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 The model represents the evolution of the liquid food product along the exchangers; the radial distribution of 
temperature and denaturation ratio is put in evidence.

 The model reproduces reasonably well the bulk values of temperature and denaturation ratio at the cooler outlet 
when we assume the operating conditions under which the kinetic parameters and the viscosity approximation 
parameters were estimated. Consistent results have been obtained under other operating conditions of interest.

• When modeling the thermal denaturation-aggregation of whey proteins under continuous flow, a two-way 
dependence has to be considered. Firstly, fluid flow and heat transfer drive shear rate and temperature 
fields, which affect the product transformation. Secondly, the own transformation can modify the product 
properties (as its apparent viscosity). Inside a heat exchanger, the progressive occurrence of larger protein 
aggregates increases the product viscosity, slowing down the fluid parcels near heating walls and hence 
exposing them to additional heating and consequent transformation.

• In this study we demonstrate the feasibility of modeling the thermal denaturation-aggregation of whey 
proteins under continuous flow through numerical simulations... 

>>> by developing a computational fluid dynamics (CFD) model for solving the coupled problem of fluid 
flow, heat transfer, and thermal denaturation-aggregation of whey proteins, where the latter is represented 
with the help of a reaction kinetics of order 1.5; and

>>> by representing a laboratory processing unit (heater, holder and cooler) that effectively exists, with the 
help of a sequence of computational domains.

• Conservation equations for the liquid food product mass, momentum and energy are expressed as:

.u = 0                  r (u.)u = .( -p I + h ( u + (u)T ) )                  r CP (u.)T = .( k T ) 

In the case of the concentration of native proteins, the following convection-diffusion equation is employed:

(u.)Cnat = dCnat{t}/dt + .( D Cnat )

• Coupled phenomena are solved for a sequence of two- dimensional axial-symmetric computational domains. They 
represent eight heating sections, a holder, and eight cooling sections. Computational domains have a radius of 4 
mm, as in the experimental setup; their lengths were estimated from the actual volumes: about 0.4 m for heating and 
cooling sections and about 4 m for the holding section. Regular grids constituted of rectangular cells are employed.

• At the inlet of the first heating section, a fully developed parabolic flow profile is assumed. Flow rate is 18.1 L/h, 
and mean velocity is about 0.100 m/s; Reynolds number is about 150. At the inlet of all the other (heating, holding 
and cooling) sections, uniform velocity profile is assumed.

 The liquid food product under consideration becomes progressively shear-
thinning with the transformation. After a given heat treatment, apparent viscosity 
decreases with the temperature (upper figure). At a given temperature, apparent 
viscosity increases with the denaturation ratio (lower figure).

 The influence of shear rate g, denaturation ratio d and temperature T on the 
apparent viscosity h associated with the liquid food product is represented as:

h(g,d,T) = A g( B d ) exp( C / ( R T ) ) exp( D d ).

 Parameters A, B, C and D were estimated through the least squares method 
from measurements conducted at 30, 50, and 60°C, taking into account the liquid 
product transformed according to three heat treatments (72°C during 20s; 80°C 
during 30s; and 94°C during 40s).

 We obtained A = 1.39 10-6, B = -0.298, C = 2.24 104 and D = 3.64.
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 A reaction kinetics of order 1.5 is assumed in representing the thermal 
unfolding and particle aggregation of the b-lacto-globulin present in the 
liquid food product of interest. Kinetic parameters were estimated after 
reconstructing the bulk thermal history of the liquid product. Such a 
history was based upon measurements of the product temperature at the 
exchangers' inlet and outlet. Three heat treatments were considered.

 The integration over time along the exchangers gives:

where d = 1- Cnat{tOUTLET} / C0) is the denaturation ratio.

 We obtained k0 = 2.51x1015 and EA = 1.18x105 J/mol.
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72°C, 20s 80°C, 30s 94°C, 40s

72°C, 20s 80°C, 30s 94°C, 40s

observed:
estimated:

observed:
estimated:

43.2                                       54.9                                      64.3                                    72.0                                       78.2                                      83.3                                     87.5                                     91.0                           

92.3                                       95.5                                      98.1                                    100.1                                    101.6                                    102.8                                    103.7 104.5

92.2

90.0

91.4 85.0                                      78.6                                       72.2 65.8                                       59.3                                      52.9 46.5                           

54.6                                       47.8                                      40.9                                    33.9                                      26.8                                       19.7                                    12.5                                        5.2

Tinlet = 43.2 °C                                                        54.9                                       64.3                     72.0                                      78.2                                       83.3                         87.5                                      91.0                                       93.9 °C                           

91.4 °C

85.1                                       78.6                                      72.2                                    65.8                                       59.4                                       52.9                                    46.5                                       40.1 °C                           

0.000                                     0.009                                     0.024                                    0.050                                    0.088                                     0.137                                    0.196                                    0.261                           

0.149                                     0.240                                     0.336 0.426                                    0.500                                     0.559     0.605                                    0.641                           

dinlet = 0                                                         0.008                                     0.022                  0.044                                   0.077                                     0.120                        0.174                                     0.234                                    0.298                           

0.492

0.739

0.564

0.570                                     0.575                                     0.577                                    0.578                                    0.579                                     0.579                                    0.579  0.579                           

0.574                                     0.577                                     0.578                                    0.578                                    0.579                                     0.579                                    0.579  0.579                           
0.572                                     0.576                                    0.577                                    0.578                                    0.579                                     0.579                                    0.579 0.579                           

experimental value = 0.62

experimental value = 39.6 °C

inward heat flux at the wall 
= 1100 (Tvapor – T) W/m2

with Tvapor = 108.4 °C 

outward heat flux at the wall 
= 472 W/m2

outward heat flux at the wall 
= 13900 W/m2

 Bulk values (T and d) are evaluated at the outlet of each domain; they are later assumed as boundary conditions at the inlet of the following domain.

 Such an approach help  us to represent the occurrence of mixing along the corners which connect two successive sections.


