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Abstract 
 

The purpose of this study was to evaluate properties of the inverse of the genomic relationship matrix 

derived with the algorithm for proven and young (APY) and the accuracy of genomic selection in 

single-step genomic best linear unbiased prediction (ssGBLUP). The APY implements genomic 

recursions on a subset of genotyped animals. When that subset is small, the cost of APY is 

approximately linear in memory and computations, effectively removing restrictions on the number of 

genotypes. Tests involved 10 102 702 final scores from 6 930 618 Holstein cows. A total of 100 000 

animals with genotypes were used in the analyses and included 23 174 sires, 27 215 cows and 49 611 

young animals. Genomic estimated breeding values (GEBVs) were calculated using ssGBLUP with a 

regular inverse of the genomic relationship matrix (G) and with G inverse from APY. Many subsets 

were tested including only sires, only cows and random samples from 2 000 to 20 000 animals. When 

the number of animals in the subset was 15,000, the correlations between GEBV with APY and 

GEBV with the regular inverse were 0.99. Best convergence rate was achieved with random samples. 

A theory on APY was derived and is based on the fact that additive effects of animals in the subset are 

linear functions of the effects of independent chromosome segments (ICSs); the number of segments is 

a function of the effective population size. Accuracy of GEBV with APY can be slightly superior to 

that of a regular inverse. The inverse with APY is computed from G, which in turn is derived from 

single nucleotide polymorphism (SNP) BLUP and indirectly from BayesB or other SNP-based 

prediction methods. Strategies like SNP selection, SNP weighting, and use of causative SNPs from 

sequence analysis can be incorporated in APY without additional cost. The APY removes size 

limitations from ssGBLUP and facilitates a model with a complex genetic architecture. 
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Introduction 
 

The ssGBLUP method (Aguilar et al., 2010; 

Christensen and Lund, 2010) is an attractive 

tool for genetic evaluation. If the current 

evaluation is based on traditional BLUP, all 

that is needed to move from regular to genomic 

evaluation is to change a relationship matrix. 

However, with the current implementation of 

ssGBLUP, the number of genotyped animals 

was limited by costs to invert G. The current 

limit is about 100 000, but the U.S. Holstein 

industry has collected genotypes for almost a 

million animals. 

 

Past progress in animal breeding was 

greatly due to a fast algorithm to invert the 

numerator relationship matrix (A; Henderson, 

1976). Although the cost of inverting A is 

cubic with the number of animals, the cost of 

inversion using Henderson’s algorithm is very 

low because the recursion includes at most two 

terms for an animal (one for its sire and one for 

its dam). More complicated recursions (eight 

terms) allowed for efficient computing of 

dominance relationships (Hoeschele and 

VanRaden, 1991).  

 

When recursion is based on a limited 

number of individuals, the cost of inverting G 

can be lower. Misztal et al. (2014) postulated 

recursions on proven animals (with phenotypes 

or progeny) and called the methodology an 

algorithm for proven and young animals 
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(APY). This algorithm was tested in a 

population of 100 000 genotyped Holsteins and 

different groups of animals in recursions 

(Fragomeni et al., 2015). They found that 

recursions on about 10 000 animals resulted in 

similar accuracy for GEBVs as with a regular 

inverse and that the choice of animals in 

recursions was unimportant.  

 

The computing and storage costs are almost 

linear in APY, which allow inverting G of 

practically any size. However, why APY 

works and whether it has possible internal 

limitations have not been addressed. The 

purposes of this paper are to 1) present the 

formulas for APY, 2) present partial theory 

about why APY works, 3) present results of 

Fragomeni et al. (2015), and 4) demonstrate 

that APY is useful with SNP selection and 

causative SNP identified. 

 

Materials and Methods 
 

Genomic Recursions 

 

The recursion for the additive genetic effect of 

animal i (ui) can be written as (Misztal et al., 

2014) 

 

 
 

where p relates animals to all previous 

individuals and ε is the error term. If G is 

available, 

 

 
 

where M is a diagonal matrix of genomic 

Mendelian sampling and G = {gij}. Then, the 

inverse of G can be created using a formula as 

in Henderson (1976) and Quaas (1988): 

 
1 1( ) ( ),   G I P M I P  

 

where I is an identity matrix and P = {pij}; if 

many of elements in P are very small and the 

elements can be set to 0, G
1

 may be computed 

at a low cost. 

 

 APY Algorithm 

 

In genomic recursions, contributions from 

proven and young animals can be separated as 

 

 
 

However, the contribution of information from 

young animals to other genotyped animals is 0 

in GBLUP. Then, neglecting these 

contributions, 

 

.

 
 

As shown in Misztal et al. (2014), the 

simplified recursions lead to a new formula for 

an approximate inverse of G (i.e., APY): 
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where b relates to proven (or “base”) animals, 

c relates to young (or “non-base”) animals, Gbb 

is a subset of G relating proven animals, Gbc 

relates proven and young animals and Gib 

relates young animal i with all proven animals. 

When the number of animals treated as proven 

is a small fraction of all animals, APY has 

approximately a linear cost and can provide 

large savings in memory and especially in 

computing time. 

 

Field Data and Analyses 

 

Phenotypic data included 11 626 576 

phenotypes for final score of 7 093 380 

Holstein cows, with 10 709 878 animals in the 

pedigree. Comparisons included 100 000 

animals (23 174 bulls, 27 215 cows and 49 611 

young) genotyped for 42 503 SNP markers. 

Initial GEBVs were calculated using regular 

ssGBLUP with direct inversion of G. Then, 

GEBVs were calculated using APY inverse 

(GAPY
1 )  with four different definitions for 

proven animals: 1) only sires, 2) sires and 

cows, 3) only cows and 4) sires with >5 

progeny (including sons and daughters). 

Finally, previous analyses were repeated with 

proven animals randomly sampled from the 

group of all 100 000 genotyped animals in sets 
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of 2 000, 5 000, 10 000, 15 000, and 20 000 

animals; sampling was replicated four times. 

Evaluations for final score were computed 

using a single-trait model as described in 

Tsuruta et al. (2002). All analyses were done 

using blup90iod2 (http://nce.ads.uga.edu/wiki/ 

BLUPmanual) with modifications as in 

Aguilar et al. (2011). Accuracy of APY was 

assessed by correlations between GEBVs for 

the almost 50 000 young animals obtained 

from ssGBLUP using either direct inversion of 

full G or GAPY
1 . 

 

Results and Discussion 
 

Field Data and ssGBLUP 

 

Table 1 summarizes computations with regular 

and APY ssGBLUP for the four subsets of 

proven animals. For all subsets, correlations of 

GEBVs from regular and APY algorithms 

were >0.99. In all cases except when cows 

were treated as proven, the convergence rate 

was close to regular computation, indicating 

good computing properties. The smallest set of 

proven animals with good predictive ability 

was sires with >5 progeny (16 434 animals). 

Treating more animals as proven (i.e., 

including sires with 5 progeny) only 

marginally affected correlations. Computing an 

inverse by APY for 16 000 animals (assuming 

a cubic algorithm for regular inversion) costs 

about 18-fold less for 100 000 animals and 

would cost 700-fold less for 600 000 animals. 

 

Surprisingly good correlations were 

observed with only cows treated as proven. 

Although convergence rate was affected, it was 

still much better than with ssGBLUP with 

unsymmetric equations constructed to avoid 

the inverse of G (Aguilar et al., 2013). This 

means that the original definition of animals as 

young and proven is not necessarily important 

for accuracy of GEBVs, and only the number 

of proven animals matters. To tests this 

hypothesis, 2 000, 5 000, 10 000, 15 000 and 

20 000 animals were randomly chosen from all 

bulls and cows and treated as proven in the 

APY algorithm. 

 

Rounds to convergence increased with the 

subset size but were lower than with the 

regular algorithm. This suggests that GAPY
1  is 

well conditioned numerically. Correlations of 

GEBVs from regular and APY algorithms 

ranged from >0.94 for 2 000 animals to >0.99 

for 20 000 animals, with very small variations 

among replicates (Table 2). This means that 

the choice of proven animals is mostly 

arbitrary.  

 

The original derivation of the APY 

algorithm was based on labeling animals in the 

recursion as proven. Because the algorithm 

works with any sufficiently large subset of 

animals in the recursion, the designation of 

proven or young may no longer be relevant. In 

particular, the animals can be decomposed into 

base (b) animals in the subset and the 

remaining non-base animals (c). 

 

Theory of APY 

 

The limited number of animals required in the 

recursion (<20 000) suggests that the genomic 

information for a population has a limited 

Table 1. Correlations between GEBVs from 

regular and APY ssGBLUP for young 

genotyped animals and rounds to convergence 

by subset of animals used in recursions 

Subset 

Animals 

in subset 

Corre- 

lation Rounds 

All 100 000 1.000 567 

Sires 23 174 0.994 432 

Sires and cows 50 389 0.995 428 

Cows 27 215 0.992 797 

Sires with >5 progeny 16 434 0.992 415 

Table 2. Ranges of correlations between 

GEBVs from regular and APY ssGBLUP for 

young genotyped animals and rounds to 

convergence by number of randomly sampled 

animals (N) used in the subset for recursions 

N Correlation Rounds 

2 000 0.943–0.944 351–357 

5 000 0.971–0.972 354–367 

10 000 0.985 391–403 

15 000 0.989–0.990 411–480 

20 000 0.992–0.993 416–425 

20 000
a
 0.989–0.990 552–556 

a
Randomly sampled from young animals. 

http://nce.ads.uga.edu/wiki/BLUPmanual
http://nce.ads.uga.edu/wiki/BLUPmanual
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dimensionality (<20 000). Stam (1980) 

proposed that in populations with limited 

effective population size, the number of ICSs 

(or Me) is limited to 4NeL, where Ne is effective 

population size and L is genome length in 

Morgans. Other formulas for Me have been 

suggested (e.g., Daetwyler et al., 2010).  

 

Let s be a vector of effects of n ICSs. 

Assume that these effects explain nearly all the 

additive variance. Let tij be a fraction of 

segment j in individual i, and assume that the 

value of tij is tijsj. Then,  u Ts ε, where T is 

a matrix that relates u to chromosome 

segments and 𝛆  is the fraction of breeding 

value unexplained by SNP effects. 

Applications to farm animals using medium 

size SNP chips usually assume   0    

(VanRaden, 2008; Goddard et al., 2011). 

Divide individuals arbitrarily into two groups: 

base (b) and non-base (c): 

 
; b b bu T s ε  

. c c cu T s ε  

 

Assume that the number of base animals is 

equal to Me, T is full rank (no clones), and 

SNP effects nearly fully explain breeding value 

(b  0) Then, 1 , bbs T u or the ICS 

information is practically equivalent to that in 

additive effects of Me base animals. 

Substituting 

 
1  and

,

   

 

c c c c b cb

c b c

u T s ε T T u ε

u Pu ε
 

 

we obtain the recursion formula used to derive 

APY. 

  

The theory can be extended to more or 

fewer base animals. Whereas the APY inverse 

with fewer base animals would result in less 

accurate GEBV, using more than the optimal 

number of base animals would only increase 

computations without affecting the accuracy. 

Assuming for Holsteins an Ne of 100 and an L 

of 30, the number of ICSs is 12 000 based on 

Stam’s formula. This is very close to the 

minimum number of base animals needed to 

achieve correlations of 0.99 in this study. 

 

Genetic Architecture and G 

 

Although the derivations for APY included 

effects of ICSs, those effects are absent from 

the final APY formula, which depends on G 

only. Therefore, any information on the 

specific genetic architecture of a trait, if 

present, is included through G. In the GBLUP 

case (assuming the same variance for all SNP 

loci), G can be derived from SNP BLUP as 

ZZ/q, where q is a scaling factor (VanRaden, 

2008). For weighted SNP BLUP with 
2var( )  aa D , where a is a vector of breeding 

values, D is a diagonal matrix of weights and 
2 a  is total genetic variance, G becomes 

ZDZ/q. 

 

If SNP BLUP includes causative and other 

SNPs with known D, an equivalent G can be 

constructed and subsequently an equivalent 

APY inverse. Particularly, if all (say n) 

causative SNPs are identified, the equivalent 

APY inverse would require recursion on n 

animals. 

 

Is APY Inverse an Approximation? 

 

In some of our simulations, use of the APY 

inverse resulted in slightly higher accuracy of 

GEBV (results not shown). This could be the 

result of multiple factors. First, if the theory for 

ICSs is correct, doing more computations than 

necessary only introduces numerical errors. 

Second, as APY inverse does not require a 

block of G from non-base animals (except 

diagonals), sampling error in that part of G 

(due to a finite number of SNPs) is propagated 

to a regular but not to an APY inverse. 

 

APY and Admixed Populations 

 

If each breed has different ICSs, an admixed 

population would include ICSs from every 

breed, and recursions in APY need to include 

enough individuals to account for ICSs of all 

the breeds. The recursions can be constructed 

to ignore non-existent relationships by using 

only relevant individuals in recursions. For 

example, assume that a population contains 

three breeds (A, B and C) and all two-way 

crosses. Base individuals would be purebreds 

only, and breeding values of crossbreds would 

be linear combinations of ICSs of purebreds. 
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Recursions for individuals of breed A would 

not contain any individuals from breed B or C. 

Similarly, recursions for cross A × B would 

contain only individuals from breeds A and B. 

 

Conclusions 

 

The inverse of G can be computed with APY 

by recursion on a subset of animals that is 

equal to the number of ICSs (about 10 000 for 

Holsteins). For large genotyped populations, 

the algorithm has approximately a linear cost 

and, therefore, is applicable to any population 

size. The inverse with APY can be more 

accurate than a regular inverse, and a specific 

SNP architecture can be considered. For 

admixed populations, a selective use of 

recursions can minimize nonexistent 

covariances across subpopulations. 
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