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Abstract. Fuzzy logic is a powerful interface between linguistic and nu-
merical spaces. It allows the design of transparent models based upon
linguistic rules. The FisPro open source software includes learning al-
gorithms as well as a friendly java interface. In this paper, it is used
to model a composite agronomical feature, the vine vigor. The system
behavior is characterized by its numerical accuracy and analyzed accord-
ing to the induced knowledge. Well known input output relationships are
identified, but also some rules reflect local interactions.
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1 Introduction

In many application fields, there is a need for interactive computerized system
that gather data and knowledge from a wide range of sources, in order to help
understanding a complex phenomenon and making a decision. In particular, the
application fields of agronomy and environment are in demand for advanced
modeling and decision support tools while presenting some specificities. Obser-
vational and modeling studies call for various spatio-temporal scales: plot, farm,
catchment basin, designation of origin, and many influential parameters have
to be considered. Data are acquired with very different means and resolutions,
ranging from manual costly measurements such as soil analysis or plant hydric
potential to high resolution data from embedded sensors and aerial images. In
any case, the variability that characterizes life sciences is pervasive and results in
data uncertainty and a lack of reproducibility. Therefore, human expertise is fun-
damental in interpreting data, and stakeholders in agronomy and environmental
have always relied on expertise to interpret observations and to take decisions.

When expertise and data have to be integrated in a reasoning framework,
fuzzy logic and Fuzzy Inference Systems (FIS) can play an original part in the
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modeling and decision support process [1]. Let us take as an example the case
of vine growing, that is a complex agricultural system involving several factors.
The vegetative vine development is called vigor. It takes into account the rhythm
and the intensity of the vine shoot growth. Empirically, in relative terms, vine
vigor level of a plot is well known as being stable over the years. It is highly
influenced by environmental factors, such as soil or climate, but can also be
modified by agricultural practices (choice of rootstock, inter-row management,
pruning type, among others). Vine vigor is a key parameter to control the balance
between vegetative growth and productivity, which influences berry composition
and then wine characteristics.

For a composite feature such as vine vigor, it is unrealistic to design for-
mal mathematical models based on ecophysiological knowledge. An alternative
approach consists in deriving empirical models from experiments. However, for
perennial crops such as grapevine, full experimental designs to test a large num-
ber of factors in interaction are very difficult to implement. Furthermore the
collected data are tainted with uncertainty; the features can suffer from impre-
cision, as many assessments are made by human beings. The learning process
must be adapted to deal with partial and imperfect data, and to include valuable
pieces of expert knowledge.

Various learning methods can be used to produce a model to study interactions
between variables. They include artificial intelligence or statistical techniques.
Both can deal with some kinds of data imperfection and both have been used
in agri-environmental modeling. Common choices include classical linear models
and decision trees [2] or, for more recent developments, Bayesian networks [3].
These statistical models are efficient in a wide range of situations, and often
yield a confidence interval, since they are based on probability theory. However,
they may be difficult to interpret or to use in cases where data imperfection and
uncertainty is prevalent. Fuzzy modeling and FIS offer an interesting alternative
in such a case, mainly because they provide an interface between the numerical
and the linguistic spaces [4].

The objective of the present paper is to show the interest of FIS to study the
interactions between environmental factors, agricultural practices and vine vigor.
The approach attempts to make the best of domain expertise and of available
field data, though they are incomplete, in order to design an interpretable model.
The interpretability makes it possible to analyze the system behavior and to
evaluate interactions between variables.

Software with a friendly interface is indispensable to allow interactive
modeling and decision support. FisPro1 is an open source software that has
been recently used in several agronomic and environmental applications. These
applications cover different topics: agricultural management using decision vari-
ables defined at catchment scale [5]; modeling interactions among sustainability
components of an agro-ecosystem [6]; determining optimum rates of nitrogen
for corn on the basis of field and crop features [7]; predicting vine vigor and

1 http://www.fispro.org/, email: fispro@supagro.inra.fr
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precocity [8]; characterizing management zones from viticulture data [9]; a soil
occupation diagnostic for sugarcane harvest [10].

The paper is organized as follows. Section 2 presents some general function-
alities for fuzzy modeling and learning with FisPro. Section 3 describes the
application to vine vigor, and analyzes the results from a knowledge discovery
point of view. Some conclusions are given in Section 4.

2 FisPro: Fuzzy Inference System Design and
Optimization

FisPro implements an applied research work in the field of interpretable
FIS [11,4,1]. FisPro has been used to design FIS in different domains, includ-
ing economics, hydraulics, robotics, agri-food industry, medicine, agronomy and
environment. . .Among fuzzy software products, FisPro stands out because of
the interpretability of fuzzy systems automatically learned from data. Inter-
pretability is guaranteed at each step of the FIS design with FisPro: variable
partitioning, rule induction, optimization.

2.1 A Framework for Fuzzy Modeling

A typical FIS is represented in Figure 1. It consists of three stages: 1) fuzzifi-
cation to transform numerical values into membership degrees in the fuzzy sets
associated to linguistic concepts, 2) fuzzy rule base, 3) defuzzification process,
to infer a crisp value from the rule aggregation result.
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Fig. 1. A fuzzy inference system

In the present work, FisPro has been used to design FIS, according to the
approach summarized in Figure 2.

That approach combines expertise and data. For instance, the number of
fuzzy sets is chosen according to expert knowledge, but data make easier the
lengthy task of linguistic modeling, by learning fuzzy set characteristic points.
Automatic rule learning is done to highlight the interactions that arise from the
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Fig. 2. FIS and linguistic modeling with FisPro

multidimensional characteristics. Optimization allows FIS parameter tuning. In
a case study when data are scarce, as for the study of vine vigor, the FIS output
is analyzed from a knowledge discovery point of view, instead of the classical
validation step only based on numerical accuracy.

2.2 Linguistic Variable and Fuzzy Partitioning with FisPro

Working with the membership degrees in the different linguistic concepts, instead
of the raw data values, reduces the system sensitivity to raw data variation. This
is a convenient and meaningful way to tackle biological variability.

The readability of fuzzy partitioning is a pre-requisite condition to build an in-
terpretable rule base. The necessary conditions for interpretable fuzzy partitions
have been studied by several authors [12]: Distinguishable concepts, a justifi-
able number of fuzzy sets, coverage (each data point, x, should belong signifi-
cantly, μ(x) > ε, at least to one fuzzy set), normal and significantly overlapping
fuzzy sets. These requirements are all fulfilled by the strong fuzzy partitions,
illustrated in Figure 3. For each point in the universe, the sum of the member-
ship degrees in all the fuzzy sets is equal to one. Even if, in interactive design,
other membership function (MF) shapes are available and fuzzy partitions can
be freely adjusted, FisPro automatic procedures systematically generate strong
fuzzy partitions with semi-trapezoidal shapes at the edges and either triangular
or trapezoidal shaped MFs elsewhere.

The process of partitioning comes to choose the number of fuzzy sets and the
corresponding characteristic points. When possible, the number of fuzzy sets
is determined by expertise, in order to facilitate the interpretation. Variables
can be continuous or discrete, under the condition that their values are ordered
and have a progressive semantic meaning. Discrete variables are described by k
ordered values. The characteristic points of MFs for continuous inputs are not
easy to determine only by expertise so a learning procedure can be run (see
Figure 2), for instance with the monodimensional k-means algorithm on the
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Fig. 3. A strong fuzzy partition with three linguistic labels

input data, independently for each variable. Then the cluster centers are chosen
as characteristic points.

In Fispro, MF partitions can be visualized together with the data distribution,
as shown in Figure 3. They can be edited and all modifications are dynamically
passed on to other windows, including the inference window.

Several indices have been defined to characterize fuzzy partitions, and are
available in FisPro. The partition coefficient (PC) and the partition entropy
(PE), both proposed by Bezdek [13], are implemented in FisPro. Let N be the
data set size, c the number of fuzzy sets and μi(k) the membership degree of the

kth item in the ith group, the available indices are PC = 1
N

N∑

k=1

c∑

i=1

μ2
i (k) and

PE = − 1
N

{∑N
k=1

∑c
i=1 [μi(k) loga(μi(k))]

}
.

According to these criteria a good partition should minimize entropy and
maximize the coefficient partition.

2.3 Rule Learning and Optimization with FisPro

The fuzzy rules are defined as:

IF X1 is Ar
1 AND X2 is Ar

2 . . . AND Xp is Ar
p THEN y is Cr .

Rule Learning
It is difficult to define a best method for fuzzy rule learning. Several methods are
available in FisPro, and are detailed in [4]. They all respect the interpretability
of the fuzzy partitions. If the number p of input variables is high, it is advisable
to select the most influential ones prior to learning, for instance by running fuzzy
decision trees. If p is not too high, WM (Wang & Mendel) can be used to handle
classification cases. For regression cases, when the number n of available data
items is high, a statistical inspired method (Fuzzy Orthogonal Least Squares) is
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interesting to detect outliers and select the most important sources of output
variability. The FPA method (Fast Prototyping Algorithm), which is used in the
present work, yields a data summary under the form of fuzzy rules.

FPA principles are recalled below. In a first step, the rules corresponding to
the input combinations are generated, only if there are corresponding data in the
data set. In a second step their conclusions are initialized according to the data

values: Cr =

∑
i∈Er

Wr(xi) ∗ yi
∑

i∈Er

Wr(xi)
, where Wr(xi) is the matching degree of the ith

example for the rth rule, defined as: Wr(x) = μAr
1
(x1)∧ μAr

2
(x2)∧ . . .∧ μAr

p
(xp)

and Er is a subset of examples chosen according to their matching degree to the
rule. If there are not enough items that fire the rth rule with a degree higher
than the user defined threshold, the rule is not kept. Thus, FPA yields a subset
of all the possible rules. We set the threshold to a membership degree of 0.2, and
the minimum cardinality of Er to 1.

Optimization and Median FIS
Parameter optimization allows to optimize all parts of a FIS, using the Solis
and Wets algorithm, see [14] for details. As partition parameters and rules have
been generated separately, it is interesting to run an optimization procedure of
the model as a whole. The optimization algorithm used in this work has been
proposed in [1]. It is adapted from Glorennec [15] and based upon the work of
Solis and Wets [16]. It allows optimizing all of the FIS parameters: input or
output partitions and rule conclusions.

In our approach, the input variables were optimized each in turn, the order
depending on the variable importance. To assess that importance, the variables
were ranked according to a fuzzy decision tree. The data set was split into a
learning set (70% of the vine plots) and a test set (30% of the vine plots). Ten
pairs of learning and test sets were randomly created, taking into account the
output distribution levels. The optimization procedure was guided by the root

mean square error RMSE =

√√√√ 1

N

N∑

i=1

‖ŷi − yi‖2, where ŷi is the inferred value

for the ith item, yi its observed value and N the number of items. The usual
R-squared (R2) was also used to characterize the system accuracy.

The optimization process does not change the system structure; the number of
MFs remains the same for all the variables as well as the rule premise structure.
Only the MF parameters and the rule conclusions are modified. This allows
the semantic properties of the initial model to be preserved while the model
accuracy is improved. This also allows to define a median FIS from the ten-fold
optimization sequence. The median FIS fuzzy set characteristic points are the
median values of the corresponding values obtained for each fold, as well as the
consequent parts of the rules.

FisPro provides some useful tools for exploratory analysis of the FIS beha-
vior and representativeness, such as response surfaces and the summary of links
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between rules and activated examples. Sampling procedures for cross-validation
are integrated in the learning and optimization processes.

3 System Analysis

The case study is located in the middle Loire Valley, on the Saumur Protected
Designation of Origin (PDO, in French Appellation d’Origine Contrôlée) area,
in France. It includes 78 vine plots. All the vineyards considered in the study
were planted with Vitis vinifera cultivar Cabernet franc, the main grape variety
in the region, and with similar planting densities. In the studied area, according
to expert knowledge, the vine vigor is influenced by soil factors and by two main
agricultural practices: rootstock choice and inter-row management. The system
was built using three input variables corresponding to the three main influential
factors:

1. Vine vigor imparted by soil (V IGS). This indicator is calculated using a
fuzzy inference system [8], considering three input variables: the water hold-
ing capacity, the gravel percentage in the soil profile and the parent rock
hardness. V IGS is a numerical variable between 1 (Low imparted vigor)
and 3 (High imparted vigor) .

2. Vigor conferred by rootstock (V IGR). Vine is grafted on a rootstock to fight
against the attack of an insect called Phylloxera vastatrix. The rootstock,
at the interface between soil and vine variety, interacts with the variety to
modify the development of the whole plant. For each rootstock, vigor level
was determined from the literature. V IGR is a discrete variable with five
values (1 - Very low; 1.5 - Low; 2 - Medium; 2.5 - High and 3 - Very High).

3. The inter-row management constraint on vine vigor (V IGC). A grass cover
is introduced in the vineyard inter-rows to limit runoff and soil erosion. How-
ever it also limits vine vegetative development on account of competitions
for soil water and nitrogen. V IGC was defined as a discrete variable with 10
values (between 0 - No constraint and 3 - High constraint). Constraint values
were obtained by crossing the constraint imparted by the cover crop variety,
thanks to advisory services technical reports, and the cover crop area.

The system output is the vine vigor given by expert assessment, V IGOBS . Vigor
is linked to the shoot growth and leaf areas observed on vine plots. V IGOBS can
take one of the following labels: 1 - Very Low; 2 Low; 3 - High and 4 - Very High.
The Medium label was not used on purpose to avoid safe haven assessments.

The number of fuzzy sets was determined by expertise, in order to have a
number of concepts corresponding to the usual expert vocabulary used by do-
main experts and technicians. The discrete variable, V IGR, was described by
five ordered values. V IGS and V IGC were partitioned into three fuzzy sets cor-
responding to the usual terms Low, Medium and High. The initial fuzzy set
characteristics points are given in Table 1 (left).

The rule base learnt by running the FPA procedure described in Section 2
is shown in Table 2 and some comments are given in the following paragraphs.
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Table 1. The fuzzy partition parameters (left) and FIS accuracy (right)

V IGS V IGC

Param. Initial Optimized Initial Optimized

C1 1.4 1.4 1.00 1.02
C2 2.0 2.1 1.65 1.50
C3 2.8 2.1 2.25 2.18

FIS RMSE R2

Learning set Initial 0.67 0.64
Optimized 0.52 0.77
Rel. gain 22% 20%

Test set Initial 0.67 0.60
Optimized 0.54 0.73
Rel. gain 19% 22%

Table 2. The fuzzy rule base

System inputs Rule conclusions
Rules V IGS V IGR V IGC Initial Optimized

1 Medium Low High 2.6 2.1
2 Low Medium Medium 3.7 4.0
3 Low Low High 1.3 1.2
4 Low Low Medium 1.2 1.3
5 Medium Low Medium 2.5 2.4
6 Low Medium High 3.5 3.8
7 High Low High 4.0 4.0
8 Medium Medium Medium 2.7 1.4
9 Medium Medium High 2.7 1.1
10 Low Medium Low 2.5 2.2
11 High Medium Medium 3.0 2.9
12 Medium Medium Low 3.3 3.2
13 High Medium High 3.0 2.9
14 High Low Medium 4.0 4.0
15 Low Low Low 3.2 3.8
16 Low High Medium 4.0 3.9
17 High Low Low 4.0 3.9
18 Medium Low Low 2.7 2.5
19 High Medium Low 3.5 4.0

First of all, only 19 rules were generated because some combinations were absent
from the learning data set. No vine plots were planted with a rootstock that
confers either a Very Low or a Very High vine vigor level. After optimization, the
fuzzy set parameters C2 and C3 of V IGS were identical (Table 1), so that there
was no smooth transition between a Medium level of V IGS and a High level.

Consequents of rules 8 and 9 strongly decreased after optimization (-1.3 and
-1.6 on a [1-4] scale) in contrast with the consequent of rule 2 that did not much
change. For the rules corresponding to a Medium V IGS , the rule conclusions
systematically decreased after the optimization.

Table 1 (right) summarizes the results of optimization runs, comparing the
average results of the initial and the median FIS over the learning and test sam-
ples. The median FIS significantly improved the accuracy over the test samples,
with a relative gain of 19% for the RMSE and 22% for the R2. The median FIS-
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based model has a relatively good accuracy, so its behavior can be interpreted to
study the interactions pointed out by the rules. Some examples are given below.

In rules 11, 13 and 19, environmental factors imparting a High vigor are not
associated to a rootstock that confers a Low vigor level. Goulet and Morlat
[17] already noticed that the practices in the vineyard are sometimes unsuitable
because they have not been well adapted to environmental factors. For example,
the authors indicate that in the vineyard of the Sarthe in Loire Valley (France),
72% of the vine plots have a too vigorous rootstock since the environmental
factors already induce a very strong vigor.

The effect of the V IGC variable can also be discussed. When vine plots have
no intercrop, i.e. no constraint on vine vigor, V IGC=Low (rules 10, 12, 15,
17, 18 and 19), the estimated vigor is always higher than 2, unlike vine plots
with an intercrop. The impact of a grass cover as intercrop on vine is well
known in the literature due to competition for water and nitrogen. In [18], the
authors indicated that intercrop reduces vine growth, i.e. the vigor, of the present
year but also of the next years by decreasing grapevine nitrogen reserves. These
already known relationships, interpreted by expertise, confirm the ability of the
method to extract knowledge from a database.

Let us now consider plots intercropped with a crop that involves a High con-
straint (V IGC=High). When the soil imparts a Medium or a Low vigor, the
estimated vigor is coherent with the empirical knowledge: a Low vigor rootstock
leads to a lower vigor; the more the soil imparts a Low vigor, the greater the
difference between rootstocks. On the contrary, when the soil imparts a High
vigor level, and for Low vigor rootstock, the system estimates a High vigor level
(rule 7). At first sight, this is unexpected. It might be explained by the ability
of some Low vigor rootstocks to adapt to soil humidity.

4 Conclusion

The use of a fuzzy formalism for inference systems increases the model com-
plexity by introducing more parameters, by having to choose fuzzy operators
and so on. One must be careful that this rise in complexity is accompanied by
some benefits. The work presented in this paper tried to show the interest of
using fuzzy inference systems that integrate expertise and data, for modeling a
complex phenomenon in agronomy, namely vine vigor.

From the agronomical point of view, our procedure allows to study the combi-
nations of features, therefore complementing the expertise, which is often related
to the effect of one feature, independently from the other ones. This work lays
down the foundations of a decision support tool aiming to adapt the agricultural
practices to the environment in order to get a given vigor target. A next step
consists in testing the method in other vineyards, including rule analysis and
system behavior assessment.
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From the methodological point of view, some work remains to be done to
deal with the uncertainty of input and output measurements or assessments, for
instance to define accuracy indices taking into account a fuzzy target instead of
a crisp one.
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