

Inoculants of leguminous crops for mitigating soil emissions of the greenhouse gas nitrous oxide

Catherine Hénault, Cécile Revellin

▶ To cite this version:

Catherine Hénault, Cécile Revellin. Inoculants of leguminous crops for mitigating soil emissions of the greenhouse gas nitrous oxide. Agricultural Ecology Research: its role in delivering sustainable farm systems, Jun 2011, Dundee, United Kingdom. hal-02746096

HAL Id: hal-02746096 https://hal.inrae.fr/hal-02746096

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Inoculants of leguminous crops for mitigating soil emissions of the greenhouse gas nitrous oxide

Catherine Hénault and Cécile Revellin

UMR Microbiologie des Sols et de l'Environnement – Dijon – France

UR SOLS – Orléans – France

CHANGES IN ATMOSPHERIC CONCENTRATIONS OF TRACE GASES

GAS	GWP (100 years)	
CO ₂	1	
CH₄	23	
N ₂ O	296	

SOURCES OF N₂O (Tg N-N₂O y⁻¹), from IPCC 2007

AR4 (2007)				
SOURCE	value	range		
Anthropogenic sources				
Fossil fuel combustion and Industrial processes	0.7	0.2-1.8		
Agriculture	2.8	1.7-4.8		
Rivers, estuaries, coastal zones	1.7	0.5-2.9		
Biomass and biofuel burning	0.7	0.2-1.0		
Human excreta	0.2	0.1-0.3		
Atmospheric deposition	0.6	0.3-0.9		
Anthropogenic total	6.7			
Natural sources				
Soils under natural vegetation	6.6	3.3-9.0		
Oceans	3.8	1.8-5.8		
Atmospheric chemistry	0.6	0.3-1.2		
Natural sources total	11			
Total sources	17.7	8.5-27.7		
Atmospheric sink	12.3			
Atmopheric increase	3.9			
Unbalanced	1.5 ???	large range		

MECHANISMS INVOLVED IN N₂O BUDGET IN SOILS

denitrification (anaerobic) - nitrification (aerobic)

REGULATION OF THE LEVEL OF N₂O EMISSION BY THE REDUCTION OF N₂O

- Study of N₂O production by the first steps of denitrification and by nitrification
- Study of N₂O
 Consumption

(From Hénault et al., 2001)

OBJECTIVES OF THE STUDY

- ➤ To mitigate N₂O emission by managing the N₂O to N₂ reduction, specially in soils where this function is inefficient
- By managing soil microbial communities: use of microorganisms that grow in symbiosis with crop plants
- Some *rhizobia*, symbionts of leguminous crops possess the *nosZ* genes coding for the enzyme involved in the N₂O reduction (Sameshima-Saito et al., 2006)

⇒ To crop some leguminous

- Inoculated with strains carrying the nosZ genes
- On soil emitting high levels of N₂O due to an inefficient N₂O reduction

 $[SOIL]_{PhN_2ORed_-} + [Plant + Inoculant]_{PhN_2Ored_+} \Rightarrow [SOIL + Plant + Inoculant]_{PhN_2ORed_+}$

STEPS OF THE STUDY

A greenhouse experiment for testing the previous equation

$$[SOIL]_{PhN_2ORed-} + [Plant + Inoculant]_{PhN_2Ored+} \Rightarrow [SOIL + Plant + Inoculant]_{PhN_2ORed+}$$

- Some laboratory experiments to develop knowledges on the process
- A modelling approach to assess quantitative benefits of this process at the field scale

MAIN USED MATERIALS

- Soybean plants inoculated with different strains of Bradyrhizobium japonicum
- Gas chromatography

GREENHOUSE EXPERIMENT

Soil inefficient to reduce N₂O

Kr

 N_2O

LABORATORY EXPERIMENT

QUANTIFICATION BY A MODELING APPROACH

THE MODEL

A new version of the NOE model (Hénault et al., 2005) that includes the reduction of N₂O by rhizobia

Parametrisation of the model using results obtained during both the laboratory and greenhouse experiments

N₂O emission by soil by nodules inoculated into soybean in a hypothetical system including active nodules

CONCLUSIONS

- Switch from an N₂O emitting system to a consuming one by means of the inoculation of strains containg the nosZ gene
- Observations
 - that the process is insensitive to the O₂ concentration
 - that rates increase with the ambient N₂O concentration
 - that the efficiency of the process is strain dependant
- Assessment of a significant benefit of the process at the field scale
- ⇒ To measure the environmental benefit of the process on the field scale

Thank you

