





# From the abolition of milk quotas to contracts between producers and processors

Implications for the dairy farmers in the West of France?

#### OECD Workshop - Evaluation of CAP Reform at Disaggregated Level 10-11 March 2010

#### Baptiste LELYON<sup>(1)</sup> - Vincent CHATELLIER<sup>(2)</sup> - Karine DANIEL<sup>(2,3)</sup>

(1) Institut de l'Elevage, Economic Department, Paris (France)
(2) INRA, UR 1134, LERECO, Nantes (France)
(3) ESA, LARESS, Angers (France)

**OECD Workshop : Evaluation of CAP Reform at Disaggregated Level** 

# Contents

# **1- Context and objectives**

## 2- The model

**3- The results** 

## **4- Conclusion**

Abolition of the EU milk quotas and dairy farmers' productive strategies



# **1- Context and objectives**



Abolition of the EU milk quotas and dairy farmers' productive strategies

# The context for dairy farmers is changing

- > Towards the end of the milk quota (2015)
  - 1984-2008 : milk supply control = stable income
  - Why ?...economical inefficiency (Colman, 2000)
- …others CAP measures
  - Lower institutional price for dairy products
  - Stock limitation, lower export subsidies
  - Full decoupling (also for the direct milk aid)

# Change in economic context

- Strong price variations (for cereals but also for milk)
- Increase of production costs since 2005

# The west regions : 45% of the French dairy production



# > The dairy farms (in western regions)

- 40 000 dairy farms
- A low productivity (150 000 kg of milk per Annual Work Unit)

Abolition of the EU milk quotas and dairy farmers' productive strategies

10-11 March 2010

- Better understand and anticipate the implications of the Health Check measures on the dairy farmer supply behaviour... with taking price variations into account
- Evaluate the impact of a scenarios of removal of milk quota : Contractualisation "double volume – double price"
- A mathematical programming model
  - Maximise the income
  - Represent the complexity of the production system
  - Consider at the same time production, price and policy informations



# **2- The model**



Abolition of the EU milk quotas and dairy farmers' productive strategies

10-11 March 2010

# A Model to represent a "realistic" dairy operation

> The feeding system and the forage production are linked

- Rations are determined by nutritional requirement (Groen, 1988; Shalloo et al, 2004)
- Surfaces (ha) and production quantity (kg) are dissociated

> The milk yield/cow is not constant (Peyraud and Faverdin, 2009)

- The farmer can choose milk yield in a range of 1000 litters below the cow's genetic potential (1 liter of milk = 0.44 energy unit and 48 protein units)
- Above the genetic potential, the milk yield is decreasing (1 liter of milk = 1.4 energy unit and 120 protein units)

> The crop yield depend on the nitrogen used (Godard et al, 2008)

- ...but the relation between nitrogen and yield is not linear
- Several sources of nitrogen are considered : manure, slurry, chemical

Abolition of the EU milk quotas and dairy farmers' productive strategies

# A Model to represent a "realistic" dairy operation

## > 4 periods are taken into account

- The seasonal specification of grass production (yield and composition, Berentsen et al, 2002)
- The allocation of the working force

# The model integrates the risk aversion to price variations

• The Utility Efficient Programming (UEP) method maximise the expected utility of the income...with a minimisation of its variability (Hardaker et al, 2004)

# The model optimise the following variables...

- Number of each type of animal
  - Dairy cows, calves, heifers and young bulls
- > Milk yield per cow
- Feed composition (forages et concentrates)
  - Pasture, grass silage, hay, maize silage
  - Wheat, Soya, rapeseed, production concentrate, milk or milk powder for the calves
- Crop rotation and nitrogen quantity
  - Grassland, maize, wheat, pea and rapeseed

# Cereal production sold or home consumed

# The model is applied for four types of farming

- Milk + young bull (100 ha, 400 000 l of milk quota) Intensive, maize feeding system, milk yield (8000 to 9000 l/cow)
- Milk + cereals (137 ha, 460 000 l of milk quota) Intensive, maize feeding system, milk yield (7500 à 8500 l/cow)
- Semi-intensive (50 ha, 290 000 I of milk quota) Small area, maize and grass, milk yield (7500 à 8500 I/cow)
- Grazier (78 ha, 285 000 I of milk quota) Extensive, based on grass, low milk productivity (5000 to 6000 I/cow)

Abolition of the EU milk quotas and dairy farmers' productive strategies

10-11 March 2010



# **3- Results**



Abolition of the EU milk quotas and dairy farmers' productive strategies

10-11 March 2010

# **Two considerations before our simulations**

#### Some studies exist already (partial and general equilibrium model)

(Westhoff, 1998; Kleinhanss et al, 2002; Bouamra et al, 2008)

• The milk production increases (7 to 10%)... ... but the price decreases (21 to 26%)



Abolition of the EU milk quotas and dairy farmers' productive strategies

10-11 March 2010

# The model assumptions

- The base year : average situation between 2006-2009
  - Milk price (290€/tonne)
  - Fixed and variable costs
  - Simulation with constant farm structure (no investments, no additional land)
    - Farmers have the possibility to increase the number of cows by 10%

#### Contract double volume / double price

- Volume A : historic quota with a fixed price (290 €/t)
- Volume B : additional and facultative volume with a lower price. This price is adjusted to the global volume produced

*Milk Price Volume B* = 290×
$$\left(1 - \left(\frac{Volume B}{Volume A}\right) \times \alpha\right)$$

 $\alpha$  is the elasticity coefficient

Abolition of the EU milk quotas and dairy farmers' productive strategies

# Impact of the elasticity coefficient ( $\alpha$ )



Dairy farmers react to different price conditions

Abolition of the EU milk quotas and dairy farmers' productive strategies

10-11 March 2010

# **High production potential**



High production potential with the same farm structure

Agricultural area of West of France farms increased by 52% for the last 10 years while the quota per farm increased by only 28%

Abolition of the EU milk quotas and dairy farmers' productive strategies

# **High production potential**



- A production increase by  $10\% \rightarrow$  lower milk price (-10  $\notin$ /tonne)
- Milk price in volume B: 200 €/tonne

Abolition of the EU milk quotas and dairy farmers' productive strategies

10-11 March 2010

# How to produce more milk ?



#### More cows

- More milk per cow  $\rightarrow$  with more concentrate
- Less young bulls and less home produced milk for calves

Abolition of the EU milk quotas and dairy farmers' productive strategies

# How to produce more milk ? (impact on crop rotation)



• To feed the animal to produce milk : increase of the forage area

- Decrease of cereals area
- The maize area increase

Abolition of the EU milk quotas and dairy farmers' productive strategies

# Impact of milk quota abolition (on economic results)



- Income increases proportionally less than milk quantity :
  - additional variable costs (dairy cows, concentrates)
  - losses (cereal crop replaced by forage productions)

Abolition of the EU milk quotas and dairy farmers' productive strategies

# **Very different working conditions**



- Semi-intensive and Milk+cereals:
  - Income increase proportionally less than the additional work
  - Additional cows and forage area
- Grazier and Milk+young bull: more room of manœuvre (milk yield and decrease of the nb of young bull)

Abolition of the EU milk quotas and dairy farmers' productive strategies

10-11 March 2010

#### Milk in volume B is function of milk price for Volume A and cereal price



- The production in volume B is function of the milk price in volume A which guaranty the economic durability of the farm (by covering a larger amount of fixed costs)
- Lower price : competition with cereal production

Abolition of the EU milk quotas and dairy farmers' productive strategies

#### **Competition with cereals**



Abolition of the EU milk quotas and dairy farmers' productive strategies



# **5- Conclusion**



Abolition of the EU milk quotas and dairy farmers' productive strategies

# Conclusion

- This model enables to discuss
  - The dairy farmers' behaviour face to new rules for the CAP
  - The impact of different constraints on the farmers strategies
  - The substitutions between productions under price variations

#### Some improvements are necessary

- The way how farmers anticipate prices
- Four types are not enough to represent the global diversity of systems

## From a public regulation to a private regulation

- The biggest issue is the market reaction : price elasticity for volume B
- Price in volume A and B must be independent
- Several ways of contractualisation are possible



# **Thanks for your attention**

Abolition of the EU milk quotas and dairy farmers' productive strategies

## The constraints to produce milk



The most important constraint : the milk yield per cow

• Economic gain permitted by the genetic level of animals : a higher quantity of milk at a lower cost

Abolition of the EU milk quotas and dairy farmers' productive strategies