

An overview of bacterial diseases of the most important agricultural crops in Nepal

Jay Ram Lamichhane, Giorgio M. Balestra, Angelo Mazzaglia, Mb Kshetri, Leonardo Varvaro

► To cite this version:

Jay Ram Lamichhane, Giorgio M. Balestra, Angelo Mazzaglia, Mb Kshetri, Leonardo Varvaro. An overview of bacterial diseases of the most important agricultural crops in Nepal. 28. International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Plant Protection, Aug 2010, Lisbonne, Portugal. 324 p., 10.17660/ActaHortic.2011.917.26. hal-02745400

HAL Id: hal-02745400 https://hal.inrae.fr/hal-02745400

Submitted on 3 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An Overview on Bacterial Diseases of the Most Important Agricultural **Crops in Nepal**

J.R. Lamichhane^{1,2}, G.M. Balestra^{1,2}, A. Mazzaglia¹ M.B. Kshetri² and L. Varvaro^{1,2}

Dipartimento di Protezione delle Piante, Facoltà di Agraria, Università degli Studi della

Tuscia, 01100, Viterbo, Italy ² Central Horticulture Centre, Kirtipur, Kathmandu, Nepal

Keywords: bacterial diseases, plant crops, Nepal, yield loss

Abstract

Several surveys were carried out during three consecutive years (2007-2009) on the major crops cultivated in different districts of Nepal, in order to verify the possible presence of diseases caused by bacteria. The monitoring was carried out twice a year, in spring and autumn. During the survey we observed a wide range of bacterial diseases of plants. Most of the diseases were observed for the first time while others had been reported previously. Among the bacterial diseases observed for the first time, the most important were olive knot, bacterial speck of tomato, crown gall of plum, soft rot of potato, bacterial spot of tomato, and bacterial spot of cucurbits. Outbreaks of black rot were observed in different Brassica fields. Among the other widespread diseases, the most important were bacterial leaf blight of rice, citrus canker, citrus greening, bacterial wilt of tomato, potato, pepper, and eggplant, halo blight of bean, and bacterial pustule and bacterial blight of soybean. Attempts to explore the source of introduction of these pathogens, their spread, and yield losses caused were made together with recommendations for control measures.

INTRODUCTION

Agriculture in Nepal has long been based on subsistence farming, particularly in the hilly regions where peasants derive their living from fragmented plots of land cultivated in difficult conditions. Only 30% of the total land in Nepal is cultivated since the major part of the land is occupied by mountains and hills. For this reason, almost all the harvested crops are aimed at family use and farmers only export some surplus which is the main source of their income (Schroeder, 1985). The main cultivated plants are represented by rice, 1.5 million ha, followed by wheat and maize, which together take up a similar portion of the cultivated land, and thirdly by cash crops (sugarcane, oilseed, tobacco, and vegetables) that are very important for Nepalese farmers because of the good economic returns.

Agricultural crops are threatened by a wide variety of pathogens and pests all over the world. Several studies have been made in developed countries to find out the relationship between the presence of the plant pathogens and the potential yield losses caused by them. Nevertheless, very little is known about the plant diseases and yield losses in Nepal, in particular, those caused by the bacterial pathogens, since very few studies have been carried out until recently. Moreover, comparison of the average yield of plant crops with other developed and developing countries shows a big gap between potential yield and actual yield of Nepalese farmers (FAO, 2008). This low productivity is associated with a number of reasons. Among them, plant diseases are the most important factors.

Our aim was to carry out a wide survey to verify whether there are new plant diseases, and to provide complete information on their control using effective measures, on the most important agricultural plants cultivated in Nepal. Our study focused mainly on the vegetable crops since these are considered important cash crops due to the fact that their cultivation in many areas of Nepal is almost continuous, with up to three crops per year (Anonymous, 2006).

MATERIALS AND METHODS

Surveyed Zones and Plant Species

Many commercial fields and home gardens were surveyed in all the three major agricultural zones (high hills, mid hills, and plain land) of Nepal. The plant species surveyed and districts where we carried out the investigations are shown in Table 1.

Collection of Infected Plants and Bacterial Identification

During the survey, only plants showing characteristic bacterial disease symptoms were considered. The diseased parts of the plants were aseptically collected, put into sterile laboratory bags, and taken immediately to the laboratory and stored at 4°C. Within two days of sampling, bacteria were isolated from the diseased tissues on to selective or semi-selective media and incubated at 26 ± 1 °C to determine the possible causal agents. After 48-72 h, single bacterial colonies were purified. Identification of the bacterial isolates was made by morphological, physiological, biochemical, molecular, and pathogenicity tests.

Determination of Disease Incidence and Yield Loss

The number of surveyed fields and the presence of given diseases in those fields was taken into account. Disease incidence was calculated as the ratio between the number of surveyed fields and the number of fields where a given disease was found. The yield losses caused by the bacterial pathogens were calculated by the relationship between the average potential yield of a certain field from a given zone in the absence of the disease and that effectively obtained from a field where disease was present (Burlakoti and Khatri-Chhetri, 2004) (Table 2).

Collection of Information on Diseases Previously Reported

Besides our study, information was collected on the bacterial diseases previously found and reported by other authors and is shown in Table 3.

RESULTS

Surveyed Districts and Plant Species

Surveys were carried out in districts particularly important for different plant cultivation. In many cases, attention was paid to particular districts based on information provided by previous authors for the phytobacteriological investigation (Table 1).

Collection of Infected Plants and Bacterial Identification

During the surveys, characteristic symptoms of bacterial diseases were observed in all the districts where investigations were made (Table 2), except in some districts where the presence of the diseases was not verified (Fig. 1). The assays performed for the identification of the pathogens are listed in Table 4.

CONCLUSIONS

In the present study we report a wide range of bacterial diseases of plants for the first time in Nepal such as olive knot, bacterial speck of tomato, crown gall of plum, soft rot of potato, bacterial spot of tomato, and bacterial spot of pumpkin. On the other hand, this study supports previous findings confirming that bacterial diseases are widespread in different districts of the country and are becoming a serious problem.

The presence of the newly reported diseases indicates the possible introduction of the bacterial pathogens via infected seed, transplants, and other vegetative materials used for plant propagation from other countries, including those neighbouring countries where these pathogens have been widely reported. The considerable economic losses caused by these diseases and their wide host range represent a serious concern for an undeveloped country like Nepal where the role of agriculture is of fundamental importance since it is a main source of income. The control measures of quarantine pest and disease management, and the agronomical and cultural practices for disease prevention within the country are not effective and targeted to disease control. Therefore, the introduction of new plant pathogens into the country and the spread of those already present from one region to another occur continuously and can be a serious threat for Nepalese agriculture.

Only some bacterial diseases such as bacterial blight of rice (Adhikari and Mew, 1988; Adhikari and Shrestha, 1989; Adhikari et al., 1996, 1999a,b), black rot of *Brassica* (Adhikari and Basnyat, 1999; Jensen et al., 2010; Shakya et al., 2000; Shrestha, 1997; Shrestha and Mathur, 1977), and bacterial wilt of potato (Pradhanang et al., 1993, 2000; Pradhanang and Elphinstone, 1996; Shrestha, 1977; Shrestha et al., 1977), have been an important focus of study by many authors who provided detailed information on the disease severity, yield loss, spread, and the diversity of the bacterial pathogens. Either no or limited attention has been paid to other bacterial pathogens, in particular the bacterial pathogens of those vegetable crops which represent important cash crops for the livelihood of Nepalese farmers (Burlakoti and Khatri-Chhetri, 2004; Subedi and Khattri-Chettri, 2004).

Our study confirms that the average disease incidence and yield losses caused by bacterial pathogens in Nepal are very high. For this reason, immediate control measures are necessary to avoid the spread of bacterial pathogens from one region to another, and to eradicate them from districts where the diseases are threatening agricultural production. Nevertheless, there are many areas of the country that still need to be surveyed for the presence of bacterial pathogens and may provide several new findings. A thorough study will be needed to collect detailed information that will be helpful for future research on bacterial diseases of crop plants in Nepal.

Literature Cited

- Adhikari, T.B. and Basnyat, R. 1999. Phenotypic characteristics of Xanthomonas campestris pv. campestris from Nepal. European Journal of Plant Pathology 105:303-305.
- Adhikari, T.B. and Mew, T.W. 1988. Research on bacterial blight of rice in Nepal. p.98. In: Proc. 5th Int. Congr. Plant Pathol.
- Adhikari, T.B. and Shrestha, S.M. 1989. Distribution and severity of bacterial blight of rice in Nepal. J. Inst. Agric. Anim. Sci. 10:31-38.
- Adhikari, T.B., Basnyat, R.C. and Mew, T.W. 1999a. Virulence of *Xanthomonas oryzae* pv. *oryzae* on rice lines containing single resistance genes and gene combinations. Plant Dis. 83:46-50.
- Adhikari, T., Leach, J. and Mew, T.W. 1996. Bacterial blight of rice and its control in Nepal. Integr. Pest Management Rev. 1:91-95.
- Adhikari, T.B., Manandhar, J.B. and Hartman, G.L. 1993. Characterization of *Pseudomonas solanacearum* and evaluation of tomatoes in Nepal. p.132-137. In: G.L. Hartman and A.C. Hayward (eds.), Bacterial wilt. Proceedings of an International Conference held at Kaohsiung, Taiwan.
- Adhikari, T.B., Mew, T.W. and Leech, J.E. 1999b. Genomic and pathogenic diversity in *Xanthomonas orizae* pv. *orizae* in Nepal. Phytopathology 89:687-694.
- Anonymous. 2006. Annual Report. Vegetable Development Directorate, Department of Agriculture, Khumaltar, Lalitpur, Nepal.
- Balestra, G.M., Lamichhane, J.R., Kshetri, M.B., Mazzaglia, A. and Varvaro, L. 2009. First report of *Pseudomonas savastanoi* pv. *savastanoi* on olive in Nepal. Plant Pathology 58:393.
- Burlakoti, R.R. and Khatri-Chhetri, G.B. 2004. Bacterial diseases of crop plants in Nepal, a review. J. Inst. Agric. Anim. Sci. 25:1-10.
- CMI. 1978. Distribution Maps of Plant Diseases No. 11 (edition 5). CAB International, Wallingford, UK (Citrus canker).
- Dhakal, D.D., Gotame, T.P., Bhattarai, S. and Bhandari, H.N. 2008. Assessment of lime and lemon production in Nepal. J. Inst. Agric. Anim. Sci. 23:49-58.

FAO. 2008. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567.

- IMI. 1996. Distribution Maps of Plant Diseases No. 401 (edition 3). CAB International, Wallingford, UK. (*X. campestris* pv. *phaseoli*).
- Jensen, B.D., Vicente, J.G., Manandhar, H.K. and Roberts, S.J. 2010. Occurrence and diversity of *Xanthomonas campestris* pv. *campestris* in vegetable *Brassica* fields in Nepal. Plant Disease 94(3):298-305.
- Lamichhane, J.R., Kshetri, M.B., Mazzaglia, A., Varvaro, L. and Balestra, G.M. 2009. Bacterial speck caused by *Pseudomonas syringae* pv. *tomato* race 0: first report in Nepal. Plant Pathology 59:401.
- Lamichhane, J.R., Mazzaglia, A., Kshetri, M.B., Varvaro, L. and Balestra, G.M. 2009. First report of crown gall of *Prunus* spp. caused by *Agrobacterium tumefaciens* biovar 1 in Nepal. Journal of Plant Pathology 91(4S):112.
- Lamichhane, J.R., Balestra, G.M. and Varvaro, L. 2010. Occurrence of soft rot of potato caused by *Erwinia carotovora* subsp. *carotovora* in Nepal: a first report. Plant Disease 94(3):382.
- Lamichhane, J.R., Balestra, G.M. and Varvaro, L. 2010. First report of bacterial spot caused by *Xanthomonas campestris* pv. vesicatoria race 2 in Nepal. New Disease Report 21 (in press).
- Lamichhane, J.R., Varvaro, L. and Balestra, G.M. 2010. Bacterial leaf spot caused by *Xanthomonas cucurbitae* newly reported on pumpkin in Nepal. New Disease Report 21 (in press).
- OEPP/EPPO. 1978. Data sheets on quarantine organisms Nos 60 & 61, Xanthomonas phaseoli var. phaseoli and var. fuscans. Bulletin OEPP/EPPO Bulletin 8(2).
- OEPP/EPPO. 1978. Data sheets on quarantine organisms No. 57, *Pseudomonas syringae* pv. *pisi*. Bulletin OEPP/EPPO Bulletin 8(2).
- OEPP/EPPO. 1990. Quarantine procedures No. 27. *Xanthomonas campestris* pv. *citri*. Inspection test and survey methods. Bulletin OEPP/EPPO Bulletin 20:263-272.
- Pradhanang, P.M., Pandey, R.R., Ghimire, S.R., Dhital, B.K. and Subedi, A. 1993. An approach to management of bacterial wilt of potato through crop rotation and farmers' participation. p.362-370. In: G.L. Hartman and A.C. Hayward (eds.), Bacterial Wilt. ACIAR Proceedings No. 45. Canberra, Australia: ACIAR.
- Pradhanang, P.M. 1998. Bacterial wilt of potato caused by *Ralstonia solanacearum* biovar 2: a study of the ecology and taxonomy of the pathogen in Nepal. Ph.D. thesis, Reading, UK: University of Reading.
- Pradhanang, P.M. and Elphinstone, J.G. 1996. Identification of weed and crop hosts of *Pseudomonas solanacearum* race 3 in the hills of Nepal. In: P.M. Pradhanang and J.G. Elphinstone (eds.), Integrated management of bacterial wilt of potato: Lessons from the hills of Nepal. Proceedings of a National Workshop held at Lumle Agricultural Research Centre, Pokhara, p.39-49.
- Pradhanang, P.M., Elphinstone, J.G. and Fox, R.T.V. 2000. Identification of crop and weed hosts of *Ralstonia solanacearum* biovar 2 in the hills of Nepal. Plant Pathology 49:403-413.
- Regmi, C. and Lama, T.K. 1988. Greening incidence and greening vector population dynamics in Pokhara. p.238-242. In: Proc. 10th Conf. IOCV, IOCV, Riverside.
- Schroeder, R.F. 1985. Himalayan subsistence systems indigenous agriculture in rural Nepal. Mountain Research and Development 5(1):31-44.
- Shakya, D.D., Louws, F.J. and Alvarez, A.M. 2000. Diversity of Xanthomonas campestris pv. campestris (Xcc) populations in Nepal. Phytopathology 90:71.
- Sharma, R.C., De Leon, C. and Payak, M.M. 1993. Diseases of maize in south and southeast Asia, problems and progress. Crop Protection 12:414-422.
- Shrestha, K. 1997. A list of seed-borne organisms in Nepal. Nepalese J. Agric 12:217-224.
- Shrestha, S.K. 1977. Preliminary study on brown rot of potatoes in Nepal. Nepalese J. Agric 12:11-21.
- Shrestha, K., Mathur, S.B. and Neergaard, P. 1977. Seed-borne organisms in some crops

of Nepal. Seed Science Technology 5:111-121.

Subedi, G.D. and Khattri-Chettri, R.B. 2004. Scenario of hybrid vegetable seed use in Nepal. p.275-281. In: B.B. Khattri, B.P. Sharma, P.P. Khatiwada, K.P. Paudyal, B.R. Khadge, and H.N. Regmi (eds.), Advances of Horticultural Research in Nepal. Proc. Fourth Natl. Workshop Horticulture, Nepal Agricultural Research Council, National Research Insitute and Horticulture Research Division, Khumaltar, Lalitpur, Nepal.

Tables

Crop	Surveyed districts		
Brassica 🛓	Bhaktapur, Lalitpur, Chitwan, Dhankuta, Baglung, Nuwakot,		
vegetables*1	Kathmandu, Makwanpur		
(cabbage,			
cauliflower and			
broccoli)			
Potato*1	Kathmandu, Nuwakot, Bhaktapur, Lalitpur, Kaski		
Tomato ^{*†}	Kathmandu, Lalitpur, Banke		
Pumpkin*	Kathmandu, Lalitpur, Bhaktapur		
Bean* [†]	Kathmandu, Dhading		
Soybean* [†]	Nuwakot, Kathmandu		
Pepper* [†]	Kathmandu, Nuwakot, Bhaktapur, Lalitpur, Kaski		
Eggplant* [†]	Kathmandu, Nuwakot, Bhaktapur, Lalitpur, Kaski		
Rice* [†]	Ilam, Jhapa, Dhankuta, Bhojpur, Sunsari, Dhanusha, Sarlahi,		
	Makwanpur, chitwan, Bara, Parsa, Palpa, Gulmi, Kaski, Lamjung,		
	Tanahu, Gularia, Dang, Pyuthan, Nuwakot		
Maize* [†]	Kathmandu, Nuwakot, Bhaktapur, Lalitpur, Kaski		
Pea* [†]	Chittwan, Nuwakot, Bhaktapur, Lalitpur, Kaski		
Plum*	Kathmandu, Nuwakot, Gorkha		
Citrus* [†]	Kathmandu, Nuwakot, Gorkha, Kavre, Kaski, Sindhuli		
Olive*	Bajura, Mugu, Dolpa, Kathmandu, Makwanpur		
+ .			

*these studies; [†]previous studies.

Table 2.	Incidence	of bacterial	diseases	of plants	in the	surveyed	districts.

Disease	Causal bacterial agent	Incidence
Black rot of <i>Brassica</i> spp.	Xanthomonas campestris pv. campestris	High
Soft rot of potato	Pectobacterium carotovorum	Medium
Bacterial wilt of potato	Ralstonia solanacearum	Medium
Bacterial speck of tomato	Pseudomonas syringae pv. tomato	Low
Bacterial spot of tomato	Xanthomonas campestris pv. vesicatoria	Low
Bacterial wilt of tomato	Ralstonia solanacearum	Very high
Bacterial spot of pumpkin	Xanthomonas campestris pv. cucurbitae	Low
Bacterial wilt of eggplant	Ralstonia solanacearum	Medium
Bacterial wilt of pepper	Ralstonia solanacearum	High
Common blight of bean	Xanthomonas campestris pv. phaseoli	Medium
Halo blight of bean	Pseudomonas syringae pv. phaseolicola	Medium
Bacterial blight of soybean	Pseudomonas syringae pv. glycinea	Medium
Bacterial pustule of soybean	Xanthomonas campestris pv. glycines	Medium
Bacterial blight of pea	Pseudomonas syringae pv. pisi	Medium
Bacterial blight of rice	Xanthomonas orizae pv. orizae	High
Crown gall of plum	Agrobacterium tumefaciens	High
Olive knot	Pseudomonas savastanoi pv. savastanoi	Low
Citrus canker	Xanthomonas campestris pv. citri	Very high
Citrus greening	Liberobacter asiaticum	Very high
Bacterial wilt of tobacco	Ralstonia solanacearum	High
Bacterial stalk rot of maize	Erwinia chrysanthemi	high

Low: <20%; medium: <20-40%; high: 40-60%; very high: >60%.

Disaasa	Deference	A years as yield $\log_2(0/)$
Disease		Average yield loss (%)
Black rot of brassica	Shrestha and Mathur, 1977	40
Soft rot of potato	Lamichhane et al., 2010	20
Bacterial wilt of potato	Shrestha, 1977	75
Bacterial speck of tomato	Lamichhane et al., 2009	18
Bacterial spot of tomato	Lamichhane et al., 2010	25
Bacterial wilt of tomato	Adhikari et al., 1993	90
Bacterial wilt of eggplant	Adhikari et al., 1993	32
Bacterial wilt of pepper	Adhikari et al., 1993	90
Bacterial spot of pumpkin	Lamichhane et al., 2010	12
Common blight of bean	OEPP/EPPO, 1978	16
Halo blight of bean	Burlakoti and Khatri-Chhetri, 2004	16
Bacterial blight of pea	OEPP/EPPO, 1978	13
Bacterial blight of soybean	Burlakoti and Khatri-Chhetri, 2004	16
Bacterial pustule of soybean	Burlakoti and Khatri-Chhetri, 2004	23
Bacterial blight of rice	Adhikari and Mew, 1988	32
Crown gall of plum	Lamichhane et al., 2009	60
Olive knot	Balestra et al., 2009	25
Citrus canker	OEPP/EPPO , 1990	90
Citrus greening	Regmi and Lama, 1988	92
Bacterial wilt of tobacco	Adhikari et al., 1993	35
Bacterial stalk rot of maize	Burlakoti and Khatri-Chhetri, 2004	75

Table 3. List of reported disease and yield loss caused by the pathogens.

Table 4. List of assays used for the identification of bacterial species.

Morphological and cultural	Physiological and biochemical
Form	Levan production
Colony colour	Fluorescence test
Colony margin	Oxidase production
Colony dimension	Potato soft rot
Molecular	Arginine hydrolysis
16SrDNA	Aesculin hydrolysis
Pathogenicity test	H_2S production
In vivo - by using a bacterial suspension	Carbon source utilization
containing 10^8 CFU/ml	Phosphatase test
	Gram test

Figures

Fig. 1. Map of surveyed zones and plant species.

•