

Importance of the genetic background for sustainable resistance: experimental evidence for a major resistance gene to nematodes

Arnaud Barbary, Alain Palloix, Ariane Fazari, Nathalie Marteu, Philippe Castagnone-Sereno, Caroline Djian-Caporalino

▶ To cite this version:

Arnaud Barbary, Alain Palloix, Ariane Fazari, Nathalie Marteu, Philippe Castagnone-Sereno, et al.. Importance of the genetic background for sustainable resistance: experimental evidence for a major resistance gene to nematodes. Plant resistance sustainability 2012. International conference, Oct 2012, La Colle sur Loup, France. hal-02745433

HAL Id: hal-02745433 https://hal.inrae.fr/hal-02745433

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PLANT RESISTANCE SUSTAINABILITY

International Conference -

2012

La Colle-Sur-Loup (France) October 16th-19th, 2012

Scientific Programme and Abstracts

Sessions

Session 1: Impact of plant disease resistance on the structure and evolution of pathogen populations

Session 3: From plant-pathogen molecular interactions to the durability of resistance

Session 2: Sustainable and integrated breeding and deployment of genetic resistance

Session 4: Socio-economic issues related to the use of resistant varieties and their deployment in agro-systems

Invited Speakers

Philippe Baret, Université Catholique de Louvain, Belgium - James Brown, John Innes Centre, England - Marion Desquilbet, iNRA, France - Sylvain Gandon, CNRS, France - Benoit Moury, INRA, France - Chris Mundt, Oregon State University, USA - Laura Rose, Heinrich-Heine University, Germany - Walter Rossing, Wageningen University, The Netherlands - Peter Thrall, CSIRO Plant Industry, Australia

Organised by the Institut National de la Recherche Agronomique (INRA) Metaprogramme on Sustainable Management of Crop Health (SMaCH)

PLANT RESISTANCE SUSTAINABILITY 2012

Importance of the genetic background for sustainable resistance: experimental evidence for a major resistance gene to nematodes

Barbary A.¹; Palloix A.²; Fazari A.¹; Marteu N.¹; Castagnone-Sereno P.¹; Djian-Caporalino C.¹

¹INRA PACA (Provence Alpes Côte d'Azur), UMR1355 INRA/UNSA/CNRS, Institut Sophia Agrobiotech, BP167, F-06903 Sophia Antipolis, France

²INRA PACA, UR1052, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France

Abstract

Root-knot nematodes, Meloidogyne spp., are extremely polyphagous plant parasites worldwide. Since the use of most chemical nematicides is being prohibited, genetic resistance is an efficient alternative way to protect crops against these pests. However, resistance genes (R-genes) are limited and nematode populations are able to overcome them with time. Good management of these valuable resources is thus a key point of R-gene durability. In pepper, Me3 is a dominant major resistance gene, currently used in breeding programs, that control M. arenaria, M. incognita and M. javanica, the three main root-knot nematodes species. In this study, it was introgressed in either a susceptible or a partially resistant genetic background in either homozygous or heterozygous allelic status. Confronting these genotypes with a high inoculation pressure of an avirulent M. incognita isolate or a Me3 virulent laboratory-selected population (obtained by successive re-inoculation on a Me3 R-pepper line) demonstrated i) that the genetic background plays an important role, Me3 being overcome more easily in a susceptible genetic background than in a partially resistant one, ii) that the allelic status has no effect. These results are in good agreement with concepts recently developed from the analysis of very different plant-pathogen interactions: pepper-virus (Palloix et al., 2009) or rapeseed-Leptosphaeria (Brun et al., 2012). Experiments are now underway to detect and localise genes or loci providing partial resistance (QTLs = Quantitative Trait Loci) to root-knot nematodes explaining the differences observed between susceptible and partially resistant genetic backgrounds, and to determine the effectiveness of their « protective » role on the major R-genes. All these results are of main importance for the creation of new varieties by breeders who have to take into account the plant material used and the resistance gene they want to introgress.

Keywords: *Meloidogyne spp., Capsicum annuum* (pepper), Me(s) resistance genes, dosage allele effect, resistance durability

References

Brun H., Chèvre A.M., Fitt B.D., Powers S., Besnard A.L., Ermel M., Huteau V., Marquer B., Eber F., Renard., Andrivon., 2010. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytologist 185(1):285-299

Palloix A., Ayme V. and B. Moury, 2009. Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytologist 183:190-199.