The concept of phenomic selection: using Near InfraRed Spectroscopy (NIRS) to predict quantitative phenotypes

Vincent Segura¹, Jean-Paul Charpentier^{1,2}, Kévin Ader^{1,2}, Redouane El Malki¹, Justine Guet^{1,3}, Véronique Jorge¹, Patrick Poursat⁴, Jean-Charles Bastien¹, Patricia Faivre-Rampant⁵ and Catherine Bastien¹

> INRA, Orléans, France ¹UR0588 AGPF, ²Génobois, ³USC 1328 LBLGC, ⁴UE0995 GBFOR INRA, Evry, France ⁵UMR1165 URGV

International Poplar Symposium VI, Vancouver, BC, Canada Monday July 21st 2014

July 21, 2014

1 / 16

Near Infrared Spectroscopy (NIRS)

- NIRS is a high-throughput phenotyping technique traditionally used for evaluating the physical and chemical properties of biological samples
- In forest research, it has mainly and successfully been applied to the prediction of **wood properties**, incl. **chemical composition** and **physical properties** (reviewed by Tsuchikawa, 2007)
- More anecdotically, the discrimination potential of NIRS has been explored, through the identification of species and provenances of wood and leaf samples (Richardson *et al.*, 2003; Tsuchikawa, 2007; Sandak *et al.*, 2011; O'Reilly-Wapstra *et al.*, 2013)
 - \Rightarrow NIRS is able to capture some genetic information

NIRS is an interesting biological marker?

- Few recent studies have more directly confirmed this point, by estimating the **broad sense heritability** of NIRS and/or **mapping** corresponding **loci** (Posada *et al.*, 2009; O'Reilly-Wapstra *et al.*, 2013)
- These results suggest that NIRS signature is potentially an interesting biological marker, which could be used to predict the heritable variation of quantitative traits
- We aimed at testing such hypotheses in natural populations of *P. nigra*

Experimental design

• 223 P. nigra cloned genotypes organized in 6 metapopulations

Image: Image:

Experimental design

- 223 P. nigra cloned genotypes organized in 6 metapopulations
- Randomized Complete Block Design (6 Blocks) located at INRA Orléans

< 口 > < 同

Genotypic and phenotypic data

ullet Genotyping: 12k SNP Chip yielding \sim 8,000 high quality SNPs

Genotypic and phenotypic data

- ullet Genotyping: 12k SNP Chip yielding \sim 8,000 high quality SNPs
- Phenotyping over 2 successive rounds of coppicing (2008 2009 & 2010 2011)

Collection and preparation of wood samples

- \approx 50 cm stem sections, 3 blocks \Rightarrow 610 samples (171 \times 3 + 45 \times 2 + 7 \times 1)
- Milling \Rightarrow 610 wood powders ($\leq 1mm$)

NIRS acquisition and preprocessing

 NIRS (10,000 - 4,000 cm⁻¹) collection in rotating cups with a spectrum 400 Perkin Elmer spectrophotometer

- Restriction to $8,000 4,000 \ cm^{-1}$ wave number range
- Statistical pre-treatments (normalization, detrend, 1st & 2nd derivatives), yielding 7 spectra modalities: raw, norm, dt, der1, der2, norm_der1, norm_der2

Genetic variability of quantitative traits

Results & Discussion

Genetic variability along NIRS

V. Segura (INRA)

July 21, 2014 11 / 16

< □ > < 同 > <

∃ ► < ∃</p>

Results & Discussion

Genetic variability along NIRS

V. Segura (INRA)

July 21, 2014 12 / 16

э

э

< 17 ▶

Predictions of Quantitative Traits clonal means

G-BLUP

4-fold Cross-Validation repeated 500 times

July 21, 2014 13 / 16

Relationships between predictions and heritability

V. Segura (INRA)

IPS VI

July 21, 2014 14 / 16

Conclusions / Future work

• Conclusions:

- NIRS is a powerful **high-throughput** technique that can **capture** a substantial amount of **genetic variation**
- NIRS signature is thus an interesting marker which can be used to efficiently predict the genetic variation of quantitative traits *Phenomic prediction*
- Future work:
 - NIRS from **wood** *vs.* NIRS from **leaves** collected with a portable spectrometer in the field!

Contributions / Acknowledgements

- Genotyping
 - P Faivre-Rampant, et al., INRA, UMR1165 URGV, Evry, France
 - V Jorge, R. El-Malki, C Bastien, *et al.*, INRA, UR0588, AGPF, Orléans, France
 - M Morgante et al., IGA & Univ. Udine, Italy
 - G Taylor et al., SOTON, Southampton, UK
 - Noveltree & EnergyPoplar (EU FP7 projects)
- Phenotyping & phenotypic data analysis
 - P Poursat, INRA, UE0995, GBFor, Orléans, France
 - J Guet, INRA, UR0558 AGPF & USC1328 LBLGC, Orléans, France
 - C Bastien, INRA, UR0558 AGPF, Orléans, France
- Wood collection R El-Malki, V Jorge, UR0588 AGPF, INRA, Orléans, France
- NIRS K Ader & JP Charpentier, INRA, UR0588 AGPF & Genobois, Orléans, France

