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Abstract 
Vulnerability is the degree to which human and 
environmental systems are likely to experience harm due 
to a perturbation or stress. In the study of climate change 
impacts on grassland, we have run various experimental 
plans and with a reverse engineering approach we build 
the models of our design of experiments. This modelling 
helps identifying a common pattern seen as a metamodel 
to which parts of our models can be conformed to. The 
Model Driven Engineering approach will help us to 
propose a software framework that will deal with the 
distribution of experimental plans under vulnerability 
constraints.   
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1. INTRODUCTION 
Vulnerability is the degree to which human and 
environmental systems are likely to experience harm due 
to a perturbation or stress. It has become in recent years a 
central focus of the global change (including climate 
change) and sustainability science research communities 
[Füssel 2007]. Such new emphasis on vulnerability marks 
a shift away from traditional scientific assessment, which 
limits analysis to the perturbing agents (e.g. climate 
change, extremes) and the corresponding impacts, towards 
an examination of the system being stressed and its ability 
to respond [Luers et al., 2003]. 
 

Grassland/livestock system vulnerability to climate 
should be evaluated both in terms of biophysical 
vulnerability (production losses and increased greenhouse 
gas emissions) and in terms of socio-economic 
vulnerability (e.g. for smallholders and pastoralists in 
developing regions). As shown by the IPCC AR4 report 
[Easterling et al., 2007], potential adaptation strategies for 
livestock farms have seldom been studied, and without 
adequate assessment of adaptation the vulnerability to 
climate change could be overstated. 
 

Significant advances in the domain were made thanks to 
the development and use of advanced modelling 
approaches to simulate mechanistically grassland and 
livestock systems. This was partly done thanks to the 
PASIM model (Pasture Simulation Model, 
https://www1.clermont.inra.fr/urep/modeles/pasim.htm) 
[Riedo et al., 1998] and its improvements [Graux et al. 
2009], [Graux et al., 2011b], [Graux 2011]. 

Vulnerability assessment requires a huge amount of 
runs of the studied model, and distributing the 
computation is therefore necessary. We plan to propose a 
generic framework to deal with distribution of 
experimental plans under a set of specific constraints. 
Some preliminary work we have done with PASIM can be 
used for vulnerability assessment in two ways: firstly, by 
using the knowledge of previous results to drive and 
speed up vulnerability assessment; secondly, by reusing 
and retro-engineering the Design of Experiments (DoE) 
previously achieved. Indeed, three kinds of design were 
used, one for each different purpose: climate-projection 
impacts assessment, sensitivity analysis, optimal 
management research. 

 
The following section presents the PASIM model. 

Section 3 to 5 describe the methodology used, with 
special focus on DOE and MDE techniques, and present 
the design of experiments we have retained in the past 3 
years. PASIM has been ported form ACSL to Fortran in 
order to be integrated in complex climate models for High 
Performance Computing. We aim at “encapsulating” this 
old school approach within Model Driven Engineering 
(MDE). A reverse engineering based on MDE is 
considered to present UML models of what has been 
done. The reverse engineering is completed by the 
proposal of abstractions to tackle the distribution of 
experimental plans on high performance computing 
platforms. 

 
2. MODEL DESCRIPTION 
The PASIM [Riedo et al., 1998] is a process-based 
grassland biogeochemical model based on the Hurley 
Pasture Model [Thornley 1998]. Grassland processes are 
simulated on a time step of a 1/50th of a day. Simulations 
are limited to the plot scale and may run over one or 



 
 

several years. Likewise other advanced biogeochemical 
models, PASIM simulates water, carbon (C) and nitrogen 
(N) cycles, the latter being improved by [Schmid et al., 
2001]. Photosynthetic-assimilated C is either respired or 
allocated dynamically to one root and to three shoot 
compartments (each of which consisting of four age 
classes). Accumulated aboveground biomass is used by 
either cutting or grazing, or enters a litter pool. The N 
cycle considers three types of N inputs to the soil via 
atmospheric N deposition, fertilizer N addition, and 
symbiotic N fixation by legumes. The inorganic soil N is 
available for root uptake and may be lost through 
leaching, ammonia volatilization and 
nitrification/denitrification, the latter processes leading to 
nitrous oxide (N2O) gas emissions to the atmosphere. 
Management includes N fertilization, mowing and grazing 
and can either be set by the user or optimized by the 
model [Vuichard et al., 2007]. 
 

The animal module was recently improved by 
[Graux et al., 2011b] to simulate the performance of 
grazing ruminants (suckler cows with their calves, dairy 
cows and heifers) in response to climate and management 
and enteric methane emissions based on [Vermorel et al., 
2008].  

 
3. DESIGN OF EXPERIMENTS 
Design of experiments (DOE) has a rich history, with 
many theoretical developments and practical applications 
in a variety of fields. In the modelling field, DOE is a 
needed tool for efficiently testing and analysing the 
behaviour of a model [Kleijnen 1987]. Most of model 
simulations aim at exploring and/or testing the behaviour 
of the model.  

Whatsoever for verification and validation or for the 
uses of a model, a huge number of simulation runs are 
needed. In particular, for environmental dynamics 
modelling, models have become increasingly more 
complex at the pace of computer power. Due to the high 
number of parameters required by the model, the 
computation time of a single run, the needed time for 
complete uniform and factorial DOE is usually too 
expensive. That is why the use of other DOE, dispatching 

and parallelization are needed. The uses of a proper DOE 
will help to get, firstly, all the information we are looking 
for. For example in the case of sensitivity analysis, the 
DOE is important to get relevant sensitivity of all 
parameters and not to neglect their interactions. The 
second point is to have the smallest number of simulations 
for the best quality results and so a smaller computation 
time. The latter is also reached by dispatching processes 
to parallel architectures. 
 
4. SIMULATIONS WITH PASIM 
PASIM is a simulation software implemented in 
FORTRAN 95 (~60 000 code lines). The code is divided 
in modules, each one dealing with the modelling of a 
specific part of the system: microclimate module for light 
interception, energy balance; soil physics module for soil 
moisture and temperature profile; soil biology module 
with soil organic matter, nitrate, ammonium and nitrous 
oxide (N2O) dynamics; animal module for intake, 
performance and methane emission at pasture. All these 
modules contain many parameters, some of them are input 
variables, others are usually considers as constant in the 
field validity of the model. In the UML diagram below 
(Figure 1) we present the organization retained to manage 
PASIM inputs. These parameters can be classified in three 
classes: Site, Soil, and Vegetation. In addition, the model 
uses some meteorological input variables at hourly time 
step: air temperature, wind speed, global radiation, 
precipitations, water vapour pressure, CO2 and NH3 
atmospheric concentrations. Such inputs are in the 
Climate class. The Field management is handled by the 
Management Policy class, which has two subclasses: 
Model proposed policy and Prescribed policy. The 
model can run the subclass policies independently or 
simultaneously. The Model proposed policy gives a set 
of rules for automatic management which affect the 
behaviour the model. The policy specifies the fertilization 
dates, types and amounts (Fertilization class), the grass 
cutting date (Mowing class), and grazing information 
(Grazing class) including dates, instantaneous stocking 
rate, initial animal liveweight and body score condition, 
and complementation at pasture if required. 

 

 
Figure 1. UML metamodel of the PASIM input model 



 
 

Due to its ability to simulate a great number of processes 
(including biogeochemical cycles, grassland services and 
greenhouse gas emissions) and to its research objective, 
the potential outputs variables of PASIM are many 
(~500). But just a few one are usually looked and 
analyzed at one time according to the user objective.  
 
A) 

 
B) 

 
 
Figure 2. A) Dry matter yield and B) Net Biome 
productivity (NBP) evolutions for intensive permanent 
grasslands established on a shallow soil under  the SRES 
A1B scenario simulated by the ARPEGE climate model 
and downscaled with variable correction method. A NBP 
positive value means that grasslands store carbon in their 
soil. 
 

For example, in the case the French ANR Project 
CLIMATOR (http://w3.avignon.inra.fr/projet_climator/), 
climate projections were evaluated at 12 French sites. In 
particular, the evolution of yields on intensive permanent 

grasslands on shallow soils from past (1950) to far future 
(2100) were studied (Figure 2A). However studying 
impacts on productivity is not enough, investigating the 
feedbacks of grassland on the climate is also a key issue. 
This could be partly assessed by evaluating the carbon 
balance of the system (Net Biome Productivity), which is 
representative of CO2 emission or absorption (Figure 2B). 
 
5. MODEL DRIVEN ENGINEERING 
Model Driven Engineering (MDE) is a part of software 
engineering that studies, since more than a decade, the 
software development, maintenance and evolution with a 
unifying modelling approach [Favre 2006]. The Model 
Driven Architecture (MDA) is a set of industry standard 
promoted by the Object Management Group (OMG). The 
separation between the descriptions of the platform 
independent system part (PIM Platform Independent 
Model) and of the platform specific one (PSM Platform 
Specific Model) characterizes the MDA, whereas the 
MDE is a global integrative approach [Favre 2006] for 
various technological spaces. MDE relies on three 
fundamental concepts: the “model”, the “metamodel” and 
the “transformation procedure”. A model is a simplified 
representation of a system. The system is an entity 
modelled in order to study it, to understand it, and to 
predict in a mastered context other than reality. The model 
could be defined by the relation “is a representation of” 
between itself and the studied system [Hill 1996] 
[Atkinson and Kuhne 2003], [Seidewitz and 
Technologies, 2003] and [Bézivin 2004]. Nevertheless, in 
the MDE context, this definition is not enough because it 
does not allow the model to become “productive” (i.e. 
interpretable and exploitable by a machine). That is why 
many authors use the following definition [Kleppe et al., 
2003]: “A model is a description of (part of) a system 
written in a well-defined language”. 

 
The notion of well-defined language indirectly points 

to the second MDE principle, i.e. the “metamodel”. 
Different definitions exist in the literature: “a metamodel 
is a model that defines the language for expressing a 
model” [OMG 2002]; “a metamodel is a specification 
model for a class of SUS (System Under Study) where 
each SUS in the class is itself a valid model expressed in a 
certain modelling language” [Kleppe 2003]. Unlike to the 
popular opinion, a metamodel is not a model of model, it 
is better defined as a model of modelling language. This 
definition is based on the following relation: a model “is 
conform to” a metamodel. For instance, in the context of 
Object-Oriented Programming, if we consider the object 
as a model of reality, then the class is a metamodel and 
the object “is conform to” its class. But metamodels can 
have specific forms depending on the technical domain 
such as: 
- XML technologies: an XML file is conform to a DTD 

or XML scheme  
- language theory and compilation: a source code is 

conform to its grammar 



 
 

- in cartography, if our system is France, our model 
could be an IGN (French National Geographic 
Institute) map and its metamodel its legend: a map is 
conform to his legend 

- Standard Template Library (STL): a vector<int> is 
conform to Vector<T> model 
 
Contrary to MDA, MDE principles are relevant for all 

type of models, either object-oriented or not. MDE is not 
restrained to a technical domain. 

 
Nevertheless, to get a productive model, it is necessary 

to describe how to transform it. This aspect corresponds to 
the third MDE concept: “transformation of model”. 
Unlike the two other notions, there is no consensus for its 
definition [Rahim and Mansoor 2008], [Lano and 
Clark 2008], [Iacob et al., 2008]. According to 
[Favre 2004], the relation could be defined as “is 
transformed in”. As for the metamodel, the transformation 
can take different forms under the technical domain 
[Favre 2006], for example: 
- eXtensible Stylesheet Language (XSLT) into XML 

language 
- compilation and code generation for language theory 
 
6. USES OF DESIGN OF EXPERIMENTS 
High performance computing was required to run all the 
simulations we needed in the recent studies conducted 
with PASIM. These studies aimed at assessing climate 
change impacts on grasslands, performing a sensitivity 
analysis of most of PASIM parameters (with respect to 
different outputs), and optimizing grassland management 
under climate change. The DOE associated with these 
three studies are described hereafter. 

 
6.1 Climate change impact projections 
An important work, based on a huge amount of 
simulations, has been done to assess climate impacts on 
grasslands as well as to characterize different levels of 
incertitude on these impacts. To do this, an incomplete 
factorial design of experiments was used. Projections 
were achieved for 12 French sites and, for each site, 
PASIM was forced with 12 plausible future climatic 
conditions that combined a range of SRES (Special 
Report on Emission Scenarios) [Nakićenović et al., 2000], 
climate models and downscaling methods. Since it was 
not possible to generate all combinations of scenarios (1), 
climate models (2) and downscaling methods (3), then a 
complete factorial design was not feasible. However, if 
we consider these three elements: SRES, climate models 
and downscaling methods as a unique entity, then the 
design is complete factorial. 
 

Five soil profiles were also chosen from a database 
designed to include the major soil types (by texture, water 
characteristics and soil depth) and land uses in France 
(DONESOL Base). We could consider that each soil can 
be split into two sub-soils, depending on whether the 

ground water table is nearby or not, reflecting  that there 
is capillary rise from soil boundary layer or not. Six 
different grassland field management policies and 
associated vegetations were defined. The DOE is 
therefore the complete product of: 
- one site 
- one soil 
- one management and his associated vegetation 
- one climate (note that the available climates do not 

cover the complete product of scenario, climate 
model and downscaling method) 

All theses simulations would take about one year of 
computing time on a single modern CPU (2010). Since 
these runs were independent, they were distributed on 
clusters. This was done by dividing the amount of 
simulations by the number of available processors. We 
proposed an additional script to list all incomplete 
simulations and then to generate the needed scripts to 
launch the remaining simulations until every simulation 
has been launched. Interpretation of the results obtained in 
the computing campaign can be found in [Graux 2011] 
and [Graux et al., 2011a]. 

 
6.2 Sensitivity Analysis 
In order to reduce the number of PASIM parameters, a 
sensitivity analysis was performed. An implementation of 
the Morris screening method [Morris 1991] based on 
[Campolongo et al., 2007] was used to assess the 
sensitivity of the model to 133 input parameters at three 
French sites. For each site, three years of climate data 
were used, representing a gradient of aridity conditions 
(minimum, median, maximum aridity year on the period 
1950-1999) as defined by the De Martonne-Gottmann 
index [De Martonne 1942]. Two management policies 
were defined, with one generic soil. The parameters used 
in the sensitivity analysis are in the vegetation, site, and 
soil and prescribed policy inputs classes (Figure 1). The 
main idea of the Morris method [Morris 1991] is to 
determine for each parameter whether their effect could 
be considered as negligible, linear and additive, or non-
linear or involved in interaction with other factors.  
 

 
Figure 3. Cumulated probability distributions and levels 
for a Uniform (dark) and Gaussian (grey) variates. 



 
 

The Morris method for designing experiments is 
composed of individually randomized “one-factor-at-the-
time” experiment. Thanks to that, a trajectory is described 
in the space of all factors. Few trajectories are necessary; 
in our case six trajectories of 134 points (133 parameters 
+ 1 initial point) were used. For each parameter, six levels 
were defined. Each level corresponds to (0, 0.2, 0.4, 0.6, 
0.8, 1) values in the distribution function (Figure 3). This 
design was repeated for a supposed Uniform or Gaussian 
parameter distribution. Note that for computability reason 
Gaussian distribution was limited at its extremity. 

 
The same pattern was used to make sensitivity 

analysis for all kind of outputs (greenhouse gases, plant 
growth, carbon and nitrogen plant content…), so that the 
same “pack” of simulations was enough to perform 
sensitivity analysis for the different outputs. As for 
climate projection impacts, theses simulations can be 
easily distributed. To sum up, the DOE was the product 
of: 
- one site 
- one climate 
- one management 
- one set of parameters for soil, site, vegetation and 

managements parameters, for Uniform or Gaussian 
distribution 
 
Although the computing time is smaller than required 

for climate impact simulations, it was however necessary 
to distribute simulations on local clusters. 
 
6.3 Automatic management simulations  
To test potential adaptations of French grassland-based 
livestock systems to increasing climatic hazards, a two 
step procedure was developed [Vuichard et al 2007] then 
improved [Graux 2011] that first simulates grassland 
mown surfaces then grazed surfaces, by assuming that 
PASIM simulation can be extrapolated at forage system 
scale. Firstly, the model determines the optimal 
management policy for fertilization and cutting events on 
a mown grassland. Then, according to potential forage 
resources, the model optimizes iteratively the stocking 
rate at forage system scale, in order to reach equilibrium 
between potential forage resources and animal feed 
requirements at barn, when accounting for grazing 
coverage. This procedure assumes that all forage 
resources (no forage bought) are fully eaten by animals at 
barn. Each of the two steps of this procedure runs on the 
same meteorological year. To perform each year 
optimization, the information about the end of the 
previous year, is needed. 
 

The automatic management was determined for two 
sites associated to six specific conditions (combination of 
calving period and forage/concentrate quality, and type of 
animal), two climate scenarios, and two soils. For the 
whole 150 year series, two algorithms were used, 

depending on whether the soil organic matter is at 
equilibrium with management and meteorological data, or 
not. To resume, in this case the DOE is the combination 
of: 
- one soil 
- one site 
- one climate scenario 
- one management (depending on the site) associated to 

one optimization method 

Contrary to climate projections and sensitivity 
analysis, all runs cannot be parallelized. Indeed, each run 
of a given meteorological year must wait for the results of 
the previous year, so we could only parallelize blocks of 
150 years. Interpretation of results can be found in 
[Graux 2011]. 
 
7 MODEL AND METAMODEL OF DOE 
The purpose of this section is to propose abstractions, 
which will tackle the distribution of experimental plans 
with specified constraints. We think that a good way to do 
this is to start building a model of the experimental plans 
based on the past designs we proposed. Let’s firstly focus 
on the climate change experimental plan. As we 
previously saw, this plan is a nearly complete factorial 
one. It is not complete in the fact that climate, which is a 
composition of SRES forcing condition, climate model 
and downscaling method, is not complete. As said 
previously, when we consider our proposed climate as a 
whole scenario entity, then the experimental plan is 
complete. The resulting model of the experimental plan is 
given in Figure 4. 
 

 
Figure 4. Model of the experimental plan in climate 
change impact simulations  



 
 

It is interesting to note that for one Site and for one 
Climate, a unique Meteorological dataset exists. This 
uniqueness is important in the way that the resulting 
cardinality is the product of site and climate cardinality. In 
the same way, Management policy and Vegetation can 
be composed in a consistent “Vegetation and 
Management” association class. In this case of 
association, we meet constraints to avoid inconsistent 
combinations of vegetation with field management policy. 
In our experiment, we had four management policies and 
four vegetations and only six valid combinations. The last 
element of the experimental plan is given by the Soil 
class, which does not have direct relationships with other 
model classes. 
 

If we now consider the experimental plan for 
sensitivity analysis, we can also propose a model 
(Figure 5). As for the climate change experimental plan, 
there is a specific association of Climate and Site 
resulting into Meteorological data. In this specific case, 
there is an association between Parameter combination 
and Probability Distribution class, resulting into the 
Parameters values class. Note that the parameter 
combination cardinality is 804 for six trajectories with 
134 points (with a Morris DOE). In this case, the 
management class is simpler and does not present 
particular associations with other classes. 

 

 
 
Figure 5. Model of the experimental plan in sensitivity 
analysis 
 

For the automatic management experimental plan 
(Figure 6), two association classes can be found. The first 
one, as for the two previous models, deals with the 
meteorological data set. The second is the crossed 
information of the Site with his management Policy. In 

this case, we can note that factorial plan is not complete 
(e.g. we do not simulate each vegetation for each site). 
The last element of the experimental plan is the Soil class 
with no particular associations with the other classes. 

 
 
Figure 6. Model of the experimental plan in automatic 
management simulation 
 

In these three models of experimental plan, we can 
identify a common pattern [Gamma et al., 1995] 
(Figure 7). This pattern can be seen as a metamodel to 
which some parts of our DOE models can be conformed 
to. The genericity is explained hereafter, we note that two 
elementary inputs of PASIM (class B and C) are part of 
the experimental design (class A). At the same time 
classes B and C are combined to make the D class, which 
can also be considered as part of the experimental plan.  
 

 
Figure 7. Pattern / Metamodel of an experimental plan 
(the A class) with two elementary inputs (B and C 
classes) and one resulting combination (D class, which is 
a kind of “BC” class). 
 

If in our experimental plan models we consider the 
subparts made of the Site class, the Climate Scenario 
class, the Meteo and the Experimental Plan class, we 



 
 

can see the instantiation of our pattern / metamodel in all 
these three examples. These model subparts are conform 
to the metamodel [Bézivin 2005]. In our model (proposed 
in figure 5) we can consider that Site and Climate 
Scenario, as classes B and C, Meteo as class D and class 
A as the Experimental Plan. Another example is the sub-
model, from the model of experimental plan for climate 
change impacts (figure 4), where Vegetation class and 
class Management Policy are class B and C, the class 
“Vegetation x Management” is the D class and class A is 
represented by the “CC Exp Plan”. Two other examples 
can be found. One is in the sensitivity analysis model (A: 
Sensitivity Analysis Plan; B and C: Parameter 
combination, Probability distribution; D: Parameters 
value) and the other in the automatic management model 
(A: Automatic management Exp. Plan; B and C: Site, 
Management Policy; D: Managed Site). 
 

The nature of the DOE will determine the value of the 
cardinality (cardD) between A and D. If the plan is 
complete factorial (as “Site - Climate Scenario” sub-
model of experimental plan), then cardD is the product of 
cardB and cardC. But if the design is different, then 
cardD will be a different function of cardB and CardC. 
This is the case for the sub-model “Vegetation - 
Management Policy”. 

 
This metamodel, which is written for a three-element 

example, could be generalized. Indeed, this meta-model 
can be applied to any of the three examples of DOE 
models previously described.. If we consider any 
association class and its two elementary inputs as a new 
elementary input class, then we will get iteratively a 
model which is completely conform to this metamodel. 

 
8. DISCUSSION AND POSSIBLE SOLUTIONS 
Vulnerability assessment often uses sensitivity analysis, 
and adaptation options (optimization is included). Thus, 
based on the three examples of simulations studies given 
in this paper, we can conclude that a software tool that 
aims at assessing vulnerability will require a huge amount 
of simulations. This number of runs is an important issue 
for climate change projections due to multiple scenarios 
and the uncertainty cascade. It seems clear, on the one 
hand, that the choice of a suitable experimental design 
will be necessary to reduce the number of simulations as 
much as possible. On the other hand, distributed 
computation appeared to be absolutely necessary. In this 
way, different platforms are to be considered: clusters, 
grids or cloud computing. We have already tackled the 
design of such software tools, which provide distributed 
computation and platform independent DOE 
[Amblard et al , 2003], [Reuillon et al , 2008], [Reuillon 
et al , 2010]. However, theses tools do not take into 
account vulnerability assessment, in their actual state. To 
adapt them, we will need the model of PASIM inputs, 
models of experimental plans (old ones are rather similar 
to those required for vulnerability assessment) and the 
metamodel of the experimental plans. 

 
9. CONCLUSION 
Many simulations have been performed with PASIM by a 
set of carefully designed experimental plans to assess 
climate change  impacts on grasslands. In this paper, we 
have presented our experience of a model reverse 
engineering approach. Retro-engineering, as defined in 
[Chikofsky 1990], is a preliminary task when designing a 
software framework from past experiences. This 
preliminary work has been oriented towards the 
proposition of models in order to build a dedicated 
software framework that supports vulnerability 
assessment in the context of climate change. This 
framework will tackle distribution of constrained 
experimental plans. Our proposal will rely on the study of 
previous simulations, with a model of our grassland 
simulation program and a metamodel for the experimental 
design. Model driven engineering will help us in the 
design and production of our future framework. The 
models and the metamodel presented within this paper 
enables establishing the first step towards the design of a 
generic tool for vulnerability assessment. 
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