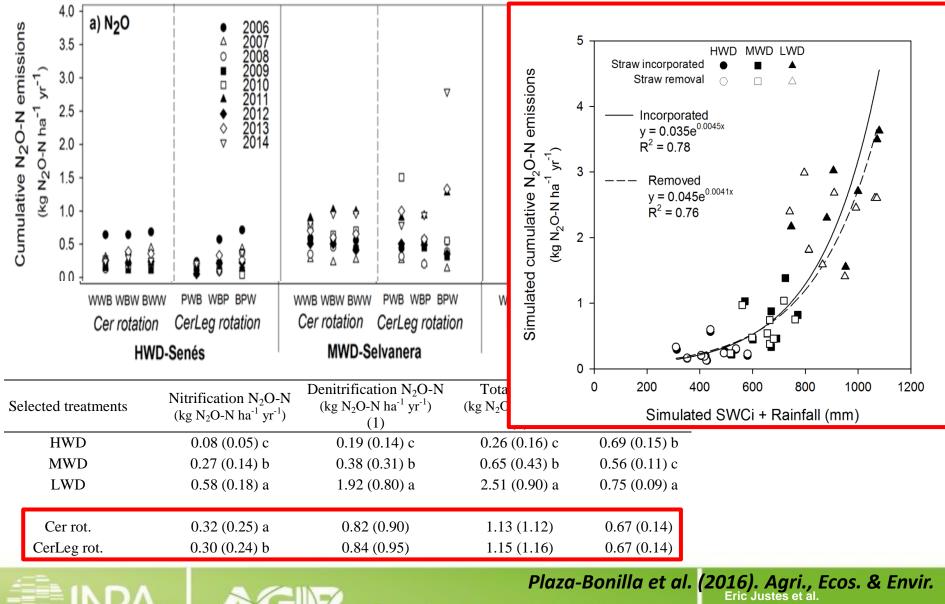
Eric Justes et al. ISL2 – Troia (Portugal 14rd October 2016

Main Results: 5) N₂O emissions with G. legumes

- ✓ N₂O emissions were low
- N₂O emissions during Faba bean crop cycle was lower than for other crops (i.e. durum wheat, sunflower)
- BUT, N₂O emissions after faba bean were higher than after cereal/sunflower
- Finally, N₂O emissions were significantly higher for VLI (with Faba bean) than for the LI (1.12 kg vs 0.78 kg N₂O -N ha⁻¹ y⁻¹)
- Fortunately, Indirect emissions are lower



Peyrard et al.(2016). Agri., Ecos. & Envir.Eric Justes et al.Eric Justes et al.ISL2 – Troia (Portugal)21 of 32



STICS, a satisfactory predictive model for N₂O emissions

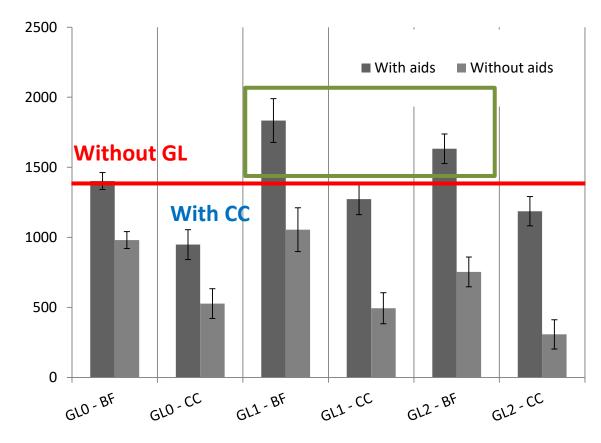
Simulation of N₂O emissions using STICS for 3 Mediterranean sites

AGroécologie - Innovations - TeRritoires

Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

Main results: 5 take-home messages (from our data)

- 1) Pea / Fababean as a preceding crop increased durum wheat grain production by 8% compared to sunflower as a preceding crop with a mean reduction of N fertilization of 45 kg N ha⁻¹. No effect of soybean vs cereal...
- 2) NO₃ leaching simulated using the STICS model was higher when increasing the number of GL (from 22 to 52 kg N ha⁻¹ after two rotation cycles of 6 years, for 0 to 2 grain legumes respectively).
- 3) Inserting GL in the rotations significantly affected the amount of C and N inputs to the soil that were lower than with cereals and consequently led to a decrease in soil organic-C (SOC) and –N contents.
- 4) However, Cover Crop insertion in legume-based cropping systems led to:
 - i. reduced NO₃ leaching (from 15 to 18 kg N ha⁻¹)
 - ii. mitigated SOC loss, and,
 - iii. did not affect durum wheat grain protein concentration or yield.
- 5) Daily measured N₂O emissions over the whole 3-year rotation were low but significantly higher under the cropping systems including fababean than for the cereal-based cropping system (1.12 vs. 0.78 kg N₂O-N ha⁻¹ year⁻¹) despite a lower N fertilization: *fortunately indirect N₂O emissions are lower!*



Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

What about money? (from our data)

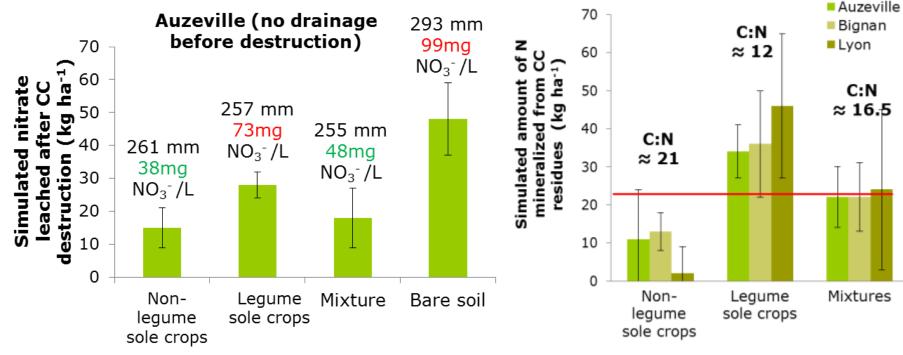
3-year rotation semi-net margin with and without aids* (€ ha⁻¹ 3 years⁻¹)

Arable cropping systems <u>including</u> grain legume were more profitable *in our experimental conditions*

*Aids:

- Basic payment: 132 € ha⁻¹
- Green payment (in GL1 and GL2): 86 € ha⁻¹
- Production-linked payments: durum wheat, pea and soybean (25, 100 and 100 € ha⁻¹).

From Irene Nogué Master's of thesis (2016): paper in preparation for Agricultural systems



AGroécologie - Innovations - TeRritoires

Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

Some other key messages dealing with legume insertion in cropping systems

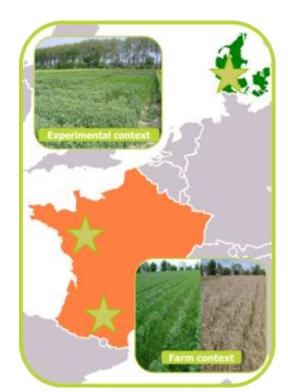
Cover crops for both nitrate capture and green N manure

Nitrate leaching simulation (destruction after autumn)

- ➤ N leached: Mix.~Non-leg. SC < Leg. SC</p>
- ► [NO3-] in drained water: Mix.~Non-leg. SC < Leg. SC < BS</p>

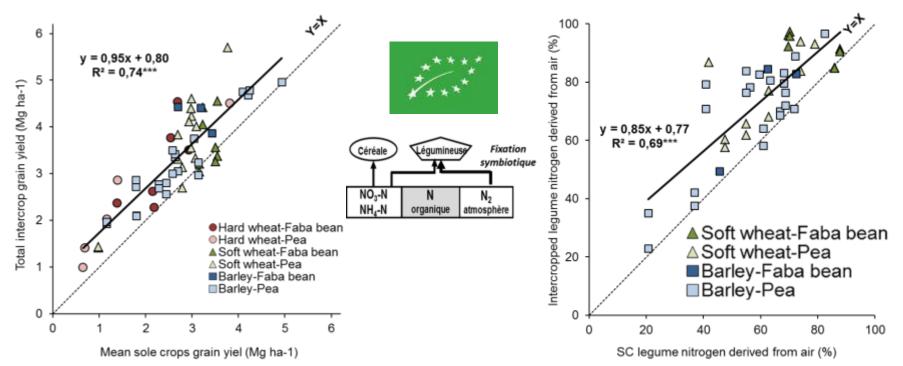
N mineralization from CC residues

- N mineralized from residues: Non-leg. SC < Mix. < Leg. SC</p>
- C:N ratio: Leg. SC < Mix. < Non-leg. SC


Tribouillois et al. (2016). Plant and Soil.

AGroécologie - Innovations - TeRritoires

Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016


Grain legume intercrops to improve productivity and stability by species complementarity

- 10 years of experiments
- Various pedoclimatic conditions: NW, SE, Denmark
- Conventional and organic farming
- Experimental station and farm
- Spring and Winter crops
- Large range of practices
 - Cultivars
 - Densities
 - Sowing paterns
 - Fertilization N or P
 - Pest management
- Different aims :
 - Evaluate their potential advantages for grain yield, grain protein concentration, weed and pests control
 - Analyze their functioning to further propose optimized intercropped systems

Intercrops improve yield by species complementarity for N Sources (soil mineral N and N₂ from air)

- Intercrop yield higher than the mean sole crops (3.3 vs 2.7 Mg ha-1)
 - > Highest efficiency for low N
- > Intercrop grain yield more stable
 - > Higher resiliency
- Proportion of cereal > 50%
 - > Cereal more competitive

Higher legume N2 fixation rate in intercrop (75% vs. 62%)

- Niche complementarity for N sources & competition for soil N
- Most of soil N mineral available for the cereal
- Intercrop efficiency higher in low N

Bedoussac et al. (2015). Agron. Sust. Dev. Eric Justes et al.

AGroécologie - Innovations - TeRritoires

ISL2 – Troia (Portugal) 14rd October 2016

Grain legume intercrops to improve productivity and stability by species complementarity

- Intercropping is an efficient way to improve yield and grain quality
 - Competition for similar resources (in time, space or chemical form) are limited
 - Facilitation process occurred (e.g. P) or niche complementarity (e.g. N)
- Intercropping advantages mostly occurred in limited abiotic resource conditions (low inputs or organic farming); various papers of Jensen *et al.*, Hauggaard-Nielsen *et al.*, Corre-Hellou *et al.*, Bedoussac & Justes)
- ✓ N transfers between species are limited for annual crops (in range of error)
- The best mixtures depend on various levers: species, cultivars, fertilization...
- Modelling intercropping systems could be helpful to optimize them and to determine species and varietal characteristics suited to mixtures

AGroécologie - Innovations - TeRritoires

Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

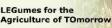
Conclusions

- ✓ Then, considering the 5 main results, in such conventionally-tilled systems, properly designed cropping systems need to simultaneously insert grain legumes and cover crops -including legumes- in order to reduce NO₃ leaching, stabilize SOC/SON contents without modifying N₂O emissions in field at the rotation level → efficient N recycling system
- The STICS model shows a good ability to simulate different soil and crop processes under the pedoclimatic conditions of the experiment: a relevant tool for doing a more quantitative multicriteria analysis
- Mixtures of species of legume and non-legume is an efficient way to increase grain production (intercrops) in low input & organic systems
- For providing various ecosystem services, cover crops need to be compose as a mixture of legume and non-legume species (gramineous, crucifereous) to simultaneously trap nitrate AND provide green N manure effect (multiservices), AND ALSO bio-fumigation effect for bio-control of weeds and soilborne pathogens (cruciferous): an approach insufficiently explored!

Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

Towards innovative sustainable cropping systems

- ✓ Then our challenge is to RE-DESIGN arable cropping systems with more legumes for providing <u>multi ecosystem services</u> as a way of "strong agroecology": YES WE CAN!
- This paradigm of agroecology to re-redesign must to be considered at the territorial scale (see key-note M.H. Jeuffroy) and at the whole agro-food chain
 Need to UNLOCK the system! (see talk M-B. Magrini)
- **Legumes** offer a solution to **attenuate climate change** (tested in Climate-CAFE)
- A number of factors still needs to be optimized before obtaining the full potential of intercropping, in particular to control pests and diseases
- The optimum rotational position of intercrops or the analysis of the potential resilience to climate change need to be analyzed for proposing relevant solutions... Modelling is a RELEVANT TOOL for exploration


AGroécologie - Innovations - TeRritoires

Eric Justes et al. ISL2 – Troia (Portugal) 14rd October 2016

AGIR and VASCO Web sites: <u>http://www6.toulouse.inra.fr/agir</u> Research_Gate personal Web page: <u>https://www.researchgate.net/profile/Eric_Justes</u> MicMac-Design web site: <u>http://www6.inra.fr/micmac-design</u> Climate-CAFE EU projet: <u>http://www6.inra.fr/climate-cafe</u>

Thank you for your attention

