

Inoculants of leguminous crops for mitigating soil emissions of the greenhouse gas nitrous oxide

Catherine Hénault and Cécile Revellin

UMR Microbiologie des Sols et de l'Environnement – Dijon – France UR SOLS – Orléans – France

CHANGES IN ATMOSPHERIC CONCENTRATIONS OF TRACE GASES

Agricultural Ecology Research: its role in delivering sustainable farm systems – Dundee, 15-16 june 2011

SOURCES OF N₂O (Tg N-N₂O y⁻¹), from IPCC 2007

AR4 (2007)		
SOURCE	value	range
Anthropogenic sources		
Fossil fuel combustion and Industrial processes	0.7	0.2-1.8
Agriculture	2.8	1.7-4.8
Rivers, estuaries, coastal zones	1.7	0.5-2.9
Biomass and biofuel burning	0.7	0.2-1.0
Human excreta	0.2	0.1-0.3
Atmospheric deposition	0.6	0.3-0.9
Anthropogenic total	6.7	
Natural sources		
Soils under natural vegetation	6.6	3.3-9.0
Oceans	3.8	1.8-5.8
Atmospheric chemistry	0.6	0.3-1.2
Natural sources total	11	
Total sources	17.7	8.5-27.7
Atmospheric sink	12.3	
Atmopheric increase	3.9	
Unbalanced	1.5 ???	large range

Agricultural Ecology Research: its role in delivering sustainable farm systems – Dundee, 15-16 june 2011

MECHANISMS INVOLVED IN N₂O BUDGET IN SOILS

denitrification (anaerobic) – nitrification (aerobic)

Agricultural Ecology Research: its role in delivering sustainable farm systems – Dundee, 15-16 june 2011

NH4+

NO + N₂O

REGULATION OF THE LEVEL OF N₂O EMISSION BY THE REDUCTION OF N₂O

(From Hénault et al., 2001)

OBJECTIVES OF THE STUDY

- To mitigate N₂O emission by managing the N₂O to N₂ reduction, specially in soils where this function is inefficient
- By managing soil microbial communities : use of microorganisms that grow in symbiosis with crop plants
- Some *rhizobia*, symbionts of leguminous crops possess the *nosZ* genes coding for the enzyme involved in the N₂O reduction (Sameshima-Saito et al., 2006)

⇒ To crop some leguminous

- Inoculated with strains carrying the *nosZ genes*
- On soil emitting high levels of N₂O due to an inefficient N₂O reduction

[SOIL]_{PhN2ORed-} + [Plant + Inoculant]_{PhN2Ored+} ⇒ [SOIL + Plant + Inoculant]_{PhN2ORed+}

STEPS OF THE STUDY

> A greenhouse experiment for testing the previous equation

 $[SOIL]_{PhN_2ORed-} + [Plant + Inoculant]_{PhN_2Ored+} \Rightarrow [SOIL + Plant + Inoculant]_{PhN_2ORed+}$

- Some laboratory experiments to develop knowledges on the process
- A modelling approach to assess quantitative benefits of this process at the field scale

MAIN USED MATERIALS

- Soybean plants inoculated with different strains of Bradyrhizobium japonicum
- Gas chromatography

GREENHOUSE EXPERIMENT

Soil inefficient to reduce N₂O

Agricultural Ecology Research: its role in delivering sustainable farm systems – Dundee, 15-16 june 2011

LABORATORY EXPERIMENT

Agricultural Ecology Research: its role in delivering sustainable farm systems – Dundee, 15-16 june 2011

QUANTIFICATION BY A MODELING APPROACH

THE MODEL

A new version of the NOE model (Hénault et al., 2005) that includes the reduction of N_2O by rhizobia

Parametrisation of the model using results obtained during both the laboratory and greenhouse experiments

N₂O emission by soil by nodules inoculated into soybean in a hypothetical system including active nodules

- Switch from an N₂O emitting system to a consuming one by means of the inoculation of strains containg the *nosZ* gene
- Observations
 - that the process is insensitive to the O₂ concentration
 - that rates increase with the ambient N₂O concentration
 - that the efficiency of the process is strain dependent
- Assessment of a significant benefit of the process at the field scale

 \Rightarrow To **measure** the environmental benefit of the process on the field scale

Thank you

