Crust development at the surface of whole beef meat subjected to hot air jet

Jason Sicard, Stéphane S. Portanguen, Cyril Chevarin, Alain Kondjoyan

To cite this version:

Jason Sicard, Stéphane S. Portanguen, Cyril Chevarin, Alain Kondjoyan. Crust development at the surface of whole beef meat subjected to hot air jet. COMSOL Conference 2015, Oct 2015, Grenoble, France. 2015, COMSOL Conference 2015. hal-02743762

HAL Id: hal-02743762
https://hal.inrae.fr/hal-02743762
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Crust development at the surface of whole beef meat subjected to hot air jet

Jason Sicard, Stephane Portanguen, Cyril Chevarin and Alain Kondjoyan
INRA Auvergne-Rhône-Alpes, UR 0370 Qualité des Produits Animaux, 63122 St-Genès-Champanelle

Background
Meat is most often cooked to develop and improve flavor and to make it safer – kill any harmful bacteria which may have contaminated the product.

HCAs
ex: MeIQ

Raw meat surface can be contaminated ex: Escherichia coli

Some cooking methods induce the formation of a crust – a surface layer of hard dry meat.

This crust impacts product savor and flavor but may contain dangerous compounds formed due to heat. [1]

Computational Methods
This model reproduces an experimental device described in [2].

Heated Boundary conditions
Convective Flux
\(\lambda_{eff} \nabla T = h(T_{jet} - T_{surf}) \)

Water concentration
\(X_{w,surf} = X_{eq}(T) \)

Domain Physics
Conduction
\(\rho_{eff} C_{p,eff} \frac{\partial T}{\partial t} = \nabla \cdot \left(\lambda_{eff} \nabla T \right) \)

Diffusion of water/vapour
\(\frac{\partial (X_{w} + X_{v})}{\partial t} = \nabla \cdot \left(D_{eff} \nabla (X_{w} + X_{v}) \right) \)

Evaporation as a Heat Sink
\(Q = m_{w} L v_{w} \)

Materials
Single Material with parametric properties which depend on local water/vapour amount

Results
Due to evaporation and parametric material properties, this model is solved Fully Coupled.

Beef meat cooked at 192 degC (impacting jet temperature) for 60 min. experimental picture and simulated temperature (degC)

Conclusion and Outlook
This model correctly predicts temperature and water concentration profiles in the crust. This allows for prediction of Water Activity, which governs food microbial safety during storage and shelf life.

Furthermore, kinetics for carcinogenic or aroma compounds shall be added in the post-processing.

References
2. S. Portanguen et al., Mechanisms of Crust Development at the Surface of Beef Meat Subjected to Hot Air: An Experimental Study, Food and Bioprocess Technology, 7(11), 3308-3318 (2014)