Comparison of mapping accuracy between methods predicting QTL allele identity using haplotypes
Laval Jacquin, Jean Michel J. M. Elsen, Hélène Gilbert

To cite this version:

HAL Id: hal-02745786
https://hal.inrae.fr/hal-02745786
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
For a QTL in high LD with haplotypes:

\[
\frac{1}{2} \sum_{h=1}^{2} \sum_{j=1}^{2} f(h|\nu_m) - f(h|\nu_w) \frac{\sum_{h=1}^{2} \sum_{j=1}^{2} \Delta h j \Delta h j}{\sum_{h=1}^{2} \sum_{j=1}^{2} \Delta h j \Delta h j}
\]

(\text{multiallelic } \Delta^2 \text{ measure: Redick et al., 1987})

In Table 1 we can see that inference on \(d \) is strongly related to mapping accuracy (results hold for moderate LD levels)

\(\text{IBS}_{\text{hap}} = \text{P}(\text{IBD}) \) and \(\text{IBS}_{\text{hap}} \) performed better than the other AIPs for mapping accuracy (table 1)

\[d \leq \frac{\sum_{h=1}^{2} \sum_{j=1}^{2} f(h|\nu_m) - f(h|\nu_w) \frac{\sum_{h=1}^{2} \sum_{j=1}^{2} \Delta h j \Delta h j}{\sum_{h=1}^{2} \sum_{j=1}^{2} \Delta h j \Delta h j}}{\sum_{h=1}^{2} \sum_{j=1}^{2} \Delta h j \Delta h j}
\]

\[\text{Distribution of normalized distance distributions and linkage disequilibrium (LD)}
\]

\[\text{IBS}_{\text{hap}}(d_{\text{QTL}}) \text{ and } \text{P}(\text{IBD}) \text{ } \text{p}\text{-values for mapping accuracy (table 1)}
\]

\[\text{IBS}_{\text{hap}} \text{ and } \text{P}(\text{IBD}) \text{ have very similar distributions}
\]

\[\text{IBS}_{\text{hap}} \text{ and } \text{P}(\text{IBD}) \text{ have similar distributions in simulations and were almost bimodal for both IBS haplotypes and P(IBD)}
\]

\[\text{IBS}_{\text{hap}} \text{ and } \text{P}(\text{IBD}) \text{ compared to other AIPs}
\]

\[\text{Evidence of increasing LD when i moves closer to a QTL}
\]

\[\text{IBS}_{\text{hap}}(d_{\text{QTL}}) \text{ as function of } d\]

\[\text{Conclusion (table 1 and figure 2 and 3) AIPs which exploit LD better according to } d \text{ perform better in mapping a QTL}
\]

\[\text{Conclusions}
\]

\[\text{The QTL mapping accuracy of an AIP is strongly related to the matrix distance between a tested position and a QTL}
\]

\[\text{The most efficient AIPs are those which exploit LD better as shown with the matrix distance}
\]

\[\text{The } \text{IBS}_{\text{hap}} \text{ predictor exploits LD better among the six compared AIPs}
\]

\[\text{One advantage of the matrix distance approach is that it is free from the phenotype simulation process and the test statistic}
\]

\[\text{The algebraic results, shown here for a biallelic QTL, also hold for a multiallelic QTL}
\]