New resistance-genes deployment strategies as non chemical alternatives for the durable management of root-knot nematodes in vegetable crops rotation.

Caroline Djian-Caporalino¹, Alain Palloix², Ariane Fazari¹, Nathalie Marteu¹, Arnaud Barbary¹, Anne-Marie Sage-Palloix², Sabine Risso⁴, Roger Lanza⁴, Catherine Taussig⁵, Philippe Castagnone-Sereno¹

¹INRA PACA (Provence Alpes Côte d’Azur), UMR1355 INRA/UNSA/CNRS, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis, France <caroline.caporalino@sophia.inra.fr>
²INRA PACA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS 60094, F-84143 Montfavet, France
³Chambre d’agriculture des Alpes Maritimes, 1 route de Grenoble, F-06200 Nice, France
⁴APREL, Association Provençale de Recherche et d’Expérimentation Légumière, Route de Mollégès, 13210 Saint-Rémy de Provence, France

The current restrictions on the use of chemical nematicides have contributed to increase root-knot nematode problems in horticultural crops. In this context, plant resistance appears as the most effective method of control, but the possible occurrence of virulent nematodes able to reproduce on R-plants may constitute a severe threat to this control strategy. To implement a rational management of R-lines increasing the durability of the R-genes, we tested several R-gene deployment strategies. Experiments were conducted in climate-controlled rooms, in greenhouses, and under 3-years-field agronomic conditions comparing the succession of the same R-genes every year, when introgressed in a partially resistant vs. a susceptible genetic background, the alternance, the mixt cultivation and the pyramiding of two R-genes with different modes of action in one a single genotype. At the plant level, we previously showed that i) the choice of the R-genes and the genetic backgrounds in which they are introgressed can lower the frequency of resistance breakdown, and ii) the pyramiding of two different R-genes in one genotype totally suppressed the emergence of virulent isolates. Here, at the field and rotation level, we confirmed these results and showed that i/ alternating different R-genes in rotation was efficient to reduce the selection pressure of R-genes on the pathogens and allowed to recycle ineffective R-genes, and ii) optimal cultivation practices of R-plants increase their "trap" effect and may decrease the amount of pathogens in the soil, below their damage threshold. These results are in good agreement with concepts recently developed from the analysis of other plant-pathogen interactions. The root-knot nematode model could thus contribute to generalize strategies for the breeding and management of R-cultivars strengthening and increasing the durability of qualitative resistances.

This research was carried out with the financial support from the French Groupement d'Intérêt Scientifique P.I.Clég (‘Néoleg2’) and the National Research Agency (‘Sysbiotel’).
Keywords: Sustainable crop protection, breeding strategy, resistance gene deployment, virulence emergence, root knot nematodes, *Meloidogyne* spp., *Capsicum* spp.