

- Industrial site water run-off might be dealt with water treatment unit followed by settling channels before discharge in the environment
- Sediments heavily charged with hydrocarbons progressively accumulate in these channels
- Two management options might be considered:
 - Dredging and disposal
 BUT contamination is an issue
 AND industrial site nearby a natural resource protection area
 - In situ management by phyto-assisted treatment:
 - → stabilization / degradation? assisted by ORP?

General approach

- Two-step strategy
 - 1st Anaerobic biodegradability assessment
 - 2nd Phytotoxicity evaluation
 - Possibility for rhizodegradation/phytostabilization
- Additional factors
 - Saturated conditions
 - Impact of oxygen release product (ORP) addition

Fertility

рН	C _{org} (%)	N _{tot} (%)	N _{org} (mg/kg)	CEC (meq/100 g)
7.67	8.39	0.658	5.98	24.3

• Trace elements [mg/kg D.M.]

As	Cd	Cr	Cu	Ni	Pb	Zn
50	1.8	130	82	41	68	790

• Hydrocarbons [mg/kg D.M.]

THC (C ₁₀ -C ₄₀)	C ₁₀ -C ₁₆	C ₁₆ -C ₂₂	C ₂₂ -C ₃₀	C ₃₀ -C ₄₀
8250	1715	1243	3225	2063

Methods: in vitro biodegradation

- 10 weeks, darkness, 20°C
- Treatments
 - 3 ORP (CaO_2 , IXPER® 75C, Solvay) levels optimal = X2; X1 = X2/2; X0 = 0
 - Biological inhibitor (NaN₃ à 0,33% w/w): YES/NO
 - Nutrients (C/N/P = 10/1.5/1): YES/NO
 - Three replicates
 - > 36 systems
- Analysis
 - pH, Eh, dissolved O₂
 - anions, cations, DOC
 - TOC, THC, microbial characterization

Methods: plant growth assays (1)

- Selection of five plant species based on:
 - literature: known phytoremediation efficiency, resistance to hydrocarbons toxicity
 - adaptation to aquatic environment and local climate
 - availability in green houses

Methods: plant growth assays (2) plantlet **ORP** aerial part Deionized water Plastic bag **Initial root system** 10 weeks in greenhouse **New root system** 2,5 L sediment

- Treatments in 4 replicates (68 pots):
 - ORP or not; five plant species
 - Controls: no plant; un-contaminated substrate (commercial)
- Analysis: biomasses, microbial count, THC

In vitro biodegradation

pH & dissolved O₂

- Over 70 days periods ORP level is the main driver for physico-chemical variations
 - significant pH increase that might be an issue for biological activity
 - no significant effect over dissolved O_2 , possibly due to consumption

- ORP level is the only parameter of influence
 - no significant evolution without ORP
 - Respectivele 8% and 15% removal with X1 and X2 levels

Detailled HC degradation with X2

• Maximum degradation is observed for the C_{16} - C_{30} fraction

	HCT (C ₁₀ -C ₄₀)	C ₁₀ -C ₁₆	C ₁₆ -C ₂₂	C ₂₂ -C ₃₀	C ₃₀ -C ₄₀
init i al	8250	1715	1243	3225	2063
X2 – 70 days	7017	1482	952	2447	2137
Yield (%)	15	14	23	24	0

Microbial counts

- Bacterial levels are generally low especially for anaerobic bacteria
- For aerobic bacteria, physico-chemical conditions modifications have no significant effect
- For anaerobic bacteria, pH increase due to ORP addition seems detrimental

Total anaerobic bacteria

Plant growth assays

Plant development

Example: Saururus cernuus

control

sediment +ORP

sediment

Aerial biomass

- sediment toxicity for phragmite and thalia
- no or non significant toxic effect on typha, saururus and scirpe
- ORP tends to improve plant development and limits sediment toxicity impact (thalia, saururus)

Root systems development

- sediment toxicity for phragmite and thalia
- non significant or small toxic effect on typha, saururus and scirpe
- ORP tends to improve plant development (scirpe) and limit sediment toxicity impact (thalia, saururus)

THC degradation

No significant effect on THC concentrations

Conclusions

- Biodegradation of total hydrocarbons seems
 a very slow and difficult process
 (poor bacterial activity, HC low availability & recalcitrance)
- Excess ORP only helps decrease HC content
 => probable chemical oxidation
- Given the appropriate choice of species (typha and scirpe preferred), plant establishment is feasible
- ORP amendment might improve plant growth but excess addition is detrimental to pH

Perspectives

- In situ demonstration pilot
 - validate plant establishment
 - longer degradation times might lead to better remediation yields
- Complementary study exploring alternative management practice
 - feasibility of dredged sediments phytoremediation
 - evolution of HC under aerobic conditions
 - new soil formation, fertility and sustainability

