

Using genomic information provided by selection schemes to assess French dairy breeds diversity

Denis Laloë, Sophie Allais, Guillaume G. Baloche, Francis F. Barillet, Jérôme Raoul, Coralie Danchin-Burge

▶ To cite this version:

Denis Laloë, Sophie Allais, Guillaume G. Baloche, Francis F. Barillet, Jérôme Raoul, et al.. Using genomic information provided by selection schemes to assess French dairy breeds diversity. 63. Annual Meeting of the European Federation of Animal Science (EAAP), Aug 2012, Bratislava, Slovakia. 476 p., 10.3920/978-90-8686-761-5. hal-02745491

HAL Id: hal-02745491 https://hal.inrae.fr/hal-02745491

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Session 02 Theatre 1

Discovering the unique value of indigenous livestock populations: the opportunities of genomics Hanotte, O., Ndila, M., Wragg, D. and Mwacharo, J., The University of Nottingham, School of Biology, University park, NG7 2RD Nottingham, United Kingdom; olivier.hanotte@nottingham.ac.uk

The advent of next generation sequencing and associated high throughput genome screening technologies are providing new opportunities in livestock breeding improvements. Their potential application in the areas of genetic characterization in connection to the conservation of indigenous livestock genetic resources is yet poorly documented. Human and natural selection have shaped the genetic make-up of these populations. Besides a fine understanding of haplotypes and nucleotides diversities, at individuals and populations levels, these technologies allow us unravelling the unique adaptive genetic make-up of local livestock populations to their environments and production systems. The detection of signatures of selection across the full genome is offering to stamp out the genetic uniqueness of these populations while valuing them as adaptive traits. It is applicable to reproductively isolated livestock populations, often already characterized intensively; but as well for the larger number of the non-descript indigenous livestock populations for which their genetic uniqueness remained largely hidden behind a mosaics of phenotypic diversity. We will illustrate these points through example from our work in African indigenous cattle, fancy and village chicken, ending by an advocacy of the unique value of indigenous livestock genetic diversity as reservoir of adaptations and unique research models for the mapping of the genetic control of adaptive traits.

Session 02 Theatre 2

Using genomic information provided by selection schemes to assess French dairy breeds diversity Laloë, D.¹, Allais, S.², Baloche, G.³, Barillet, F.³, Raoul, J.^{4,5} and Danchin-Burge, C.^{4,5}, ¹INRA, UMR1313 GABI, Domaine de Vilvert, 78352 Jouy en Josas, France, ²UNCEIA, 149 rue de Bercy, 75595 Paris 12, France, ³INRA SAGA, BP 52627, 31326 Castanet-Tolosan, France, ⁴Institut de l'Elevage, 149 rue de Bercy, 75595 Paris 12, France, ⁵Institut de l'Elevage, BP 42118, 31321 Castanet-Tolosan, France; coralie.danchin@idele.fr

In France, selection programs in ruminant species are extremely efficient and a major contributor to the proficiency of the meat and dairy industries. These programs are characterized by the selection of few elite breeding animals. The drawbackis a loss of genetic variability in most breeds, which means that selection programs should take into account this parameter. There is, therefore, a need to provide genetic variability indicators, on a regular basis, so that breed associations can adjust their management accordingly. The aim of the project VARUME (Genetic Variability of RUMinants and Equine species) is to set up an observatory of the genetic variability of the French ruminant and equine species, based on pedigree and molecular data. In dairy cattle and sheep, there are now numerous molecular data generated for the needs of selection programs. The project evaluates the feasibility of setting up a genetic variability observatory based on these SNP data. A first step is to define which type of indicators can be generated from SNP data in order to characterize a breed's diversity. An inventory of all the molecular (SNP) data available to build up the observatory is done, in three cattle breeds (Holstein, Montbéliarde and Normande) and two sheep breeds (Lacaune and Manech Tête Rousse). A list of the best indicators to monitor a breed's diversity is defined by testing them with the various molecular data available and evaluating their usability depending on various contexts. The indicators are also used to target males with outstanding indicators so that their semen can be transferred to the French Cryobank. Finally, the indicators are compared with the ones obtained with pedigree data.

Book of Abstracts of the 63rd Annual Meeting of the European Federation of Animal Science

Book of abstracts No. 18 (2012)
Bratislava, Slovakia
27 - 31 August 2012