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Abstract
We propose a new additive decomposition of prob-
ability tables that preserves equivalence of the joint
distribution while reducing the size of potentials,
without extra variables. We formulate the Most
Probable Explanation (MPE) problem in belief net-
works as a Weighted Constraint Satisfaction Prob-
lem (WCSP). Our pairwise decomposition allows
to replace a cost function with smaller-arity func-
tions. The resulting pairwise decomposed WCSP
is then easier to solve using state-of-the-art WCSP
techniques. Although testing pairwise decomposi-
tion is equivalent to testing pairwise independence
in the original belief network, we show how to ef-
ficiently test and enforce it, even in the presence
of hard constraints. Furthermore, we infer ad-
ditional information from the resulting nonbinary
cost functions by projecting&subtracting them on
binary functions. We observed huge improvements
by preprocessing with pairwise decomposition and
project&subtract compared to the current state-of-
the-art solvers on two difficult sets of benchmark.

1 Introduction
Probabilistic Graphical Models (PGM) provides a general
approach for automated reasoning under uncertainty [Koller
and Friedman, 2009]. PGMs cover Bayesian networks,
Markov networks, but also deterministic frameworks such as
constraint networks. This paper focuses on discrete PGMs
and the MPE optimization problem which consists in maxi-
mizing a product of nonnegative functions over a set of dis-
crete variables. In Section 2, we show how, using log-space
transformation, one can reformulate the MPE problem as a
WCSP, a general constraint optimization framework which
consists in minimizing a sum of nonnegative cost functions
over a set of discrete variables [Meseguer et al., 2006].

Exact algorithms for MPE (or WCSP) are based either on
Depth-First Branch and Bound (DFBB) search algorithm or
on inference methods, including variable elimination, join-
tree, and compilation. Inference methods generally run

This work has been partially funded by the french “Agence na-
tionale de la Recherche”, reference ANR-10-BLA-0214.

out of memory on large and complex networks (with large
treewidth). The current state-of-the-art MPE solvers combine
DFBB and memory-bounded inference methods (see for ex-
ample [Sánchez et al., 2008; Marinescu and Dechter, 2009]).
DFBB is a complete tree search method using linear memory
space. During search, for minimization problems, the algo-
rithm maintains an upper bound UB on the minimal cost so-
lution, such as the cost of the best solution found so far. More-
over, each node in the search tree is associated with a lower
bound LB, an underestimation of a minimum cost solution to
the subproblem below the node. If LB ≥ UB, DFBB prunes
the search space below the current node. Among the different
techniques used to provide strong lower bound, soft local con-
sistencies have been introduced in WCSPs. Since their worst-
case time complexities are exponential in the maximum arity
(number of variables) of the cost functions [Cooper et al.,
2010], they are usually enforced on small arity (2 or 3) cost
functions only. It is therefore desirable to decompose cost
functions into smaller arity cost functions. Note that variable
elimination may also benefit from this decomposition (as the
number of neighboring variables may decrease).

It is well-known that conditional independences (CI) al-
lows to factorize probability distributions. However neither
Bayesian networks nor Markov networks can explicitly rep-
resent all CI perfectly [Koller and Friedman, 2009]1. There
may also be finer-grain context-specific independences, such
as (X ⊥⊥ Y | Z = z), which is not explicit in the network
and which can be exploited after entering evidence Z = z or
performing variable elimination or value pruning by soft local
consistency. In Markov networks, several factorizations may
exist in the case of nonpositive distributions. In Section 3,
we show how to exploit efficiently pairwise independence in
WCSPs in the context of DFBB enhanced with soft local con-
sistency and variable elimination.

2 Preliminaries
A Probabilistic Graphical Model (PGM) (or Gibbs distribu-
tion) is defined by a product of nonnegative functions F , over
a set of discrete variables X , conveying probabilistic or deter-

1A famous example is the segregation network [Fishelson et
al., 2005], where P(Gi,jp | Ga,jp, Ga,jm, Si,jp) = 2P(Gi,jp |
Ga,jp, Si,jp)P(Gi,jp | Ga,jm, Si,jp) because (Ga,jp ⊥⊥ Ga,jm |
Gi,jp, Si,jp), but this cannot be represented in a BN formulation.



ministic information [Koller and Friedman, 2009]. Subsets of
X will be denoted using bold letters such as S.
Definition 1 (PGM). A PGM is a triplet (X ,D,F) with X =
{X1, . . . , Xn}, a set of variables, D = {DX1 , . . . , DXn

},
a set of finite domains of values of maximum size d =
maxn

i=1 dXi
(dXi

= |DXi
|), and F = {f1, . . . , fe}, a set of

nonnegative real valued functions, each defined over a sub-
set of variables Si ⊆ X (i.e., the scope). It defines a joint
distribution:

P(X ) =
∏e

i=1 fi(Si)∑
X
∏e

i=1 fi(Si)
Bayesian networks represent a specific case using one con-

ditional probability per variables (e = n) and a unit normal-
izing constant. The Most Probable Explanation (MPE) prob-
lem is to find the most likely assignment to all variables in X
maximizing P(X ).

A Constraint Satisfaction Problem (CSP) is a triplet
(X ,D, C) with X ,D defined as for PGM, and C, a set of
constraints. Each constraint is defined as a boolean function
over a subset of variables Si ⊂ X indicating which tuples in
DSi

=
∏

X∈Si
DX are authorized or not. The problem is to

find a feasible assignment of X , satisfying all the constraints.
A Weighted Constraint Satisfaction Problem (WCSP) is an
extension of CSP targeted towards optimization.
Definition 2 (WCSP). A WCSP is a triplet (X ,D,W) with
X ,D defined as for PGM, and W = {w1, . . . , we}, a set of
cost functions. Each cost function is defined over a subset of
variables and takes nonnegative integer values in E+ = N ∪
{>} (> = +∞ being associated to forbidden assignments).
The goal is to find a feasible assignment of X minimizing∑e

i=1 wi(Si).
A PGM (X ,D,F) can be translated into a WCSP

(X ,D,W) with ∀i ∈ [1, e], wi(Si) = d−M log(fi(Si))+Ce
(M,C being two positive constants for real-to-integer preci-
sion and nonnegativity of wi) which preserves the set of opti-
mal solutions if a sufficiently large M value is used.

In the rest of the paper, we use f to denote cost func-
tions. Given an assignment t ∈ DX , t[S] denotes the sub-
assignment of t to the variables in S. Let f = f1 + f2 de-
note the sum (join) of two cost functions defined as f(t) =
f1(t[S1]) + f2(t[S2]),∀t ∈ DS1∪S2 . Let f = f1 − f2 denote
the subtraction of two cost functions such that S2 ⊆ S1 and
f(t) = f1(t) − f2(t[S2]),∀t ∈ DS1 with > − > = >. Let
f [S′] denote the projection of a cost function over a subset S′
of its variables S such that S′ ⊆ S and ∀t′ ∈ DS′f [S′](t′) =
mint∈DS s.t. t[S′]=t′ f(t). A cost function over two (resp.
one) variable(s) is called a binary (resp. unary) cost func-
tion. An empty cost function has all its costs equal to zero
and is removed from the WCSP.

Depth-First Branch and Bound (DFBB) is a complete tree
search method to solve WCSPs. Soft local consistency meth-
ods produce strong lower bounds for DFBB by applying
Equivalence-Preserving Transformations (EPT) [Cooper et
al., 2010]. An arc EPT adds the projection f [X] of a cost
function f(S) to a unary cost function f1(X), X ∈ S and
subtracts f [X] from f (i.e. replaces f by f − f [X]) in or-
der to get an equivalent problem. Enforcing soft arc consis-
tency consists in applying arc EPTs for all cost functions and

W X Y U f
1 1 1 1 5
1 1 1 2 >
1 1 2 1 >
1 1 2 2 3
1 2 1 1 6
1 2 1 2 5
1 2 2 1 >
1 2 2 2 >
2 1 1 1 4
2 1 1 2 >
2 1 2 1 >
2 1 2 2 2
2 2 1 1 2
2 2 1 2 1
2 2 2 1 3
2 2 2 2 1

=

W X Y f1
1 1 1 5
1 1 2 3
1 2 1 5
1 2 2 >
2 1 1 4
2 1 2 2
2 2 1 1
2 2 2 1

+

X Y U f2
1 1 1 0
1 1 2 >
1 2 1 >
1 2 2 0
2 1 1 1
2 1 2 0
2 2 1 2
2 2 2 0

Figure 1: f(W, X, Y, U) on four Boolean variables is decom-
posable w.r.t. W, U as f1(W, X, Y ) + f2(X, Y, U).

all directions (∀f(S) ∈ W,∀X ∈ S) until all the projec-
tions are empty. A directional arc EPT adds the projection
(f + f2)[X] from binary and unary cost functions f(X, Y )
and f2(Y ) to f1(X) and subtracts the result of this projec-
tion from f . Enforcing soft directional arc consistency (DAC)
consists in applying directional arc EPTs on all cost functions
in one direction only (X < Y ), as indicated by a total order
onX , thereby ensuring termination. DFBB can be further im-
proved using on-the-fly variable elimination [Larrosa, 2000].
Let F = {fi ∈ W s.t. X ∈ Si} and S =

⋃
fi∈F Si, the

elimination of variable X consists in replacing X and F by
the projection (

∑
f∈F f)[Sr{X}] in the current WCSP. The

elimination of a variable is exponential in the size of S and is
cheap if |S| is small but also if X is assigned or if it is con-
nected to the rest of the problem either through a single cost
function or through at least one bijective (equality) constraint.
DFBB enhanced with on-the-fly i-bounded elimination (all
variables with |S| ≤ i are eliminated) and soft local consis-
tency (EDAC for binary&ternary cost functions [Sánchez et
al., 2008]) is denoted as DFBB-VE(i) in the experiments.

3 Pairwise cost function decomposition
We first define the notion of pairwise decomposition.
Definition 3. A pairwise decomposition of a cost function
f(S) with respect to two variables X, Y ∈ S (X 6= Y ), is a
rewriting of f into a sum of two (nonnegative) cost functions
f1(S r {Y }) and f2(S r {X}) such that:

f(S) = f1(S r {Y }) + f2(S r {X})
An example of decomposable function is given in Figure 1.

A pairwise decomposition replaces a cost function of arity
r = |S| with smaller-arity (r − 1) cost functions. This de-
composition process can be recursively repeated on the re-
sulting cost functions f1, f2 until no pairwise decomposition
can be found for each remaining cost function. A cost func-
tion f(S) that cannot be pairwise decomposed for any choice
of X, Y ∈ S is said to be non decomposable. A WCSP is
pairwise decomposed if all its cost functions are non decom-
posable. This property is enforced by applying the previously
described iterative process to all cost functions.

The following theorem shows that testing if a cost func-
tion can be pairwise decomposed w.r.t X,Y is equivalent to



testing pairwise independence between X and Y in an appro-
priate probability distribution.

Theorem 1 (Equivalence of pairwise independence and de-
composition). Let S = {X, Y }∪Z a set of random variables,
f(S) a cost function on S with at least one feasible assign-
ment, and a distribution Pf = 1P

S exp(−f(S)) exp(−f(S)) (a
Gibbs distribution parameterized by f ). (X ⊥⊥ Y | Z) de-
notes that X and Y are pairwise independent given all other
variables in Pf . Then,

(X ⊥⊥ Y | Z)⇐⇒ f(X,Z, Y ) = f1(X,Z) + f2(Z, Y )

Instead of testing pairwise independence in Pf , which in-
volves summations and multiplications of real numbers, we
propose a simpler test for pairwise decomposability based on
equalities of cost differences. For a decomposable cost func-
tion f(X,Z, Y ) = f1(X,Z) + f2(Z, Y ) that takes only fi-
nite costs, and for any tuple z ∈ DZ, if we consider any
fixed pair of values k, l for Y then the difference f(x, z, k)−
f(x, z, l) = (f1(x, z) + f2(z, k)) − (f1(x, z) + f2(z, l)) =
(f2(z, k)−f2(z, l)) does not depend on x. When f(X,Z, Y )
is not limited to finite costs however, subtracting an infinite
cost from another cost is ill-defined. For example, if f2(z, k)
and f2(z, l) are both equal to> then f(x, z, k) = f(x, z, l) =
> for all x. Therefore, f1(x, z) can take any value and the
decomposition will still hold. Infinite costs offer additional
freedom in decomposition and must be specifically handled.

To design a test that can exploit infinite costs, we introduce
an extended cost valuation structure E = Z ∪ {−>,>, Ω}
including negative costs and a special absorbing element Ω
which captures the freedom generated by subtraction of infi-
nite costs. Let a � b denote the difference of two elements
a, b ∈ E: a � b = a − b, except for > � > = −> � −> =
a � Ω = Ω � b = Ω, > � −> = > � c = c � −> = >,
−> � > = −> � c = c � > = −> with c ∈ Z. The com-
parison of two elements a, b ∈ E denoted by a $ b is true if
and only if (1) a, b ∈ Z ∪ {>,−>} and a = b, or (2) a = Ω
or b = Ω. We then have:

Theorem 2. A cost function f(X,Z, Y ) is pairwise decom-
posable w.r.t. X, Y iff ∀z ∈ DZ,∀k, l ∈ DY (k < l):

$
x∈DX

f(x, z, k)� f(x, z, l)

Example 1. In Figure 1, we have f(W, X, Y, U) being
pairwise decomposable w.r.t. W and U due to the fact that:
f(1111)� f(1112) $ f(2111)� f(2112) : 5�> $ 4�>
f(1121)� f(1122) $ f(2121)� f(2122) : >� 3 $ >� 2
f(1211)� f(1212) $ f(2211)� f(2212) : 6� 5 $ 2� 1
f(1221)� f(1222) $ f(2221)� f(2222) : >�> $ 3� 1

Next, we show how to construct f1, f2 of a pairwise de-
composable cost function using projections and subtractions
of cost functions (see Figure 1 for its application).

Theorem 3. Let f(X,Z, Y ) be pairwise decomposable w.r.t.
X, Y . Then f1(X,Z) = f [X,Z] and f2(Z, Y ) = (f −
f1)[Z, Y ] is a valid decomposition of f , i.e. f = f1 + f2.

Enforcing pairwise decomposition on a cost function f(S)
with r = |S| may require r(r−1)

2 tests, i.e. checking for

all the pairs of variables in S. And it may produce two
(non empty) (r − 1)-ary cost functions. Repeating pair-
wise decomposition on the resulting cost functions will pro-
duce at most min(

(
r−p

r

)
, 2p) cost functions of arity (r − p)

with a different scope. Each test is linear in the size of
the (r − p)-ary cost functions, in O(d(r−p)+1). So the
overall worst-case complexity of enforcing pairwise decom-
position for e original cost functions with maximum ar-
ity r is O(e

∑r−1
p=0 2p(r − p)2d(r−p)+1) = O(e

∑r−1
p=0(r −

p)2dr+1) = O(e r(r+1)(2r+1)
6 dr+1) = O(er3dr+1) in time

and O(e maxr−1
p=0 2pd(r−p)) = O(edr) in space.

At each step, the choice of the variables used for decom-
position and the way costs are spread across f1 and f2 may
influence the decomposability of f1 and f2 for next iteration.
Under certain conditions, it is possible to find a sequence of
pairwise decompositions (which pair of variables to select in
f and how to spread f across f1 and f2) which will lead to
an optimal decomposition (with minimal arity).

Property 1 (Unique minimal decomposition for finite cost
functions [Hammersley and Clifford, 1971]). A cost function
with only finite costs admits a unique minimal decomposition.

Sketch of proof. If a cost function f(S) has only finite costs,
then its associated probability distribution Pf (see The-
orem 1) is positive. The Hammersley & Clifford theo-
rem [Hammersley and Clifford, 1971]2 says that a positive
distribution factorizes over a unique minimal Markov net-
work H. The network is minimal in the sense that remov-
ing an edge will create a new conditional independence not
satisfied by Pf . By taking the maximal cliques in H, each
clique gives the scope of a factor (a nonnegative function)
and Pf is then equal to the product of these factors divided
by a normalizing constant. This factorization is equivalent to
a sum of cost functions by taking − log(Pf ) (see the proof of
Theorem 1). From this resulting decomposition, it is easy to
construct a reverse sequence of valid (i.e. nonnegative) cost
function decompositions until the original cost function f is
reached.

However, as soon as there are infinite costs, the previous
theorem fails to apply. In this case, we propose a heuris-
tic approach whose goal is to accumulate costs on the first
variables in the DAC variable ordering. This should provide
stronger DAC-based lower bounds. We therefore test pairs of
variables in f(S) in a reverse DAC order3 and project cost
functions (Theorem 3) on the scope containing the first vari-
ables in the DAC order first. In Figure 1, assuming a lexico-
graphic order, this corresponds to project first on {W, X, Y }.
We show that our heuristic approach is able to find an optimal
decomposition for some particular functions.

Property 2 (Tree structure identification for hard con-
straints [Meiri et al., 1990]). A cost function with only in-
finite costs that admits a decomposition into a tree of binary
constraints is identifiable by our decomposition strategy.

2See also Theorem 4.5 page 121 in [Koller and Friedman, 2009].
3We test Y, Z before W, X if max(Y, Z) > max(W, X) ∨

(max(Y, Z) = max(W, X) ∧min(Y, Z) > min(W, X)).



This result follows from [Meiri et al., 1990] and the fact
that a pairwise decomposition w.r.t. X, Y will remove a re-
dundant edge {X, Y } in the minimal network4 without af-
fecting the set of solutions. For instance, a global equality
constraint on S will be decomposed into a tree of binary
equality constraints: f(S) =

∑
Y ∈Sr{X} fY (X,Y ) with

fY (X, Y ) ≡ (X = Y ).
Similarly, a linear cost function f(X1, . . . , Xr) =∑r
i=1 aiXi will be decomposed into a sum of r unary cost

functions5.

Related Works
Related works have considered the factorization of specific
probability functions such as the noisy-or and its generaliza-
tions [Heckerman and Breese, 1996], or more general fac-
torizations dedicated to probabilistic inference [Savicky and
Vomlel, 2007]. Compared to our approach, both works add
extra variables. Note that another possible approach to de-
crease the arity of cost functions is to switch to the dual repre-
sentation [Meseguer et al., 2006]. This has been tested in [de
Givry et al., 2003] for Max-3SAT and was apparently inef-
fective. This should likely worsen for larger domains.

4 Project&Subtract on binary cost functions
When a WCSP is pairwise decomposed, it is still possible
to infer valuable information from the resulting nonbinary
cost functions by projecting & subtracting them on smaller
arity cost functions. We choose to project each nonbinary
cost function on all the possible binary cost functions inside
its scope4 by following an order of projections&subtractions
compatible with the DAC variable ordering (i.e. project first
on the pair of variables with the smallest DAC positions).
Each projection fi(X, Y ) = f [X, Y ] is followed by a sub-
traction f = f − fi in order to preserve the problem equiv-
alence. Note that f may be empty after these subtractions
and is then removed from the problem. Note also that the
same binary cost function may receive projected costs from
several nonbinary cost functions having overlapping scopes,
resulting in stronger inference. The worst-case complexity of
project&subtract applied on e cost functions with maximum
arity r is O(er2dr) in time and O(er2d2) in space.

Example 2. In the example of Figure 1, f1(W, X, Y ) =
b1(W, X) + b2(X,Y ) + f3(W, X, Y ) and f2(X, Y, U) =
b3(X, U) + b4(Y,U) + f4(X, Y, U). Finally, a lower bound
equal to 1 is deduced by soft arc consistency applied to b1.

W X b1
1 1 3
1 2 5
2 1 2
2 2 1

X Y b2
1 1 2
1 2 0
2 1 0
2 2 0

X U b3
1 1 0
1 2 0
2 1 1
2 2 0

Y U b4
1 1 0
1 2 0
2 1 1
2 2 0

4In the CSP framework, the binary CSP, called the minimal net-
work, that best approximates a nonbinary relation, is defined by the
projections of the relation on all pairs of variables [Meiri et al.,
1990].

5Note that soft arc consistency will do the same if the resulting
empty cost function is removed after the projections.

W X Y f3
1 1 1 0
1 1 2 0
1 2 1 0
1 2 2 >
2 1 1 0
2 1 2 0
2 2 1 0
2 2 2 0

X Y U f4
1 1 1 0
1 1 2 >
1 2 1 >
1 2 2 0
2 1 1 0
2 1 2 0
2 2 1 0
2 2 2 0

5 Experimental results
DFBB-VE(i)6 maintaining EDAC and using a dynamic
conflict-based variable ordering [Lecoutre et al., 2009] ob-
tained the best result in the UAI’087 (and UAI’108 for the 20-
minutes track) MPE Evaluation contest, except for two hard
benchmarks: linkage analysis and grid networks.

The genetic linkage analysis networks. The problem in-
stances have 334 to 1289 variables. The maximal domain size
d is between 3 and 7 and the maximal arity is 5. The bench-
mark family consists of 22 problems.

The grid networks. Each problem is an l× l grid and each
3-ary CPT is generated uniformly randomly. 50, 75 or 90%
of the CPTs are deterministic and all variables are Boolean.
The instances have l ranging from 12 to 50 (i.e. n = 2500
variables). The benchmark family has 32 problems.

Experimentations6 were performed on a 2.6 GHz In-
tel Xeon computer with 4GB running Linux 2.6. CPU-
times are in seconds and limited to 1 hour for each in-
stance (”-” means time out). No initial upper bound is
given. We tested enforcing pairwise decomposition (DFBB-
VE(i)+dec), project&subtract of n-ary cost functions (DFBB-
VE(i)+ps), and the combination of both techniques (DFBB-
VE(i)+dec+ps). Pairwise decomposition, project&subtract,
and variable elimination of degree |S| ≤ i are performed in
preprocessing only. On-the-fly variable elimination for de-
gree at most 2 is used during search. All methods use MinFill
variable elimination ordering heuristic and the reverse order
is used for DAC. The following table summarizes the num-
ber of problems solved by the various versions of DFBB-
VE(i). Pairwise decomposition and project&subtract solved
more problems than DFBB-VE(i) alone, and their combina-
tion obtained the best result, except for Linkage with i = 2, 3.
Remarkably, all grids instances were solved with large i-
bounded variable elimination, showing the effect of pairwise
decomposition, especially when there is sufficient determin-
ism. A similar factorization was observed in [Sánchez et al.,
2004] for CSPs.

i=2 i=3 i=4 i=5 i=6 i=7
Linkage (22)
DFBB-VE(i) 14 14 15 13 12 10
DFBB-VE(i)+dec 16 19 17 13 14 13
DFBB-VE(i)+ps 17 16 17 18 16 16
DFBB-VE(i)+dec+ps 16 18 19 19 19 17
Grids (32)
DFBB-VE(i) 28 28 25 24 17 18
DFBB-VE(i)+dec 29 29 29 28 28 31
DFBB-VE(i)+ps 28 28 28 23 25 24
DFBB-VE(i)+dec+ps 31 30 31 31 32 32

6
mulcyber.toulouse.inra.fr/projects/toulbar2 version 0.9.4.

7
graphmod.ics.uci.edu/uai08/Evaluation

8
www.cs.huji.ac.il/project/UAI10



DFBB-VE(i) AOBB-C AOBB-C+SMB(j)
Problem DFBB-VE(i) +dec+ps +SMB(j) +VE(i)+dec+ps

n d w time (s) i time (s) i time (s) j time (s) j, i
Linkage
ped1 334 4 16 0.12 (3) 0.07 (3) 0.48 (10) 0.08 (10,3)
ped7 1068 4 38 4.04 (2) 1.18 (4) - (20) 131.14 (20,4)
ped9 1118 4 31 - 3.36 (6) - (20) 104.62 (20,6)
ped18 1184 5 24 149.71 (4) 3.19 (5) 41.06 (20) 18.82 (20,5)
ped19 793 5 32 - - - -
ped20 437 5 23 3.46 (4) 0.39 (6) - (16) 66.53 (16,6)
ped23 402 5 26 0.09 (4) 0.05 (3) 7.47 (12) 1.52 (12,3)
ped25 1289 5 29 1207.97 (4) 0.65 (6) 621.34 (20) 32.51 (20,6)
ped30 1289 5 24 543.20 (2) 5.44 (5) 46.51 (20) 10.10 (20,5)
ped33 798 4 30 0.84 (3) 0.54 (6) 154.97 (18) 8.35 (18,6)
ped34 1160 5 36 1.13 (2) 0.36 (5) - 24.56 (20,5)
ped37 1032 4 22 0.21 (5) 0.11 (4) 1818.96 (10) 9.58 (10,4)
ped38 724 5 18 0.24 (5) 0.18 (5) 2756.84 (12) 124.70 (12,5)
ped39 1272 5 22 16.68 (4) 0.24 (5) 34.37 (18) 2.60 (18,5)
ped41 1062 5 35 - 302.05 (4) - (20) 1271.31 (20,4)
ped42 448 5 24 1.94 (4) 0.34 (6) - (16) 155.39 (16,6)
ped44 811 4 31 - 505.46 (5) - (20) 333.89 (20,5)
ped50 514 6 18 0.90 (4) 0.18 (4) 143.09 (12) 521.92 (12,4)
Grids
90-24-1 576 2 35 0.07 (3) 0.04 (3) 219.68 (18) 0.63 (18,3)
90-26-1 676 2 41 0.29 (3) 0.07 (3) - (16) 20.16 (16,3)
90-30-1 900 2 49 5.50 (2) 0.26 (4) - (18) 3.57 (18,4)
90-34-1 1156 2 63 328.42 (2) 0.48 (5) - (20) 14.41 (20,5)
90-38-1 1444 2 64 - 1.96 (6) - (20) 0.64 (20,6)

Table 1: Comparison with/w. out the preprocessing dec+ps for DFBB-VE(i) and AOBB-C+SMB(j)

We then compared the best method with AND/OR Branch
and Bound with caching and static mini-bucket j-bound
(AOBB-C+SMB(j)) which got the best results for Linkage
and Grids at UAI’08 Evaluation. This method is implemented
in aolibWCSP9. The value j is chosen as in [Marinescu and
Dechter, 2009]. Table 1 gives problem sizes (n, d), treewidth
(w), and summarizes the CPU-time used by the various meth-
ods with the corresponding values i and j. The preprocessing
“dec+ps” globally improves the results of DFBB-VE(i) and
AOBB-C+SMB(j). The preprocessing time was always less
than a second in our experiments. DFBB-VE(i)+dec+ps gave
the best results for all problems except ped44 and 90-38-1.
Note that the range of variation of i for DFBB-VE(i)+dec+ps
is smaller than the range of j for AOBB-C+SMB(j)10.

6 Conclusion
Pairwise decomposition combined with projections on binary
cost functions and variable elimination is a powerful tech-
nique inside DFBB for MPE. Further work should be done
on approximate pairwise decomposition and experiments per-
formed on other problems, including probabilistic inference.

9
graphmod.ics.uci.edu/group/aolibWCSP

10A good way of tuning i is to take the value corresponding to
the maximum of the degree distribution for the considered graphical
model.

A Proof of Theorem 1
In the following, we use P as a shorthand for Pf and C =∑

S exp(−f(S)) > 0, a normalizing constant. By definition
of conditional independence, we have:
(X ⊥⊥ Y | Z)⇐⇒ P(X, Y,Z) = P(X | Z)P(Y | Z)P(Z)
⇐⇒ P(X, Y,Z) = P(X,Z)

P(Z) P(Y,Z).
=⇒ Assume P(X, Y,Z) = P(X | Z)P(Y | Z)P(Z). We

have f(X,Z, Y ) = − log(CP(X,Y,Z)) = − log(CP(X |
Z)P(Y | Z)P(Z)). Let define f ′1(X,Z) = − log(P(X |
Z)) and f ′2(Z, Y ) = − log(P (Y | Z)P(Z)), two non-
negative cost functions. Thus f(X,Z, Y ) = f ′1(X,Z) +
f ′2(Z, Y ) − log(C). Because f is nonnegative, we have
∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ, f ′1(x, z) + f ′2(z, y) −
log(C) ≥ 0. If log(C) is negative, we just add − log(C)
to f ′1 or f ′2 in order to obtain f1, f2. Otherwise, for each
z ∈ DZ, we decompose log(C) = c1

z + c2
z into two

positive numbers. Let x̂z = argminx∈DX
f ′1(x, z) and

ŷz = argminy∈DY
f ′2(z, y). Moreover, we have f ′1(x̂z, z) +

f ′2(z, ŷz)− log(C) = f(x̂z, z, ŷz) ≥ 0. A feasible solution is
c1
z = min(f ′1(x̂z, z), log(C)) and c2

z = log(C) − c1
z . Either

c1
z = log(C) ≤ f ′1(x̂z, z) and c2

z = 0, or c1
z = f ′1(x̂z, z)

and c2
z = log(C) − f ′1(x̂z, z). In this case, f ′2(z, ŷz) − c2

z =
f ′2(z, ŷz)+f ′1(x̂z, z)−log(C) ≥ 0, thus ∀y ∈ DY , f ′2(z, y)−
c2
z ≥ 0. We define ∀x, y, z, f1(x, z) = f ′1(x, z) − c1

z and
f2(z, y) = f ′2(z, y) − c2

z , which are nonnegative numbers.
Finally, we deduce f(X,Z, Y ) = f1(X,Z) + f2(Z, Y ).



⇐= Assume we have three cost func-
tions f(X,Z, Y ), f1(X,Z), f2(Z, Y ) such that
f(X,Z, Y ) = f1(X,Z) + f2(Z, Y ). We have
exp(−f(X,Z, Y )) = exp(−f1(X,Z)) exp(−f2(Z, Y )).
By marginalization, we have P(X,Z) =∑

Y P(X, Y,Z) = 1
C

∑
Y exp(−f(X,Z, Y )) =

1
C exp(−f1(X,Z)(

∑
Y exp(−f2(Z, Y ))),

P(Y,Z) =
∑

X P(X, Y,Z) =
1
C exp(−f2(Z, Y ))(

∑
X exp(−f1(X,Z)))

and P(Z) =
∑

X,Y P(X,Y,Z) =
1
C (
∑

X exp(−f1(X,Z)))(
∑

Y exp(−f2(Z, Y ))).
Finally, we deduce P(X,Z)

P(Z) P(Y,Z) =
1
C exp(−f1(X,Z)) exp(−f2(Z, Y )) = P(X, Y,Z).

B Proof of Theorem 2
It is always possible to decompose a cost function f into
three (nonnegative) cost functions f(X,Z, Y ) = f1(X,Z) +
f2(Z, Y ) + ∆(X,Z, Y ) (f1, f2 possibly being equal to zero
constant functions). A nonzero cost function is called re-
ducible if f1 or f2 are nonzero cost functions. Otherwise it
is called irreducible. We give a specific condition for testing
reducibility.

Property 3. A nonzero cost function f(X,Z, Y ) is re-
ducible if ∃x ∈ DX ,∃z ∈ DZ s.t. miny∈DY

f(x, z, y) >
0 (i.e. f1 = f [X,Z] 6= 0) or ∃y ∈ DY ,∃z ∈
DZ s.t. minx∈DX

f(x, z, y) > 0 (i.e. f2 = f [Z, Y ] 6= 0).

Property 4. If f1(X,Z), f2(Z, Y ), ∆(X,Z, Y ), three
(nonnegative) cost functions, is a maximal reducing of
f(X,Z, Y ) then ∆(X,Z, Y ) is irreducible.

Using Property 3, we prove the following lemma.

Lemma 1. If f(X,Z, Y ) is a nonzero irreducible cost func-
tion, then ∃z ∈ DZ,∃k, l ∈ DY (k 6= l),∃u, v ∈ DX(u 6=
v) s.t. f(u, z, k)� f(u, z, l) 6$ f(v, z, k)� f(v, z, l).

Proof by contradiction. Assume ∀z ∈ DZ,∀k, l ∈ DY (k 6=
l),∀u, v ∈ DX(u 6= v) s.t. f(u, z, k) � f(u, z, l) $
f(v, z, k) � f(v, z, l). Remember that cost functions always
have costs in E+ = N ∪ {>} and not in E. We have either:
First case: ∃u, z, k, l s.t. f(u, z, k)� f(u, z, l) 6$ 0
f(u, z, k)� f(u, z, l) > 0 or f(u, z, k)� f(u, z, l) = >

So 0 6 f(u, z, l) < f(u, z, k). Moreover ∀v ∈ DX ,
f(u, z, k) � f(u, z, l) $ f(v, z, k) � f(v, z, l). Thus ∀v ∈
DX , f(v, z, k) � f(v, z, l) > 0, or f(v, z, k) � f(v, z, l) =
>, or f(v, z, k) � f(v, z, l) = Ω. Consequently 0 6
f(v, z, l) < f(v, z, k) or f(v, z, k) = f(v, z, l) = >. So
min

v∈DX

f(v, z, k) > 0.

f(u, z, k)� f(u, z, l) < 0 or f(u, z, k)� f(u, z, l) = −>
So 0 6 f(u, z, k) < f(u, z, l). Moreover ∀v ∈ DX ,
f(u, z, k) � f(u, z, l) $ f(v, z, k) � f(v, z, l). Thus ∀v ∈
DX , f(v, z, k) � f(v, z, l) < 0, or f(v, z, k) � f(v, z, l) =
−>, or f(v, z, k) � f(v, z, l) = Ω. Consequently 0 6
f(v, z, k) < f(v, z, l) or f(v, z, k) = f(v, z, l) = >. So
min

v∈DX

f(v, z, l) > 0.

Second case: ∀u, z, k, l s.t. f(u, z, k)� f(u, z, l) $ 0

f(u, z, k)� f(u, z, l) = Ω
So f(u, z, k) = f(u, z, l) = >. Moreover ∀p ∈ DY ,
f(u, z, p) � f(u, z, l) = 0 or f(u, z, p) � f(u, z, l) =
f(u, z, p) � > = Ω. Thus f(u, z, p) = >. So f(u, z, l) =
f(u, z, k) = f(u, z, p) = >, thus min

p∈DY

f(u, z, p) = > > 0.

f(u, z, k) = f(u, z, l) > 0
So f(u, z, k)� f(u, z, l) = 0 and by assumption, ∀p ∈ DY ,
f(u, z, p) � f(u, z, l) = 0. Thus f(u, z, k) � f(u, z, l) =
f(u, z, p) � f(u, z, l) and 0 < f(u, z, l) = f(u, z, k) =
f(u, z, p). So min

p∈DY

f(u, z, p) > 0.

f(u, z, k) = f(u, z, l) = 0
By assumption, ∀p ∈ DY , f(u, z, p) � f(u, z, l) $ 0. Then
f(u, z, p) � 0 $ 0. Thus f(u, z, p) � f(u, z, l) 6= Ω and
so f(u, z, k) � f(u, z, l) = f(u, z, p) � f(u, z, l). Thus
∀p ∈ DY , f(u, z, p) = 0. From all these cases, we con-
clude using Property 3 that f(X,Z, Y ) is reducible or equal
to the zero function (if always being in the last sub-case).

Let a � b denote the addition of two elements a, b ∈ E :
a � b = a + b except for > � > = > � c = c � > = >,
−> � −> = −> � c = c � −> = −>,
> � −> = −> � > = a � Ω = Ω � b = Ω with
c ∈ Z.
Now, we are able to prove Theorem 2.
=⇒ Assume f(X,Z, Y ) = f1(X,Z) + f2(Z, Y ) and

f1(X,Z), f2(Z, Y ) nonnegative functions (0 6 f1(X,Z) 6
f(X,Z, Y )). Then the following systems Sz of linear
equations (using � and $ operators) must have a solution.

(Sz)

{
f1(1z) � f2(z1) $ f(1z1)
f1(uz) � f2(zk) $ f(uzk) ∀u, k

f1(dXz) � f2(zdY ) $ f(dXzdY )

∀z ∈ DZ, ∀k, l ∈ DY , ∀u ∈ DX , from Sz , we deduce
f(uzk)� f(uzl) $ (f1(uz)� f2(zk))� (f1(uz)� f2(zl))

$ (f1(uz)� f1(uz))� (f2(zk)� f2(zl))

1st case: f1(uz) ∈ N
f(uzk)�f(uzl) $ (f1(uz)�f1(uz))�(f2(zk)�f2(zl)) $
0� (f2(zk)� f2(zl)) $ f2(zk)� f2(zl)
2nd case: f1(uz) = >
f(uzk)�f(uzl) $ (f1(uz)�f1(uz))�(f2(zk)�f2(zl)) $
Ω� (f2(zk)� f2(zl)) $ Ω
We conclude that ∀z ∈ DZ,∀k, l ∈ DY (k 6= l)
$u∈DX

f(uzk)� f(uzl)
⇐= Assume ∀z ∈ DZ,∀k, l ∈ DY (k < l) :
$u∈DX

f(uzk)� f(uzl).
Moreover, we have f(X,Z, Y ) = f1(X,Z) + f2(Z, Y ) +
∆(X,Z, Y ) f1(X,Z), f2(Z, Y ) and ∆(X,Z, Y ) nonnega-
tive functions which defines the following linear systems:

(S ′z)

{
f1(1z) � f2(z1) � ∆(1z1) $ f(1z1)
f1(uz) � f2(zk) � ∆(uzk) $ f(uzk) ∀u, k

f1(dXz) � f2(zdY ) � ∆(dXzdY ) $ f(dXzdY )

f(uzk)� f(uzl)
$ (f1(uz)� f2(zk)�∆(uzk))� (f1(uz)� f2(zl)�∆(uzl))
$ f1(uz)� f2(zk)�∆(uzk)� (−f1(uz))� (−f2(zl))
�(−∆(uzl))
$ (f1(uz)� f1(uz))� (f2(zk)� f2(zl))� (∆(uzk)�∆(uzl))



Assume f(X,Z, Y ) does not decompose in
{f1(X,Z), f2(Z, Y )} and with the property 4 we can
find ∆(X,Z, Y ) such that ∆(X,Z, Y ) is a nonzero ir-
reducible cost function. With the theorem 1 we have
∃ z ∈ DZ, k, l ∈ DY , k < l and u, v ∈ DX , u <
v s.t. ∆(uzk)�∆(uzl) 6$ ∆(vzk)�∆(vzl).

We deduce that ∆(uzk) � ∆(uzl) 6= Ω and
∆(vzk) � ∆(vzl) 6= Ω with the definition of $. Also,
we have f(uzk) � f(uzl) 6= Ω 6= f(vzk) � f(vzl).
Thus f(uzk) � f(uzl) $ f(vzk) � f(vzl) $
ϕ s.t. ϕ ∈ Z ∪ {>,−>} so f1(uz) � f1(uz) = 0 =
f1(vz)� f1(vz) et f2(zk)� f2(zl) 6= Ω
We use these properties below:
∆(uzk)�∆(uzl) 6= ∆(vzk)�∆(vzl)
f2(zk)� f2(zl)�∆(uzk)�∆(uzl)
6= f2(zk)� f2(zl)�∆(vzk)�∆(vzl)

f1(uz)� f1(uz)� f2(zk)� f2(zl)�∆(uzk)�∆(uzl)
6= f1(vz)� f1(vz)� f2(zk)� f2(zl)�∆(vzk)�∆(vzl)

f1(uz)� f2(zk)�∆(uzk)� (f1(uz)� f2(zl)�∆(uzl))
6= f1(vz)� f2(zk)�∆(vzk)� (f1(vz)� f2(zl)�∆(vzl))

f(uzk)� f(uzl) 6= f(vzk)� f(vzl)

This is in contradiction with the first hypothesis : ∀ k, l ∈
DY , ∀ z ∈ DZ f(uzk)� f(uzl) $ f(vzk)� f(vzl).

C Proof of Theorem 3
Lemma 2. Let a cost function f(X,Z, Y ) be a pairwise de-
composition w.r.t. X, Y. If f1(x, z) = miny∈DY

f(x, z, y)
then ∀z ∈ DZ ∃k ∈ DY such that ∀x ∈ DX , f1(x, z) =
f(x, z, k) .

Proof. Let z ∈ DZ.
∃x ∈ Dx, ∃y, f(x, z, y) 6= > Let DK = {k1, k2, . . . , kdY

}
such that ∀i < j, f(x, z, ki) 6 f(x, z, kj). We
deduce ∀i ∈ [1, dY ], f(x, z, k1) 6 f(x, z, ki) and
f1(x, z) = miny∈DY

f(x, z, y) = f(x, z, k1).
Using Theorem 2, we find ∀kp ∈ DK ∀u ∈ DX ,
0 6 f(x, z, kp)� f(x, z, k1) $ f(u, z, kp)� f(u, z, k1). So
f(u, z, k1) 6 f(u, z, kp) or f(u, z, k1) = f(u, z, kp) = >,
thus ∀u ∈ DX , f1(x, z) = miny∈DY

f(u, z, y) =
f(u, z, k1).
∀x ∈ Dx, ∀y, f(x, z, y) = > ∀x∈DX , f1(x, z)=

miny∈DY
f(x, z, y)=>, so let k∈Dy , ∀x∈DX ,

f1(x, z)=f(x, z, k)=>

Now, we are able to prove Theorem 3. We have f1(x, z) =
miny∈DY

f(x, z, y) and f2(z, y) = minx∈DX
[f(x, z, y) −

f1(x, z)] so f2(z, y) 6 f(x, z, y)− f1(x, z)
If f2(z, y) = f(x, z, y) − f1(x, z), f(x, z, y) = f1(x, z) +
f2(z, y).
If f2(z, y) < f(x, z, y)− f1(x, z) ,
f(x, z, y) = f1(x, z) = >

We have f1(x, z) + minx∈DX
[f(x, z, y) − f1(x, z)] = > =

f(x, z, y) so f(x, z, y) = f1(x, z) + f2(z, y).
f(x, z, y) 6= > or f1(x, z) 6= >

We have minu∈DX
[f(u, z, y) − f1(u, z)] < f(x, z, y) −

f1(x, z) so f(u, z, y)− f1(u, z) < f(x, z, y)− f1(x, z) with

u = argminu∈DX
[f(u, z, y)−f1(u, z)]. Using Lemma 2, we

have l = argmink∈DY
f(x, z, k) = argmink∈DY

f(u, z, k),
thus f(u, z, l) − f(u, z, l) < f(x, z, y) − f(x, z, l), but also
f(u, z, y) � f(u, z, l) $ f(x, z, y) � f(x, z, l) because f is
pairwise decomposable w.r.t. X, Y . Moreover f(x, z, y) 6=
> or f(x, z, l) 6= >, thus f(u, z, y)−f(u, z, l) = f(x, z, y)−
f(x, z, l). Finally f2(z, y) = f(x, z, y) − f1(x, z), thus
f(x, z, y) = f1(x, z) + f2(z, y).
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