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Abstract

Using statistical emulators to guide sequen-
tial evaluations of complex computer exper-
iments is now a well-established practice.
When a model provides multiple outputs, a
typical objective is to optimize one of the out-
puts with constraints (for instance, a thresh-
old not to exceed) on the values of the other
outputs. We propose here a new optimiza-
tion strategy based on the stepwise uncer-
tainty reduction paradigm, which offers an
efficient trade-off between exploration and lo-
cal search near the boundaries. The strategy
is illustrated on numerical examples.

1 INTRODUCTION

We consider single-objective optimization problems,
subject to non-linear constraints and box constraints:

min f (x)

s.t. gi (x) ≤ Ti, i ∈ {1, . . . , q}
x ∈ X ⊂ Rd (1)

More specifically, we assume that f(.) and the gi(.)’s
are outputs of a complex, expensive-to-evaluate com-
puter model parameterized by a vector x (if size d ≥
1), X being the parameters intervals of variation.

In order to cope with the limited number of model
evaluations (due to their computational cost), a well-
established practice consists of using statistical emu-
lators, based on a small experimental set, to approx-
imate the model outputs and guide a (parcimonious)
sequential sampling strategy. In the celebrated arti-
cle of Jones et al. (1998), a Gaussian process emula-
tor is used and the experiments are chosen according
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to an associated infill criterion, the Expected Improve-
ment (EI), that expresses a trade-off between explo-
ration and intensification to achieve global optimiza-
tion. Such strategy, called Efficient Global Optimiza-
tion (EGO), can cope with constraints, as long as they
are explicit or inexpensive to compute.

In the case considered here, constraints are evaluated
together with the objective function. Finding efficient
sampling strategies is complex, as one may want to
avoid spending too many evaluations on the unfeasi-
ble regions, while exploring the regions close to the
boundaries, where the optimum is likely to be. This
problem has been addressed by several authors (Schon-
lau et al., 1998; Sasena et al., 2002; Parr et al., 2012;
Gramacy & Lee, 2011), essentially by combining the
Expected Improvement with feasibility indicators (ex-
pected feasibility, probability of feasibility, etc.).

We propose here to address this issue alternatively,
first by providing a measure of the uncertainty on the
minimizer location, in the spirit of Villemonteix et al.
(2009), then by finding sequentially the measurement
that achieves, in expectation, the maximum reduction
of this uncertainty. This approach has the advantage
of incorporating rigorously the constraints in the mea-
surements decision, while reflecting more precisely the
actual users’ objective: finding the minimizer rather
than the minimal value of the function.

We start by providing a rapid introduction to
Gaussian-process-based emulation. We describe our
strategy first in the unconstrained case, then we show
how to incorporate the constraints. Finally, the
method is illustrated and compared to alternatives on
numerical examples.

2 GAUSSIAN PROCESS
MODELING

We consider the standard Gaussian process model
(Cressie, 1993; Rasmussen & Williams, 2006), where
the output of interest y is assumed to be one realiza-
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tion of a Gaussian process

Y (.) ∼ GP
(
h(.)Tβ, k(., .)

)
(2)

where h(.)T = (h1(.), . . . , hp(.)) is a vector of trend
functions, β a vector of (unknown) coefficients and
k(., .) is a known covariance kernel.

Conditionally on the event

An = {Y (x1) = y1, . . . , Y (xn) = yn} ,

we have the predictive distribution:

Y (.|An) ∼ GP (mn(.), cn(., .)) , (3)

with:

mn(x) = h(x)T β̂ + kn(x)TK−1n (yn −Hnβ̂),

cn(x,x′) = k(x,x′)− kn(x)TK−1n kn(x′)

+
(
h(x)T − kn(x)TK−1n Hn

)T (
HT
nK−1n Hn

)−1(
h(x′)T − kn(x′)TK−1n Hn

)
,

where yn = (y1, . . . , yn)
T

, Kn = (k(xi,xj))1≤i,j≤n,

kn(x)T = (k(x,x1), . . . , k(x,xn)),

Hn =
(
h(x1)T , . . . ,h(xn)T

)T
, and

β̂ =
(
HT
nK−1n Hn

)−1
HT
nK−1n yn. In addition, the pre-

diction variance is defined as s2n(x) = cn(x,x). Figure
1 shows an example of GP modeling based on seven
observations.
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Figure 1: Gaussian process model based on seven
observations. The dotted line is the actual func-
tion, the plain line is the predictive mean mn(x), and
the grey area the 95% predictive confidence interval
mn(x)± 2sn(x).

In the rest of the article, the subscript n denotes the
conditioning on An, unless stated otherwise.

Classically, the covariance kernel depends on unknown
parameters that are inferred from an initial set of re-
sponses, using maximum likelihood estimates for in-
stance. Usually, the estimates are used as face value,
but updated when new observations are added to the
model. The reader can refer to Stein (1999) (chap-
ter 6), Rasmussen & Williams (2006) (chapter 5) or
Roustant et al. (2012) for detailed calculations and
implementation issues.

When several outputs are predicted simultaneously,
it is possible to take their dependency into account
(Kennedy & O’Hagan, 2001; Craig et al., 2001).
However, in this work we consider all the processes
F,G1, . . . , Gq independent, hence modelled as above.

3 GP-BASED CONSTRAINED
OPTIMIZATION

The EGO algorithm of Jones et al. (1998) consists of
the sequential enrichment of the design of experiments
by adding a measurement at a point that maximizes
the expected improvement: xn+1 = arg maxEIn(x),
where

EIn(x) := E [In(x)]

= E
[
max

(
0, min
i∈{1,...,n}

(yi)− Y (x)

)
|An

]
.

To handle constraints, Schonlau et al. (1998) intro-
duced a feasability function F (x), that equals one
when the constraints are satisfied and zero otherwise.
The points are then taken where the maximum ex-
pected feasible improvement is achieved, that is:

E [In(x) ∩ Fn(x)] := EIn(x)

q∏
i=1

P
(
Gi(x) ≤ Ti

)
,

by independence of F,G1, . . . , Gq. The expected
feasability can be computed using the GP model, as:

P
(
Gi(x) ≤ Ti

)
= Φ

(
T i −mi

n(x)

sin(x)

)
.

In Sasena et al. (2002), this approach is compared to
the use of additive penalties but no significant dif-
ference is found. However, both approaches tend to
avoid frontier regions (where the optimum is suppos-
edly located), leading to poor convergence speed (Au-
det et al., 2000; Parr et al., 2010). Parr et al. (2012)
use a multi-objective approach and sample points that
realize optimal (in the Pareto sense) trade-offs between
expected improvement and expected feasibility.

Gramacy & Lee (2011) use a GP classifier for the con-
straint and a so-called Integrated Expected Conditional
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Improvement (IECI) sampling criterion. Contrarily to
the EI-based approaches, this criterion accounts for
the fact that an unfeasible design can also provide
useful information, at it measures improvement over
the entire design region. The constraints are handled
using expected feasibility. Although theoretically ap-
pealing, this criterion was found only moderately effi-
cient (see section 7.2. The new criterion we describe in
the two following sections resembles the IECI in spirit,
but considers improvement probabilities instead of ex-
pectations (section 4) while the constraints are han-
dled by considering all the possible sampling scenarii
(section 5).

4 UNCONSTRAINED
OPTIMIZATION BY
UNCERTAINTY REDUCTION

Box-constrained optimization using stepwise uncer-
tainty reduction has been introduced in Picheny
(2013). We recall here the main principles that are
necessary for the constrained scenario.

The principle of stepwise uncertainty reduction (Ville-
monteix et al., 2009; Bect et al., 2012; Chevalier et al.,
2012) is to define an uncertainty measure related to
the desired objective, and choose sequentially the mea-
surements that decrease best, in expectation, this un-
certainty. Given an uncertainty measure Γn (com-
puted with the GP model conditioned by An), we
need to compute En [Γn+1|Y (xn+1) = Yn+1], that is,
the expectation of the new uncertainty measure know-
ing that xn+1 is added to the measurements. In the
following, we abusively denote by |Yn+1 such condi-
tioning to lighten the notations. Conditionally on An,
Yn+1 is random with mean mn(xn+1) and variance
s2n(xn+1). Updating the model (3) by adding xn+1

to the design while accounting for Yn+1’s distribution
allows us to calculate En [Γn+1|Yn+1].

Coming back to optimization, consider that n mea-
surements have been performed, and the current best
measurement is fmin

n = min(f1, . . . , fn). At any design
x, the probability pn(x, fmin

n ) := Pn
(
F (x) ≤ fmin

n

)
,

often referred to as probability of improvement (Jones,
2001), is

pn(x, fmin
n ) = Φ

(
fmin
n −mn(x)

sn(x)

)
, (4)

where Φ(.) is the cumulative distribution function
(CDF) of the standard Gaussian distribution.

Now, we wish to define a measure of uncertainty we
have about the location of the minimizer x∗ of f . Inte-
grating the probability of improvement over the design

space, we obtain

evn = EX
[
Pn
(
F (x) ≤ fmin

n

)]
(5)

=

∫
X

Φ

(
fmin
n −mn(x)

sn(x)

)
dx,

which is the expected volume of the excursion set be-
low fmin

n . A large volume indicates that the optimum
is not yet precisely located, as many designs are likely
to be better than the current best one; on the con-
trary, a small volume indicates that very little can be
gained by pursuing the optimization process. Hence,
evn defines a suitable uncertainty measure Γn regard-
ing optimization.

A critical advantage of this measure over possible al-
ternatives is that its expected update (En [Γn+1|Yn+1])
is computationally tractable, as we show in the fol-
lowing. Inversely, the IAGO criterion of Villemon-
teix et al. (2009), based on the Shannon entropy of
the minimizer, requires expensive conditional simula-
tions; the IECI of Gramacy & Lee (2011), which is
based on Γn = EX [EIn(x)], uses only a simplification
of En [Γn+1|Yn+1].

Hypothesizing that a measurement fn+1 is performed
at a point xn+1, its benefit can be measured by the
reduction of the expected volume of excursion set ∆ =
evn − evn+1, with:

evn+1(xn+1) =

∫
X
pn+1

(
x,min

(
fmin
n , fn+1

))
dx.

Now, we want to obtain:

EEV (xn+1)

= En [EVn+1|Fn+1]
=

∫
X Pn

[
F (x) ≤ min

(
fmin
n , Fn+1

)
|Fn+1

]
dx.

We note first that:

Pn
[
F (x) ≤ min

(
fmin
n , Fn+1

)
|Fn+1

]
= Pn

[
F (x) ≤ Fn+1|Fn+1 ≤ fmin

n

]
Pn
[
Fn+1 ≤ fmin

n

]
+Pn

[
F (x) ≤ fmin

n |Fn+1 ≥ fmin
n

]
Pn
[
Fn+1 ≥ fmin

n

]
.

These two quantities are given by the following propo-
sitions (see Picheny (2013) for proofs):

Pn
[
F (x) ≤ a

∣∣Fn+1 ≥ a
]
Pn [Fn+1 ≥ a]

= Φ−ρ (−ā, ã) , (6)

Pn
[
F (x) ≤ Fn+1|Fn+1 ≤ a

]
Pn
[
Fn+1 ≤ a

]
= Φν (ā, η) , (7)

where Φr is the Gaussian bivariate CDF with zero

mean and covariance

[
1 r
r 1

]
,

ρ =
cn(x,xn+1)

sn(xn+1)sn(x)
,
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ν =
cn(x,xn+1)− s2n(xn+1)

sn(xn+1)
√
s2n(x) + s2n(xn+1)− 2cn(x,xn+1)

,

η =
mn(xn+1)−mn(x)√

s2n(x) + s2n(xn+1)− 2cn(x,xn+1)
,

ā =
a−mn(xn+1)

sn(xn+1)
and ã =

a−mn(x)

sn(x)
.

Hence, the expected new uncertainty measure is:

EEV (xn+1) =

∫
X

[
Φν

(
f
min

n , η
)

+ Φ−ρ

(
−fmin

n , f̃min
n

) ]
dx. (8)

The one-step optimal strategy consists of adding the
point that minimizes, in expectation, the uncertainty
about the minimizer:

xn+1 = arg min
x+∈X

EEV (x+) (9)

As in the EGO strategy (Jones et al., 1998), no closed-
form expression exists for xn+1, and it must be found
by running an inner optimization algorithm.

5 ACCOUNTING FOR
CONSTRAINTS

For clarity purpose, we consider here a single con-
straint g(x) ≤ T ; note that the reasoning and cal-
culations transpose without difficulty to several con-
straints.

We assume that two GP models have been fit to the
objective and the constraint. The models are denoted
as F (.) and G(.) and their corresponding distributions
(3) as well as other related quantities (4) are indexed
by the superscripts f and g, respectively.

Volume of the admissible excursion sets The
overall idea is to define the volume of the excursion
set below the current best point while accounting for
constraints.

First, we need to restrict the current best solution fmin
n

to the set of admissible points, that is:

fmin
n = min

s.t. gi≤T
fi.

If no existing point is feasible, we set fmin
n = +∞.

Now, with an explicit admissible domain, say C ∈ X,
the uncertainty measure is simply the volume of “ad-
missible excursion” below fmin

n :

evn =

∫
C

Pn
(
F (x) ≤ fmin

n

)
dx.

Here, the admissible domain is not known beforehand,
but it can be inferred using the GP model of g. How-
ever, instead of defining an approximation for C, we
use the probability that a point x is admissible, that
is: Pn (G(x) ≤ T ). By independence of F and G,
the probability that x is below fmin

n and admissible
is Pn

(
F (x) ≤ fmin

n

)
× Pn (G(x) ≤ T ).

Hence, the expected volume of admissible excursion
below the current minimum fmin

n is equal to:

evn = EX
[
Pn
(
F (x) ≤ fmin

n

)
Pn (G(x) ≤ T )

]
= EX

[
pfn(x, fmin

n )pgn(x, T )
]
,

with pn as defined in (4).

Volume update As in the unconstrained case, the
expectation of EVn+1 defines the SUR criterion:

EEV (xn+1) = En [EVn+1|Fn+1, Gn+1] .

When a new observation is performed at xn+1, both
Fn+1 and Gn+1 are observed. Two cases are to be
considered:

• xn+1 is admissible (Gn+1 ≤ T ): the current
minimum may or may not change, as: fmin

n+1 =
min(fmin

n , F (xn+1)).

• xn+1 is not admissible (Gn+1 > T ): the current
minimum remains unchanged : fmin

n+1 = fmin
n .

We define the four following quantities, depending on
the two cases:

pf−(x) := Pn
[
F (x) ≤ Fmin

n+1

∣∣∣Fn+1, Gn+1 ≤ T
]
,

pf+(x) := Pn
[
F (x) ≤ Fmin

n+1

∣∣∣Fn+1, Gn+1 > T
]
,

pg−(x) := Pn
[
G(x) ≤ T

∣∣∣Gn+1 ≤ T
]
Pn [Gn+1 ≤ T ] ,

pg+(x) := Pn
[
G(x) ≤ T

∣∣∣Gn+1 > T
]
Pn [Gn+1 > T ] .

We have, by independence of F and G and law of total
probability:

E
[
P fn+1(x)P gn+1(x)

]
= pf−(x)pg−(x) + pf+(x)pg+(x),

which will allow us to compute our criterion.

pf−(x) and pf+(x) calculations: If the new point is

admissible, pf−(x) writes as in the unconstrained case
(Equation 8):

pf−(x) = Pn
[
F (x) ≤ min(fmin

n , Fn+1)|Fn+1

]
= Φf

ν

(
f
min

n , ηf
)

+ Φf
−ρ

(
−fmin

n , f̃min
n

)
,
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with quantities as defined in (8).

Otherwise, the new point is not admissible, and we
have:

pf+(x) = Pn
[
F (x) ≤ fmin

n |Fn+1

]
.

Using the following proposition (see Picheny (2013) for
proofs):

Pn
[
F (x) ≤ a

∣∣Fn+1

]
= pn (x, a) , (10)

we obtain:
pf+(x) = pfn(x, fmin

n ).

pg−(x) and pg+(x) calculations: Similarly to (6), we
have (see Picheny (2013) for proofs):

Pn
[
G(x) ≤ a

∣∣Gn+1 ≤ a
]
Pn [Gn+1 ≤ a]

= Φρ (ā, ã) ,

hence:
pg−(x) = Φg

ρ

(
T̄ , T̃

)
,

with:

T̄ =
T −mg

n(xn+1)

sgn(xn+1)
and T̃ =

T −mg
n(x)

sgn(x)
.

pg+(x) can be deduced from pg−(x) by the law of total
probability and the use of (10):

pg−(x) + pg+(x) = Pn (G(x) ≤ T |Gn+1)

= pgn(x, T )

Finally, we obtain:

EEV (xn+1) =

∫
X

[
pf−(x)pg−(x) + pf+(x)pg+(x)

]
dx,

which is equal, noting that pn(x, a) = Φ(ā), to:

EEV (xn+1)

=
∫
X

( [
Φf
ν

(
f
min

n , ηf
)

+ Φf
ρ

(
−fmin

n , f̃min
n

)]
× Φg

ρ

(
T̄ , T̃

)
+ Φ(f̄min

n )
[
Φ(T̄ )−Φg

ρ

(
T̄ , T̃

)])
dx.

6 COMMENTS

Implementation When X is not finite, EEV (xn+1)
can only be computed approximately using numer-
ical integration over X, for instance using Gaussian
quadrature or Monte-Carlo methods. This aspect can
be limiting, in particular in high dimension where a
large number of integration points would be required
to achieve sufficient accuracy, making the procedure
overly costly. Note however that the bivariate nor-
mal CDF can be computed very quickly using efficient

programs, such as the R package pbivnorm (Kenkel,
2012).

At each step n, searching for the best candidate point
(9) may be done using an internal optimization loop,
which is typical in GP-based optimization (Jones,
2001). Global optimization algorithms may be used
(e.g. population-based), as the criterion is likely to be
a multimodal function.

As a stopping criterion for the algorithm, a natural
choice is the difference evn − EEV (xn+1), that indi-
cates the potential gain of another iteration.

Convergence By sequentially sampling at the point
that provides the best reduction (in expectation) of the
volume of the excursion set below the current mini-
mum, we assume that this volume eventually tends to
zero, meaning that the true optimum is observed and
the conditional GP variance tends to zero. In practice,
we observe (section 7.2) that our algorithm converges
to the optimum with competitive speed compared to
existing alternatives. However, as for now, we do not
provide theoretical guarantees convergence.

In general, few results have been established on the
convergence of GP-based optimization. Recently,
Vazquez & Bect (2010) and Grünewälder et al. (2010),
followed by Bull (2011), addressed the convergence of
the EGO algorithm. Srinivas et al. (2012) provide re-
gret bounds for the sequential maximization of the
probability of improvement. These approaches seem
difficult to transpose here, making the question of
proof of convergence out of reach of the present work.

Advantages and limits The proposed criterion de-
fines a trade-off betweeen exploration of the design
space and sampling intensification in promising re-
gions. The risk of sampling in unfeasible regions is
here accounted for automatically, without resorting to
heuristic strategies and without parameters to tune.

Besides limitations due to the numerical integration,
the method proposed here relies on Gaussian process
modeling, hence may be efficient only on certain classes
of functions: continuous, of small to moderate dimen-
sion, etc. This issue might be overcome by applying
our strategy with other metamodeling approaches, in
the spirit of Chipman et al. (2012) for instance.

7 EXPERIMENTS

7.1 Illustration

First, we illustrate the strategy on a two-dimensional
example. Both f and g are realizations of stationary
GPs with Matérn covariance (Rasmussen & Williams,
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Figure 2: Left to right: actual function and feasibility domain (black curve); predictive mean of F ; proba-
bility of feasability (pn(x, T )); SUR criterion (EEV (xn+1)). Circles: actual optimum; triangles: initial set of
observations; red crosses: new chosen observation.

2006, chap.4) with regularity parameter ν = 5/2, in-
dexed by a 34 × 34 regular grid on [0, 1]2. For F , the
covariance range is taken as θF =

√
2/4 and for G

θG =
√

2/3. We choose T such that 30% of the de-
sign space is feasible. Both krigings are based on 6
points randomly chosen on the grid. Figure 2 shows
the actual function and constraint limit, as well as the
important initial quantities given by the GP models.
The first added observation can be seen as an explo-
ration step.

Figure 3 shows the experimental set after 10 iterations
of the SUR algorithm. Only two observations are far
from the actual feasibility boundary. Five observations
form a cluster around the actual optimum. The actual
feasible region is well identified.
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Figure 3: Observation set after 10 iterations and pre-
dicted feasibility.

7.2 Comparison to existing GP-based
methods

Here, we compare our strategy to two strategies.
First, the state-of-the-art EGO algorithm is consid-
ered, modified to account for constraints as in Schon-
lau et al. (1998). The second strategy is based on the
IECI criterion (Integrated Expected Conditional Im-
provement), as proposed in Gramacy & Lee (2011).

The test functions F and G are realizations of Gaus-
sian processes indexed by discrete sets. Considering
discrete problems allows us to get rid of the integration
and optimization issues, as the integrals over the set
can be computed exactly (as the sum of the integrand
over all elements) and the search for the maximizer of
the criterion can be performed by evaluating it over
all the elements. Using GP test functions allows us
to vary space dimension and objective function activ-
ity easily. It also allows us to compare the strategies
under ideal conditions, as there is no modeling error.

For both F and G, the covariance functions are the
Matérn ones with regularity parameter ν = 5/2. The
range for F is taken as θF =

√
d/10. For the con-

straint, we consider two cases: a moderately difficult
constraint, with a low activity function modeled by a
G range of θG =

√
d/5 and a threshold T chosen such

that 25% of the initial domain is feasible, and a diffi-
cult constraint with a high activity (θG =

√
d/10) and

a small feasible domain (10% of the initial domain).

We consider two-dimensional and four-dimensional
cases. For 2D, the finite set is a regular grid of size
37 × 37; the initial experimental set consists of four
points randomly chosen, and 36 experiments are added
sequentially. For 4D, the finite set is chosen as 2,000
points taken from the Sobol sequence; the initial ex-
perimental set consists of 10 points randomly chosen,
and 80 experiments are added sequentially. The results
are given in terms of convergence of the objective func-
tion: fmin

n − f(x∗) (x∗ being the actual minimum) in
Figures 4 and 5. The curves show the 10%, 50% and
90% percentiles over 100 repetitions.

On the 2D problems, for both setups, the SUR strat-
egy clearly outperforms the two other methods. For
the easy constraint case, the EI strategy works sim-
ilarly in terms of mean performance, but is substan-
tially poorer in terms of 90% percentile (which indi-
cates that for several runs the strategy converges to
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Figure 4: Performance of the different methods on the
2D problems. The curves show the 10%, 50% and 90%
percentiles of fmin

n −f(x∗) as a function of the iteration
number over 50 runs. Top: easy constraint; bottom:
difficult constraint.

a local optimum). The IECI strategy converges more
slowly. The difference is more clear for the difficult
constraint, as the SUR strategy converges at the same
rate as for the easy case, while the other methods are
more affected.

On the 4D problems, for the simpler constraint, EI and
EEVR have comparable performances, while IECI is
slower. For the difficult constraint, EEVR works best
and EI is the most penalized method.

7.3 Comparison to classical algorithms

Finally, we compare our approach to non-GP-based
alternatives on a problem taken from Parr et al. (2012).
The objective is taken as

f(x1, x2) =

(
x2 −

5.1x21
4π2

+
5x1
π
− 6

)2

+ 10

((
1− 1

8π

)
cos(x1) + 1

)
+

5x1 + 25

15

with x1 ∈ [−5, 10] and x2 ∈ [0, 15]. The constraint is
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Figure 5: Performance of the different methods on the
4D problems. X-axis: iteration; y-axis: fmin

n − f(x∗).
Top: easy constraint; bottom: difficult constraint.

g(x1, x2) =
(
4−2.1x21 +

1

3
x41)x21 +x1x2 +(4x22−4)x22

+ 3 sin(6(1− x1)) + 3 sin(6 ∗ (1− x2)
)
,

with x1 ∈ [−1, 1] and x2 ∈ [−1, 1]. The constraint is
satisfied if g(x1, x2) ≥ 6. The objective function is rel-
atively smooth, with two local minima and one global
minimum, but the constraint is highly multimodal and
the admissible space consists of three narrow regions,
which makes this problem challenging. The optimiza-
tion problem is represented in Figure 6.

Here, for our approach the initial design set consists
of a 8-point Latin hypercube design and 22 points are
added sequentially to the design. A Matérn covariance
with ν = 5/2 is chosen, with covariance parameters es-
timated using maximum likelihood using the R pack-
age DiceKriging (Roustant et al., 2012). As alterna-
tives, we use the function sumt of the R package clue

(Hornik, 2005), which solves constrained problems by
the L-BFGS-B method with (adaptive) penalization,
and the Matlab R©routine fmincon (based on interior
point method). As a measure of performance, we ob-
serve if the best design found is in one of the three
feasible regions, or if no feasible point is found. Each
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Figure 6: Objective function and contour lines (red)
defining the admissible space.

method is run 100 times (changing the initial design
for EEV and the starting point for sumt and fmincon)
The resuls are reported in Table 1 in terms of percent-
ages over 100 restarts for all the methods. In addition,
Figure 7 shows the evolution of the percentages for the
EEV criterion.

After 22 iterations of our approach, all the runs have
converged to a feasible design, which is almost always
in the global optimum region. Both non-GP based
methods have a large percentage of failed runs (33%
and 42%, respectively), and a majority of runs identify
only a local optimum.
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Figure 7: Evolution of the percentage of optima found
in each region for the EEV criterion. R1 is the global
optimum region, R2 and R3 are local optima regions
and NF means non feasible.

Method R1 R2 R3 Non feasible
EEV (12 ite.) 42% 16% 36% 6%
EEV (22 ite.) 94% 6% 0% 0%

fmincon 17% 34% 16% 42%
sumt 15% 33% 19% 33%

Table 1: Location of the optimum found by the differ-
ent methods. Region 1 (R1) corresponds to the global
optimum, region 3 to the worst local optimum.

8 CONCLUSION

In this paper, we proposed a stepwise uncertainty re-
duction approach to address constrained optimization
problems. We compared our approach to two GP-
based alternatives using realizations of Gaussian pro-
cesses as test problems, and to a classical non-GP
approach. The proposed method compared favorably
with alternatives, converging faster and more robustly
to the optimum, in particular when the constraint
function is complex.

The efficiency of the method lies in the ability of the
GP model to approximate the objective and constraint
functions. This implies some limits of the method in
terms of problem dimensionality, functions regularity
or minimal sample size. In addition, we stress here
that the overall procedure (GP model fitting and up-
date, iterative maximization of a criterion based on nu-
merical integration) is computationally costly, making
its use relevant for expensive computer models only.

Further developments may include studying of the
method efficiency on actual engineering problems, ac-
counting for correlations between objective and con-
straints, and addressing alternative optimization cases,
such as boolean constraints and hidden constraints.

Finally, the issue of theoretical guarantees of our ap-
proach has been left aside here. Future work may ad-
dress this important problem.
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