
HAL Id: hal-02745250
https://hal.inrae.fr/hal-02745250

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A package system for maintaining large model
distributions in VLE software

Gauthier Quesnel, Ronan Trépos

To cite this version:
Gauthier Quesnel, Ronan Trépos. A package system for maintaining large model distributions in VLE
software. Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Jun 2012,
Toulouse, France. pp.490, �10.1109/WETICE.2012.34�. �hal-02745250�

https://hal.inrae.fr/hal-02745250
https://hal.archives-ouvertes.fr

A Package System for Maintaining Large Model
Distributions in VLE Software

Gauthier Quesnel and Ronan Trépos
INRA, UR875 Biométrie et d’Intelligence Artificielle

F-31326 Castanet-Tolosan, France
Email: gauthier.quesnel@toulouse.inra.fr

Abstract—The Modeling and Simulation (M&S) is becoming a
central activity in order to build, study and analyze new systems.
To improve activities of M&S, we need to develop collaborative
technologies. In this context, we develop the application software
Virtual Laboratory Environment (VLE) to model, simulate and
analyze dynamic systems. VLE is based on the Discrete Event
System specification (DEVS) formalism, a widely recognized
specification for modeling and simulating discrete events systems.
The main features of the DEVS formalism are a modular and
hierarchical approach of the M&S and a relative simplicity to
develop the simulation algorithms. Researchers and engineers
from different comunities used VLE to develop and study models.
However, the modelers need to share source code in order to
reuse, couple and combine models. It is not sufficient because
they are not helped for maintenance and version upgrades issues.
In this paper we present a package system manager that greatly
helps modelers to publish source code, binary code, exchange
models, data and software application in VLE.

Packages, Package System Manager, Distribution, Discrete
Event Modeling and Simulation.

I. INTRODUCTION

The Modeling and Simulation (M&S) is becoming a central
activity in order to build, study and analyze new systems.
M&S allow researchers, engineers and grant students to study
the behavior of systems through virtual representation. Thus,
M&S is increasingly used in industrial and research fields such
as environment, agronomy, manufacturing, bio-medical sys-
tems. However, the cost of M&S activities increases with the
complexity of models and the amount of communications be-
tween stakeholders (e.g., sub-domain experts, simulator users,
simulator engineers, and final system users). To address the
increasing costs of M&S activities, collaborative technologies
must be introduced to support these activities.

Since 2003, we develop the M&S software environment
called VLE [1]. VLE is based on the Discrete Event Sys-
tem Specification (DEVS) [2]. This formalism comes from
the Theory of Modeling and Simulation (TMS) defined by
Zeigler [2]. The TMS tends to be as general as possible. It
addresses major issues of computer sciences from artificial
intelligence to model design and distributed simulations. TMS
aims to develop a formal and operational framework for the
specification of dynamical systems. Indeed, it has been shown
that classical or timed automaton, discrete time systems,
Petri net and state charts can be considered as DEVS sub-
formalisms. Even, continuous systems can be approximated

using DEVS numerical solvers. Thus, the DEVS formalism
can be candidate to be a common denominator for multi-
modeling [3].

Today, VLE is used by many researchers, engineers, tech-
nicians in agronomic, environmental, transport and manufac-
turing research fields. They develop models, run simulations,
analyze and optimize simulations. Modelers write many mod-
els with VLE. However, they have difficulties to use or reuse
models or data from other users or from other research fields.
In this paper, we propose to develop a package system to
improve the sharing of models, data, source code and binary
code between users of VLE. This project provides (i) packages
to distribute models, data or source code (ii), tools to install,
uninstall and build repositories and (iii) a workflow to update
and maintain all the packages.

This paper is divided into five parts. In the first part, we
explain the context of this work. In second part, we present the
package, package system and workflow to build distribution.
In third part, we show the first results of our work. We talk
about the package systems and the returns of the users in the
fifth part. Finally, we conclude this paper with conclusion and
perspective.

II. CONTEXT

VLE is a modeling and simulation environment based on the
DEVS formalism. VLE provides several software programs to
develop atomic and coupled models networks, atomic models
behavior, runs simulations and analyze results.

In order to build a collaborative environment for exchange
or reuse of scientific knowledge between users of VLE,
we have defined several tasks: (i) improve the usability of
the DEVS formalism (ii) develop an integrated development
environment (IDE), (iii) develop tutorials and training, (iv)
develop small software programs that link VLE with major
statistical and optimization tools.

A. DEVS implementation

The VLE software is an implementation of the DEVS
formalism. VLE is set of software programs and software
libraries developed in C++. The C++ was chosen because of
(i) multi-paradigm (object-oriented programming and meta-
programming) (ii) general-purpose programming language and
(iii) compiled features. VLE implements the DSDE [4] abstract
algorithms. DSDE allows building dynamic structure DEVS

models. As CD++ [5], ADEVS [6] or POWERDEVS [7],
VLE provides C++ interfaces to develop atomic models. Thus,
to develop atomic model, modelers develop C++ class that
inherits this interface.

Listing 1: E.g API of the Dynamics class in VLE.
1 class Dynamics {
2 public:
3 virtual Time timeAdvance() const;
4 virtual void internalTransition(const Time& time);
5 virtual void externalTransition(const Time& time,
6 const ExternalEventList& lst);
7 virtual void output(const Time& time,
8 ExternalEventList& out) const;
9 virtual void confluentTransition(const Time& time,

10 const ExternalEventList& lst);
11 virtual Value* observation(
12 const ObservationEvent& event) const;
13 }

The listing 1 shows a simplified representation (without
constructor, destructor, and other members) of the C++ class
Dynamics. The Dynamics class permits to develop atomic
model behavior. The five first functions represent the DSDE
interface in VLE. The last function is a specific feature of
VLE allowing observation of the state of an atomic model
regardless of the simulation time. In VLE framework, each
subclass of Dynamics must be compiled into a shared library.
Developers of atomic DEVS models can share or reuse their
models by exchanging C++ source code or binary code.
However, this class and the formalism DEVS is not adapted
for many modelers. Thus, we decide to add different modeling
formalisms in VLE.

To develop models that change the structure of the model
during the simulation, modelers develop C++ classes that in-
herits the class Executive. This class has the same interface
as the previous Dynamics class. However, it offers some
functions to manipulate the structure of the model (add and
delete models, connections).

B. Modeling formalism

Modelers are not fluent with the DEVS formalism and they
prefer using mathematical formalisms as ordinary differential
equation or automaton. So, rather than force them to translate
their models in the DEVS formalism, VLE proposes a set of
modeling formalism to perform the development of model
without knowledge of the DEVS formalism. These modeling
formalisms are developed as subclasses of Dynamics.

Listing 2: E.g. API of the Euler extension.
1 Class Euler: public Dynamics {
2 public:
3 virtual double compute(const Time& time);
4 };

For example, the listing 2 shows the class Euler. This class
proposes a numerical solver of ordinary differential equation

(ODE). Users of Euler are not expected to manipulate
directly DEVS formalism. Only one method is necessary to
declare ODEs variables and to compute their gradients.

With VLE, modelers can develop their models with several
modeling formalism. From ODE numerical solver, finite state
automaton, cellular automaton etc. These modeling formalisms
are developed using a DEVS BUS. In VLE framework, mod-
eling formalisms are sub-classes of the Dynamics class (See
listing 1. Modelers must inherit the modeling formalism class
to develop atomic model. As for Dynamics, developers can
share or reuse their multi-models by exchanging C++ source
code or binary code.

C. Integrated Development Environment

VLE provided C++ classes to develop DEVS atomic models
from modeling formalisms classes or from basic DEVS atomic
model class. However, to model the DEVS models, modelers
need to define a hierarchical networks of models. In order to
simplify the use and the reuse of the C++ classes, the structure
of the model is stored into a classical XML application. The
XML application describes (i) the structure of the models,
(ii) the parameters to initialize atomic models and (iii) the
atomic models to observe. VLE proposes the software program
GVLE to perform the edition of this XML application. GVLE
is also an IDE to write C++ classes and to develop and compile
shared library. For the users of the VLE environment, GVLE
is certainly the most important application software.

D. Extra Software Programs

Statistical methods for parameter estimation, validation and
sensitivity analysis are necessary for implementing and ana-
lyzing agro-ecosystem models [8]. VLE provides a package
rvle that links VLE to the statistical language R [9] in order
to perform models calibration and exploration.

Therefore, we proposed a web-oriented tool, designed to
develop web applications around the models implemented on
the environment. This tool is based on the development of a
specific package: PyVLE that enables the use of VLE from
Python applications. This package provides a set of functions
that enable the management of VLE simulations from Python
scripts.

We present, in this section, three options to improve col-
laborative aspects in the VLE environment. However these
steps are not sufficient to address the problem of exchanging
and reusing models. To address this problem, we propose a
solution based on the packaging of models. Moreover, this
solution greatly improves collaboration between users.

III. METHODS

VLE now offers a wide range of programs and libraries.
Each of these components help to share expertise between
researchers and other users. However, the exchange of models
or data between modelers is still one major issue. If a modeler
wants to reuse a model, it needs to copy, install, compile the
source code of the model to reuse. New questions arise. How
to take into account the evolution of the imported model ?

Fig. 1: The IDE of VLE: on the left of the picture, GVLE shows the current opened package. On the right, GVLE shows the
content of the current experiment. In the middle, the current coupled model.

How to make compatibility remain at API, ABI level or at the
DEVS level ?

The same problems have been resolved by the Free Open
Source Software (FOSS) community and Linux distributions
as Debian or RedHat. They develop package system manager
such as apt-get or yum. In this paper, we propose to add a
package system manager to VLE to improve the collaboration
between users of VLE.

A. Package system

The package system must provide several features. Many of
these characteristics are the same as in the Linux distribution
such as Debian or Redhat [10]. The solution proposed in this
paper is largely inspired by the works of the FOSS community,
but adapted and restricted to the M&S in VLE environment.

Thus, a package is an archive of sources, data and doc-
umentation files with a description file. The description file
describes the name, the version, the dependence to the version
of VLE and three lists of packages that define the dependencies
to build the package, the dependencies to run the package and
the conflict dependencies. For example, the weather package
in agronomic sytem, as no running dependence while the list to
build the package contains the modeling formalism difference
equation. We categorize the package:
• Model package provides models (atomic or coupled) and

contains source code and binary code of the models, data
and documentation.

• Formalism package contains a modeling formalism
source, headers (to use as a subclass), binary code, data
and documentation.

• Data package contains only data.
• Meta package contains only a description file with the

list of dependency.
The format of the package is showed in listing 3. A package

is a directory or an archive that allows the construction of
model package, modeling formalism package, data package or
meta package. The data directory stores input, exp stores
the simulation experiments (the XML application), src stores
the code sources of the models, test stores the unit test. VLE
builds the plugins and lib directories to store respectively
the compiled atomic models and the shared library from
modeling formalism.

Listing 3: A part of the structure of a package in VLE
1 package/
2 data/
3 exp/
4 src/
5 test/
6 lib/
7 plugins/
8 Authors.txt
9 Description.txt

10 License.txt

B. Description file

To define a package for VLE, users need to define a
description file Description.txt. This description file
exists in classical Linux distribution as Debian [11] or in R [9].
In this file, Two fields are necessary. A package name and a
version. The package name must be unique in the distribution.
The version number follows a strict representation. Indeed, in
Debian [11] or RedHat package system, the version number is
a string and it complicates the package systems. For the VLE
community, we restrict the package version. The version must
respects the regular expression:

Listing 4: Package version in regular expression.
1 [0-9]+\.[0-9]+\.[0-9]+\-[0-9].

For example, a package can have version a 1.0.0-0
or 1.2.3-7. The third numbers define the version of the
package. The last number defines the repository and integrator
of the repository version. Integrator can correct package and
release a package.

The VLE environment provides C++ development libraries.
Thus, we define a policy to ensure stable API and ABI and
allows developers to correctly reference VLE’s API and ABI.

Listing 5: VLE version in regular expression.
1 [0-9]+\.[0-9]+\.[0-9]+\-[a-Z0-9]+

The first two numbers correspond to the major and the minor
version. These numbers define the stable version of VLE. The
patch version number, the third number, defines the number
of release for the stable version of VLE. We ensure stable
API and ABI for the all stable version of VLE. For example,
the weather package compiled with VLE 1.0.0 needs to be
updated and compiled to add compatibility with the VLE 1.1
while for VLE 1.0.7, the model is already compatible.

Listing 6: The description file of the model package is a text
file

1 Source: weather-gen
2 Version: 1.0.0-0
3 Section: agronomic
4 Maintainer: quesnel@users.sourceforge.net
5 Homepage: http://www.vle-project.org
6 Build-Depends: vle (>= 1.0),
7 differential-equation (>= 1.0)
8 Depends: weather (= 1.2.3), output-file (>= 1.0)
9 Conflicts:

10 Description: A weather generator.

The description file of the listing 6 shows the
weather-gen (weather-generator) package. This package
is built with 1.0. It recommends the package weather in
version 1.2.3 and the package file in version greater than
1.0.

C. Distribution

Packaging the models is the first step of building a package
system. The next steps are to develop tools and methods to

build a distribution of all available packages. A distribution
allows users to install and uninstall packages from a distant
repository.

A distribution is a finite set of packages rules. Each
package rule is a tuple of the form (p,B,D,C) where p is a
package, B is a set a dependency build clauses, D is a set
of dependency clauses for p. C is a set of conflict clauses
for p. the dependency build clauses and dependency clauses
must be present to compile and use the package p.

Each dependency clauses or dependency build clauses is
a disjunction of packages p1|...|pk. A dependency clause
requires that some packages from the set {p1, ..., pk} be
present. Conflict clause requires that package p′ not present
in order to install the package p. Thus, a valid installation is
a subset of the packages in the distribution. For example, a
set of packages from the distribution installed on a machine
of the user community. To ensure functioning of the machine
we require that installation profile of the machine be valid.
A installation profile is valid if dependency clauses and
conflict clauses are satisfied. A valid installation profile for
a distribution in one that satisfies the dependency and conflict
clauses of each package rule of the distribution.
• A dependency clause p1|...|pk for package p is valid iff

either p is not installed and some packages in the set
{p1, ..., pk} are present in the profile.

• A conflict clause is valid iff either p is not installed and
p′ is not installed.

The package system have two critical problem.
• To install the new package p given a distribution R and

an installation profile P , the package system has to check
if there is a profile P ′ containing p such that P ∪ P ′ is
a valid installation profile for R.

• It may happen that a new package p cannot be installed
because it is in conflict with some packages already
installed on the machine. In this case, we must first
uninstall some packages before attempting to install p.
The task of the package system is then to identify a set
of packages P ′ such that p can be installed on P − P ′

To address these two problems, we can use a satisfiability
problem (SAT) solver as proposed in the OPIUM package
manager [12].

D. Distribution Workflow

The task of maintaining a package repository is difficult.
It requires to take into account the evolution of all packages
over the time, address the error reports from users, developers
and the quality assurance (QA) teams. The figure 2 shows the
workflow of the distribution. The distribution workflow needs
the development of tools to automatize as much of this work
as possible.

The role of the QA teams of the distribution is to coordinate
bug filling, tracking the absence of maintainers, development
of tools, running systematic checks on the entire archive and
publishing. Thus, we provide several scripts to automatize the
workflow.

Fig. 2: Major flow of the VLE package system.

IV. RESULTS

In March 2012, the package system manager is not com-
pletely available for an every day use. Several model packages
begin to convert into the package format. The following
modeling formalism have been converted into packages:
• Difference-Equation is a set of class to develop models

with recurrence relation i.e. equation that recursively
defines a sequence.

• Differential-Equation provides four classes to solve nu-
merically ordinary difference equation (ODE): Euler,
Runge Kutta, QSS1 [13] and QSS2 [14].

• FSA is a collection of classes to develop model based
on finite state automaton: Moore, Mealy, FD-DEVS and
Statechart [15].

• PetriNet provide and implementation of the High level
Petri net.

• Agent permits to build tasks networks.
• CellDEVS is a class to develop cellular automaton [16].
• CellQSS is a subclass of the CellDEVS to solve numer-

ically partial differential equation.
• Output is a set of plug-ins to write output of simulation

in different file format.

• Examples is a set of examples that use the previous
packages.

In this section we show the construction of a model based
on several packages. The goal is to optimize the sowing date
of maize according to a stochastic weather generator and an
agent decision making.

The basic crop model uses the FSA and Difference-Equation
modeling formalism. The first one is used to model maize
stage (sowing, harvesting). The second one is used in several
atomic models to model the processes of the maize model
(Leaf Area Index (LAI), intercepted Photo-synthetically Active
Radiation (PAR) and biomass). The maize model need to be
coupled with a weather model that sends temperature and
rain daily. The maize-agent package introduced a model that
inherits of the Agent modeling formalism. This model permits
to define tasks such as sowing, harvesting, irrigating, fertiliza-
tion. In another package, we couple a pseudo random number
generator (Mersene Twister [17]) PRNG and the weather
model to build a weather generator. Finally, we define a
package maize-optim that combine class from an optimization
package and the maize-agent to build the complete model.

Fig. 3: An example of package dependencies with an agro-
nomic model.

V. DISCUSSION

For now, the package system is operational and packages
can be downloaded and installed from a server. Only the
dependence system is not implemented. The tools to perform
integration of the distribution are also not yet available.

The use of package seems to simplify the construction of
complex models by aggregating atomic models and data from
other packages. However, we note that many modelers use
modeling formalism package and generic model packages such
as the weather or the glue packages. Users do not prefer to
create dependency with final package.

We think it is not related to the package systems, but to
VLE functioning and to the design model. Indeed, developing
a generic dynamic model is complicated. In DEVS and VLE,
a model can be seen as a black box in Systems Approach
or systemic world view. Events, from another models, can
perturb the model any time. These perturbations can arrive in
an unexpected state or transport malformed data. Considering
these events, developing a robust model becomes a long task.
Modelers prefer to use generic models with robust designs.

VI. CONCLUSION

In this paper we define a package system management for
the VLE modeling and simulation environment. The package
system enables to share data, models source code and shared
libraries. It allows the use and the reuse of models developed
by another users in VLE community. It improves the global
quality of the model and simplify the maintenance of the
models. However, the package system needs to have computer
engineers (i) to perform release of the distribution and (ii)
to integrate and maintain package of the community. For
now, the package system begins to work perfectly but there
are still missing features such as the checking of packages
dependencies.

Unfortunately, the package system proposed in this paper
depends on the VLE software and its specification. However,
we adapt the package systems to VLE requirements. For
example, an atomic model must be compiled into shared
library or into a plug-in before running a simulation. Thus,

we need to define a package system that can compile C++
source code.

In this paper, we focus the package system to the de-
velopment of the behaviour of atomic modes. However, it
may also be necessary to help modelers to build hierarchy of
models from the package system. For now, we provide only
a way to export sub-classes of the Executive class (which
allows drastic changes in the structure of the model). In future
development, we want to develop the possibility to import and
export some part of structures of models from another package.

REFERENCES

[1] G. Quesnel, R. Duboz, and E. Ramat, “The Virtual Laboratory Environ-
ment – An operational framework for multi-modelling, simulation and
analysis of complex dynamical systems,” Simulation Modelling Practice
and Theory, vol. 17, pp. 641–653, April 2009.

[2] B. P. Zeigler, D. Kim, and H. Praehofer, Theory of modeling and sim-
ulation: Integrating Discrete Event and Continuous Complex Dynamic
Systems. Academic Press, 2000.

[3] H. Vangheluwe, J. Lara, and P. J. Mosterman, “An introduction to
multi-paradigm modelling and simulation,” in AIS’2002. Simulation and
Planning in High Autonomy Systems, F. Barros and N. Giambiasi, Eds.
Lisbon, Protugal: Society for Modelling and Simulation International,
April 2002, pp. 9–20.

[4] F. J. Barros, “Dynamic Structure Multiparadigm Modeling and Simula-
tion,” ACM Transactions on Modeling and Computer Simulation, vol. 13,
no. 3, pp. 259–275, 2003.

[5] G. A. Wainer, “Cd++: a toolkit to define discrete-event models,” Soft-
ware, Practice and Experience. Wiley, vol. 32, no. 3, pp. 1261–1306,
November 2002.

[6] J. J. Nutaro, Building Software for Simulation: Theory and Algorithms,
with Applications in C++. Wiley Publishing, 2010.

[7] F. Bergero and E. Kofman, “PowerDEVS: a tool for hybrid system
modeling and real-time simulation,” SIMULATION, Apr. 2010.

[8] D. Wallach, D. Makowski, and J. Jones, Working with dynamic
crop models: evaluation, analysis, parameterization, and applications.
Elsevier, 2006. [Online]. Available: http://books.google.fr/books?id=
nG7DEXen9QAC

[9] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2011, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org/

[10] J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, and F. Mancinelli,
“Improving the quality of gnu/linux distributions,” in Proceedings of
the 2008 32nd Annual IEEE International Computer Software and
Applications Conference, ser. COMPSAC ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 1240–1246.

[11] M. F. Krafft, The Debian System: Concepts and Techniques. San
Francisco, CA, USA: No Starch Press, 2005.

[12] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner, “Opium: Optimal
package install/uninstall manager,” in Proceedings of the 29th interna-
tional conference on Software Engineering, ser. ICSE ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 178–188.

[13] E. Kofman and S. Junco, “Quantized State Systems. a DEVS Approach
for Continuous Systems Simulation,” in Transactions of SCS., vol. 18,
2001, pp. 123–132.

[14] E. Kofman, “A second order approximation for devs simulation of
continuous systems,” Journal of the Society for Computer Simulation
International, vol. 78, no. 2, 2002.

[15] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Programming, vol. 8, pp. 231–274, 1987.

[16] G. A. Wainer and N. Giambiasi, “Application of the Cell-DEVS
paradigm for cell spaces modelling and simulation,” in Simulation,
vol. 76, 2001, pp. 22–39.

[17] T. Matsumoto and T. Nishimura, “Mersene twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator,” in ACM
Trans. on Modeling and Computer Simulation, vol. 8, January 1998,
pp. 3–30.

