

Bovine mammary nutrigenomics and changes in the milk composition due to rapeseed or sunflower oil supplementation of high-forage or high-concentrate diets

Christine Leroux, Laurence Bernard, Yannick Faulconnier, Jacques J. Rouel, Anne de La Foye, Jordann J. Domagalski, Yves Y. Chilliard

▶ To cite this version:

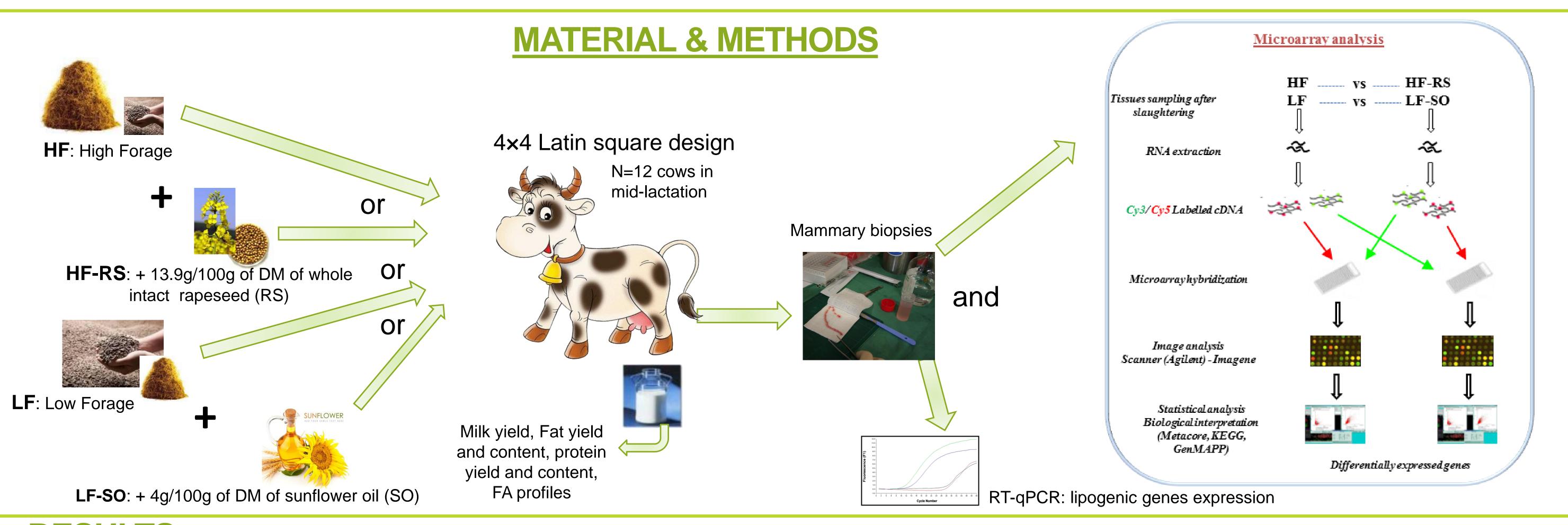
Christine Leroux, Laurence Bernard, Yannick Faulconnier, Jacques J. Rouel, Anne de La Foye, et al.. Bovine mammary nutrigenomics and changes in the milk composition due to rapeseed or sunflower oil supplementation of high-forage or high-concentrate diets. 11. International Symposium on Milk Genomics and Human Health (IMGC), 2014, Aarhus, Denmark. 1 p., 2014, 11th. International Symposium on Milk Genomics and Human Health (IMGC). hal-02743972

HAL Id: hal-02743972 https://hal.inrae.fr/hal-02743972

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



BOVINE MAMMARY NUTRIGENOMICS AND CHANGES IN THE MILK COMPOSITION DUE TO RAPESEED OR SUNFLOWER OIL SUPPLEMENTATION OF HIGH-FORAGE OR HIGH-CONCENTRATE DIETS

LEROUX C, BERNARD L, FAULCONNIER Y, ROUEL J, DE LA FOYE A, DOMAGALSKI J, CHILLIARD Y

INTRODUCTION

The milk fatty acid composition is a major determinant of the nutritional quality of ruminant dairy products. Despite extensive studies on the effects of cow nutrition on milk fat composition, the overall mammary mechanisms underlying the variability of this composition are far from understood, especially for the diets used in husbandry. The present study examined the effect of two lipid supplements and two different forage-to-concentrate ratio diets on milk fatty acid composition and secretion. The effects of the addition of 2 types of lipids were also analysed on cow mammary genes expression.

RESULTS

MILK PRODUCTION AND COMPOSITION

	Treatm	SEM	P							
Item	HF		HF-RS		LF		LF-SO		$n=12^2$	
DMI, kg/d	18.08	b	17.03	a	18.62	b	17.78	ab	0.29	0.01
Milk, kg/d	18.4	a	17.5	a	17.9	a	20.5	b	0.43	0.001
Protein										
g/d	570	ab	535	a	550	a	610	b	14	0.02
g/kg	31.1	b	30.4	ab	30.8	b	29.8	a	0.25	0.008
Lactose										
g/d	913	a	881	a	889	a	1 043	b	23	0.001
g/kg	49.6	a	50.3	b	49.7	a	50.7	b	0.20	0.008
Fat										
g/d	733		735		716		758		20	0.56
g/kg	40.0	b	41.9	b	40.1	b	37.0	a	0.79	0.003
FFA ²	0.55	b	0.44	a	0.58	b	0.61	b	0.034	0.02

a-b ineans within a row with different superscripts differ (P < 0.05).

Treatments: HF = high forage; HF-RS = high forage with whole intact rapeseeds; LF = low forage; LF-SO = low forage with SO,

One missing value /48 samples
 FFA: free fatty acids expressed as mmoles/100 g of milk fat after 26-h storage at 4°C.

LF-SO *vs.* LF ⇒ an increase of milk, protein and lactose yield and lactose content whereas protein and fat content were decreased. HF-RS *vs.* HF ⇒ only to an increase of lactose content

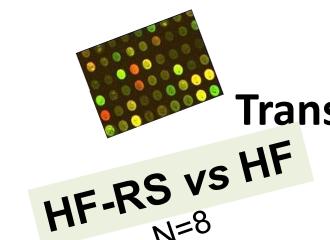
	Treatm		SEM	\boldsymbol{P}						
Item	HF		HF-RS	LF		LF-SO		n= 12 ²		
C10 + C12 + C14	19.50	c	14.17	b	19.78	c	12.47	a	0.335	0.001
Σ C18	30.77	a	48.08	b	31.40	a	54.89	C	0.820	0.001
SAT FA ⁴	70.02	c	61.07	b	70.75	C	53.39	a	0.635	0.001
Σ odd & branched	4.42	c	4.11	b	3.97	b	3.62	a	0.070	0.001
Σ FA trans	2.69	a	4.14	b	2.45	a	12.43	c	0.265	0.001

^{a-c} Means within a row with different superscripts differ (P < 0.05).

¹ Treatments: HF = high forage; HF-RS = high forage with whole intact rapeseeds; LF = low forage; LF-SO = low forage with SO ²One missing value/48 samples

⁴ SAT FA = saturated fatty acid

Functional category


The lipid supplementation with both RS and SO of cow diets largely changed the milk FA composition with higher amplitude of response of milk composition with the addition of SO to LF diet than with RS addition to the HF diet.

Transcriptomic analysis:

Encode protein

GENE EXPRESSION ANALYSES

Candidate genes analysis: Using RT-qPCR, we showed that the dietary treatments had no effect on the mRNA abundance of 11 genes involved in lipids metabolism: *ACACA, FASN, SCD1, GPAM, DGAT1, CD36, FABP3, FABP4, XDH, INSIG1, MBTPS1*

Transcriptomic analysis:

⇒ No effect on mammary gene expression profiles

The mammary transcriptome modification was higher with the addition of SO to LF diet. 49 differentially expressed genes (DEG) with LF-SO compared to LF. Conversely, HF-RS diet compared with HF did not significantly affect the mammary transcriptome.

				ciminge	riccession no.
	Lipid metabolism and transport	ELOVL6	Elongation of very long-chain fatty acids protein 6	1.12	NM_001102155
		GDPD1	Ovis aries glycerophosphodiester phosphodiesterase domain containing 1	1.19	XM_004012407
		LPL	Lipoprotein lipase	0.83	NM_001075120
		APOH	Apolipoprotein H (beta-2-glycoprotein I)	1.14	NM 173992
		BTN2A1	Butyrophilin. subfamily 2. member A1	1.13	XM_002697557
	Cell cycle, proliferation, differentiation, and death	APOH	BolA homolog 2B (E. coli)	1.14	NM_173992
F.SO VS N=9		CNTN2	Contactin 2 (ax onal)	1.11	XM_003583209
		GPRIN2	G protein regulated inducer of neurite outgrowth 2	1.22	NM_001205783
		KIAA0226	KIAA0226	88.0	NM_001101897
		KIAA1524	KIAA1524	1.14	NM_001103284
		LOXL3	Lysyl oxidase-like 3	1.16	NM_001192969
	IF	RHOT2	Ras homolog family member T2	1.11	NM_178316
		TM4SF1	Transmembrane 4 L six family member 1	1.19	NM_001075980
	Replication, transcription, translation	ADNP2	ADNP homeobox 2	0.92	NM_001101840
		CILP	Cartilage intermediate layer protein. nucleotide	1.11	XM_003582653
		EEPD1	Pyrophosphohydrolase	1.18	NM_001034409
		ELK4	Endonuclease/ex onuclease/phosphatase family domain containing 1	1.13	NM_001081612
		ETV1	Ets variant 1	1.25	NM_001046492
		KDM6B	Lysine (K)-specific demethylase 6B	1.19	XM_003587412
		MYBBP1A	MYB binding protein (P160) 1a	0.93	XM_590665
		RBM5	RNA binding motif protein 5	1.11	NM_001046374
		RHOBTB2	Rho-related BTB domain containing 2	1.17	NM_001103104
		RNASE 4	Ribonuclease. RNase A family. 4	1.21	NM_001040590
		ZNF592	zinc finger protein 592	1.16	NM_001102036

zinc finger protein 653

zinc finger protein 821

G ene ID

ZNF653

<u>CONCLUSION</u> This study shows that lipid supplementation of cow diets using either RS or SO changed the milk fatty acid composition, Different effects were observed depending to the nature of lipid supplementation and the percentage of dietary concentrate on milk production, composition and mammary transcriptome with higher amplitude responses with SO addition to LF diet. A holistic view of the effects of SO addition to LF diet on mammary genes expression suggests the existence of mammary remodeling or transcriptional events due to the supplementation,

GenBank

Accession n0.

XM_002688848

NM 001038152