
HAL Id: hal-02745649
https://hal.inrae.fr/hal-02745649v1

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic virtual arc consistency
Thi Hông Hiêp Nguyên, Thomas Schiex, Christian Bessiere

To cite this version:
Thi Hông Hiêp Nguyên, Thomas Schiex, Christian Bessiere. Dynamic virtual arc consistency.
28th Annual ACM Symposium on Applied Computing, Mar 2013, Coimbra, Portugal. pp.6,
�10.1145/2480362.2480384�. �hal-02745649�

https://hal.inrae.fr/hal-02745649v1
https://hal.archives-ouvertes.fr


Dynamic Virtual Arc Consistency

Hiep Nguyen1, Thomas Schiex1, and Christian Bessiere2

1 Unité de Biométrie et Intelligence Artificielle, INRA, Toulouse, France
2 University of Montpellier, France

Abstract. Virtual Arc Consistency is a recent local consistency for pro-
cessing cost function networks that exploits a simple but powerful con-
nection between classical constraint networks and cost function networks.
The algorithm enforcing virtual arc consistency iteratively solves a se-
quence of classical constraint networks. In this work, we show that dy-
namic arc consistency algorithms can be suitably injected in the virtual
arc consistency iterative algorithm, providing noticeable speedups.

1 Introduction

Graphical model processing is a central problem in AI. The optimization of the
combined cost of local cost functions, central in the valued CSP framework [4],
captures problems such as weighted MaxSAT/CSP or Maximum Probability
Explanation in probabilistic networks. Depth First Branch and Bound search has
been largely used to tackle such problems. It has a reasonable space complexity
but requires good lower bounds on the minimum cost to be efficient.

In the last years, increasingly better lower bounds have been designed by
enforcing local consistencies on CFN. Enforcing is done using so-called Equiv-
alence Preserving Transformations (EPTs, [2]) which extend usual CSP local
consistency operations. EPTs move costs between cost functions while keeping
the problem equivalent. They may eventually increase the cost function of empty
scope (a constant) to a non naive value. This value provides a lower bound on
the optimum cost which can be maintained during branch and bound search.

Virtual arc consistency (VAC), introduced in [1], relies on pre-planned appli-
cations of EPTs built from the result of enforcing classical arc consistency (AC)
on a constraint network called Bool(P ) which forbids combinations of values
with non zero costs in the original CFN P . VAC dominates all previously de-
fined chaotic local consistencies, and it can be approximately enforced with a low
order polynomial time iterative algorithm. Maintaining VAC during tree search
has effectively allowed to close two difficult instances of Radio Link Frequency
Assignment instances. Each iteration of VAC incrementally modifies the network
P . The next iteration therefore proceeds by enforcing classical AC on a slightly
relaxed version of Bool(P ). This situation, where AC is iteratively enforced on
incrementally modified versions of a constraint network, has been previously
considered in dynamic arc consistency algorithms for dynamic CSPs [3]. In this
paper we adapt ideas from dynamic AC in the last phase of VAC. We observe
that this new version frequently provides significant speedups. This may be, as
far as we know, one of the first successful application of dynamic AC algorithms.



2 Background

A Cost Function Network (CFN), or weighted CSP (WCSP) is a tuple (X,D,W,m)
where X is a set of n variables. Each variable i ∈ X has a domain Di ∈ D. For a
set of variables S, we denote by `(S) the set of tuples over S. W is a set of e cost
functions. Each cost function wS ∈ W assigns costs to assignments of variables
in S i.e. wS : (S)→ [0..m] where m ∈ {1, ...,+∞}. The addition and subtraction
of costs are bounded operations, defined as a⊕ b = min(a+ b,m), a	 b = a− b
if a < m and m otherwise. The cost of a complete tuple t is the sum of costs
ValP (t) =

⊕
wS∈C wS(t[S]) where t[S] is the projection of t on S. We assume

the existence of a unary cost function wi for every variable, and a nullary cost
function, noted w∅. This constant positive cost defines a lower bound on the
cost of every solution. In this paper, we restrict ourselves to binary CFNs.

Enforcing a given local consistency on a CFN P transforms it in an equiv-
alent problem P ′ (ValP (t) = ValP ′(t) ∀t) with a possible increase in the lower
bound w∅ on the optimal cost. Enforcing is done by using equivalence-preserving
transformations (EPTs) which shift costs between cost functions. There are three
basic EPTs. Project(wij , i, a, α) moves an amount of cost α from a binary cost
function to a unary one. Conversely, Extend(i, a, wij , α) sends an amount of cost
α from a unary cost function to a binary one. Finally, UnaryProject(i, α) projects
an amount of cost α from a unary cost function to the nullary cost function w∅.

In a classical binary CSP, represented as a CFN with m = 1 (cost 1 being
associated to forbidden tuples), a value (i, a) is AC w.r.t. a constraint wij iff
there is a pair (a, b) that satisfies wij (is a support) and such that b ∈ Dj (is
valid). A CSP is AC if all its values are AC w.r.t. to all constraints. Enforcing
AC on a CSP produces its AC closure, which is equivalent to P and is AC.

Definition 1. Given a CFN P = (X,D,W,m), the CSP Bool(P ) = (X,D,W, 1)
is such that ∃wS ∈W iff ∃wS ∈W , S 6= ∅ and wS(t) = 1⇔ wS(t) 6= 0. A CFN
P is virtual arc consistent (VAC) iff the AC closure of Bool(P ) is non-empty.

If P is not VAC, there exists a sequence of EPTs which leads to an increase of w∅
when applied on P . VAC enforcing uses an iterative three-phases process. The
first phase is an instrumented AC enforcing on the CSP Bool(P ) that records
every deletion in a dedicated data-structure denoted as killer. When a value (i, a)
lacks a valid support on wij , we set killer((i,a)) = j and we delete the value. If
no domain wipe-out occurs, P is VAC and we stop. Otherwise, phase 2 identifies
the subset of value deletions that are necessary to produce the wipe-out and
stores them in a queue R by tracing back the propagation history defined by
killer. Phase 2 also computes the maximum possible increase achievable in w∅,
denoted λ, and the set of EPTs to apply to P in order to achieve this increase.
All the amounts of cost that the EPTs will move are stored in two arrays of
integers, k(j, b) and kij(j, b), that store the number of quantum λ that needs to
be respectively projected on (j, b) and extended from (j, b) to wij . These cost
moves follow a simple law of conservation. For any value (j, b) which is not a
source of cost (wj(b) = 0), the amount of cost that arrives in (j, b) by Project is
exactly the amount of cost that leaves (j, b) by Extend (See [1], page 465).



Phase 3 of VAC modifies the original CFN by applying the EPTs defined
by k() and kij() on all the deleted values that have been stored in R. A value
(j, b) deleted by wij will receive a cost of k(j, b) × λ by Project from wij . This
requires to first extend a cost kij(i, a) × λ from the invalid supports (i, a) to
wij . The result of this phase is a new problem P ′, equivalent to P but with an
increased lower-bound w∅. Ultimately, VAC iterations enforce AC on a sequence
of slightly modified CSPs: Bool(P ), Bool(P ′), . . . This motivates the use of ded-
icated dynamic AC algorithms (DnAC) to enforce VAC. DnAC algorithms is to
maintain AC in CSP problems after each constraint addition or retraction.

Several algorithms have been proposed for DnAC. In this paper, we will use
AC/DC2 [5]. AC/DC2 uses the data structure justification(i, a) to remember
the cause of deletion for (i, a). In the initialization stage, only values which have
been deleted because of the removed constraint cij are considered as candidates
for restoration. In the propagating stage, a variable i having restored values can
check neighboring values (j, b) for restorability just if they have been removed
due to the lost of support on the constraint cji (known through justification).
In a last stage, all restored values need to be checked again for arc consistency.

3 Dynamic VAC algorithm

We propose an improved version of VAC, called dynamic VAC (DynVAC), which
uses dynamic AC to maintain AC on the successive Bool(P ) instead of refiltering
from scratch at each iteration as done in the standard VAC algorithm. We use an
AC/DC2 version based on AC2001 instead of AC3. This also has the advantage
that the justification data-structure of AC/DC-2 is provided for free by the killer
array in VAC. DnAC algorithms are usually applied after each constraint removal
or addition. In the case of VAC, at each iteration, a series of modifications of
Bool(P ) can occur during Phase 3. Let us denote by P t the CFN at the beginning
of iteration t. The problem P t has cost functions wt

i and wt
ij . We show that the

global effect of all EPTs on Bool(P ) in Phase 3 can be captured as a list of
relaxations only, at the unary and binary levels.

Proposition 1. Following Phase 2 of iteration t, we know that: 1) ∀(i, a) :
wt+1

i (a) ≤ wt
i(a). 2) ∀(i, a) and (j, b) : if wt+1

ij (a, b) 6= wt
ij(a, b) then (i, a) or

(j, b) is deleted in the current justified partial AC closure of Bool(P t).

Corollary 1. The EPTs applied in the phase 3 of VAC, transforming Bool(P t)
into Bool(P t+1), generate only the following types of relaxations 1) values (i, a)
that become authorized (wt

i(a) > wt+1
i (a) = 0). 2) pairs ((i, a), (j, b) that become

authorized (wt
ij(a, b) > wt+1

ij (a, b) = 0).

Therefore, the DnAC algorithm can be specialized. The restoration protocol will
consist of 3 stages , as in AC/DC2 (Algorithm 1). We denote by Di the domain
of variable i in the final justified partial AC closure obtained after Phase 1.

The initialization stage scans all the values in the queue R to identify
which values should be restored. The wipe-out variable i0 is processed separately



Algorithm 1: Update Bool(P ) at iteration t

Procedure Initialization1

foreach (j, b) ∈ R do2

i ←− killer [j, b];3

foreach a ∈ Di −Di do4

if (wt
i(a) > 0) ∧ (wt+1

i (a) = 0) then Restore(i, a);5

if b /∈ Dj ∧ wt+1
i (a) = 0 ∧ wt+1

ij (a, b) = 0 then Restore(j, b);6

foreach a ∈ Di0 s.t. wt
i0(a) > 0 ∧ wt+1

i0
(a) = 0 do Restore(i0, a);7

Procedure Restore(i, a)8

add a into Di, restored[i] and add i into RL;9

killer [i, a] ← nil;10

Procedure Propagation11

while RL 6= ∅ do12

i← RL.pop();13

foreach wij ∈W do14

foreach b ∈ Dj −Dj s.t. killer [j, b]= i do15

if ∃a ∈ restored[i] s.t. wt+1
ij (a, b) = 0 then Restore(j, b);16

restored[i] ← ∅; QAC ← QAC ∪ {j | wij ∈W}17

(line 7). When a value (i, a) is restored, it is stored in an array restored [i] and
variable i is kept in a list RL for future propagation. The propagation stage
propagates value restorations to direct neighbors of the variables whose domain
has been extended. Each such variable i can restore a value (j, b) if it was deleted
due to wij (line 15) and is now supported by a restored value in i (line 16).
The filtering stage must eliminate the restored values (i, a) which are not arc
consistent on some constraint wij and must properly set the associated killer
(i, a) to j. This is precisely what is achieved by Phase 1 of VAC. Hence, we
integrated this stage into phase 1 by adding the neighbor variables of variables
having restored values into the revision propagation queue QAC (line 17).

Consider the binary CFN in Fig.a. Only non-zero costs and edges associated
with non-zero binary costs are displayed. In Bool(P ) (Fig.b), forbidden values are
shown as crossed-out and edges represent forbidden pairs. The revision order in
Phase 1 is (w13, w34, w12, w24). Phase 1 stops when x2 is wiped-out after revising
w13, w34, w12 (Fig.c). The gray arrows point to the variable offering no valid
support and the associated italic numbers represent k(i, a). In Phase 2 (Fig.d),
the deletion of (x2, b) alone is sufficient for the wipe-out. It uses the non-zero
costs w12(b, b) and w1(a) to provide w∅ with a maximal amount of cost λ = 1.
Applying identified EPTs, Phase 3 transforms P into an equivalent problem P 2

with w∅ = 1 (Fig.e). Extended costs are shown in bold. To update Bool(P )
in Fig.c, we consider ((x1, a), (x2, a), (x2, b)) since only w12 as been modified
by EPTs in phase 3. Only (x2, b) is restored because it has a zero-cost and a



2a

b

x1

2 a

b

x2

a

b

x3

a

b

x4

1

11

1

(a) P (b) Bool(P ) (c) Phase 1

2 2

1 1
1

1

1
0

0

w∅ = 0

(d) Phase 2

1 2
1
1

1 1
1

1

w∅ = 0

(e) Phase 3

1

1

2
1

1
1

1

w∅ = 0

(f) Phase 3

1 1
1

1
1

1

w∅ = 1

(g) Phase 3 (h) Updated Bool(P ) (i) Phase 1

1 1
1

1
1

1

11

1

w∅ = 1

(j) Phase 2

1

11

1

1

1

1

1

w∅ = 1

(k) Phase 3

1 1

1

1

1 1

w∅ = 1

(l) Phase 3

1

1

1

1 1
1
1

w∅ = 1

(m) Phase 3

1

1 1
1

w∅ = 2

(n) Phase 3

support (b, b) on w12. This restoration does not lead to further restorations. The
constraints of the updated Bool(P 2) are directly defined by P 2. The updated
result (Fig.h) has 2 extra deleted values with associated killer. The next phase 1
starts from this updated Bool(P 2). The final problem with w∅ = 2 is VAC.

4 Experiments

In this section, we compare the efficiency of DynVAC and VAC used as pre-
processing algorithms on a large set of benchmarks from the Cost Function
Library3. For each problem, as in [1], we enforce a limited version of VAC that
stops iterating as soon as the increase in w∅ becomes less than ε = 0.05.

The following table shows the mean value of the run-time (in seconds), the
lower bound (lb) and the number of iterations (iter) for enforcing VAC using
either the usual static VAC algorithm or the new DynVAC variant. Each line
corresponds to a different problem class covering Size instances. These exper-
iments show that DynVAC is respectively 1.6, 3 and 5 times faster than VAC
for the classes celar, tagsnp, warehouse while providing similar lower bounds on
average. However, DynVAC is significantly slower than VAC (respectively 7 and
4 times) for all the maximum clique problems categories we tested: protein mc
and dimacs mc. On these problems, we noticed that each iteration leads to the
useless restoration of many values in cascade which will again be uselessly deleted

3 https://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/?root=costfunctionlib



class Size
VACε DynVACε DynVACε with heuristic

lb time iter lb time iter lb time iter

celar 32 6,180 3.14 382 6,204 1.92 418 5,892 1.12 319
protein mc 10 1,016 51 1,022 1,016 364 1,022 1,016 56.95 1,022
tagsnp r0.5 25 1.43×106 364.31 8,798 1.43×106 116.57 4,653 1.43×106 81.46 5,810
tagsnp r0.8 82 1.11×106 4.64 155 1.11×106 1.53 120 1.11×106 2.54 150

dimacs mc 65 266 0.78 284 266 3.65 284 266 0.96 284
planning 68 1,074 0.25 46 1,074 0.19 50 1,072 0.23 76

warehouse 57 7.23×106 341 946 7.24×106 66 719 7.25×106 114.17 790

in the next iteration. In order to improve the efficiency of DynVAC we have used
the variable-based revision heuristics proposed in [6]. The corresponding results
are presented in the last column of the above table. They show that the heuristics
allows to drastically improve the performance of DynVAC on maximum clique
problems, leading to performances which are comparable to the static VAC in
this highly unfavorable case.

5 Conclusion

We have proposed an incremental approach for enforcing VAC in CFNs. It com-
bines the idea of DnAC algorithms with the iterative VAC algorithm in order to
efficiently maintain arc consistency in the CSP Bool(P ) during VAC enforcing.
The new algorithm, DynVAC, provides a lower bound of the same quality level
as the static VAC algorithm but is faster than static VAC on many problems.
However, DynVAC may become slow on some specific problems like the maxi-
mum clique problems. Using a revision heuristic on domain sizes inside the AC
instrumented algorithm allows to avoid this pathological behavior.

References

1. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artificial Intelligence 174, 449–478 (2010)

2. Cooper, M.C., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence
154(1-2), 199–227 (2004)

3. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In:
Proc. of AAAI’88. pp. 37–42. St. Paul, MN (1988)

4. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard
and easy problems. In: Proc. of the 14th IJCAI. pp. 631–637. Montréal, Canada
(Aug 1995)

5. Surynek, P., Barták, R.: A new algorithm for maintaining arc consistency after
constraint retraction. In: Proc. Principles and Practice of Constraint Programming
– CP 2004. pp. 767–771. No. 3258 in LNCS, Toronto, Canada (2004)

6. Wallace, R., Freuder, E.: Ordering heuristics for arc consistency algorithms. In:
Proceedings of the Biennial Conference-Canadian Society for Computational Studies
of Intelligence. pp. 163–163 (1992)


