
Dead-End Elimination for Weighted CSP

Simon de Givry1,2,�, Steve Prestwich2, and Barry O’Sullivan2

1 MIA-T, UR 875, INRA, F-31320 Castanet Tolosan, France
2 Cork Constraint Computation Centre, University College Cork, Ireland
degivry@toulouse.inra.fr, {s.prestwich,b.osullivan}@cs.ucc.ie

Abstract. Soft neighborhood substitutability (SNS) is a powerful tech-
nique to automatically detect and prune dominated solutions in combi-
natorial optimization. Recently, it has been shown in [26] that enforcing
partial SNS (PSNSr) during search can be worthwhile in the context of
Weighted Constraint Satisfaction Problems (WCSP). However, for some
problems, especially with large domains, PSNSr is still too costly to en-
force due to its worst-case time complexity in O(ned4) for binary WCSP.
We present a simplified dominance breaking constraint, called restricted
dead-end elimination (DEEr), the worst-case time complexity of which
is in O(ned2). Dead-end elimination was introduced in the context of
computational biology as a preprocessing technique to reduce the search
space [13, 14, 16, 17, 28, 30]. Our restriction involves testing only one
pair of values per variable instead of all the pairs, with the possibility
to prune several values at the same time. We further improve the orig-
inal dead-end elimination criterion, keeping the same time and space
complexity as DEEr. Our results show that maintaining DEEr during a
depth-first branch and bound (DFBB) search is often faster than main-
taining PSNSr and always faster than or similar to DFBB alone.

Keywords: combinatorial optimization, dominance rule, weighted con-
straint satisfaction problem, soft neighborhood substitutability.

1 Introduction

Pruning by dominance in the context of combinatorial optimization involves re-
ducing the solution space of a problem by adding new constraints to it [19]. We
study dominance rules that reduce the domains of variables based on optimality
considerations (in relation to the optimization of an objective function). The
idea is to automatically detect values in the domain of a variable that are domi-
nated by another dominant value of the domain such that any solution using the
dominant value instead of the dominated ones has a better score. Various domi-
nance rules have been studied recently by the Constraint Programming commu-
nity [5, 6, 26]. In particular, soft neighborhood substitutability (SNS) [3, 26] allows
us to detect dominated values in polynomial time under specific conditions for
Weighted Constraint Satisfaction Problems (WCSP). In a different community,

� This work has been partly funded by the “Agence nationale de la Recherche”, ref-
erence ANR-10-BLA-0214 and the European Union, reference FP7 ePolicy 288147.

C. Schulte (Ed.): CP 2013, LNCS 8124, pp. 263–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

264 S. de Givry, S. Prestwich, and B. O’Sullivan

similar dominance rules and others, called dead-end elimination (DEE) crite-
ria, have been studied for many years in the context of computational protein
design [1, 13, 14, 16, 17, 28, 30]. However to the best of our knowledge, these
criteria have never been used during search, possibly due to their high computa-
tional cost. Following the work done in [26] showing the interest of maintaining
such dominance rule during search, we propose a faster pruning by dominance
algorithm combining SNS and DEE in a partial and optimistic way.

2 Weighted Constraint Satisfaction Problems

AWeighted Constraint Satisfaction Problem (WCSP) P is a triplet P = (X,F, k)
where X is a set of n variables and F a set of e cost functions. Each variable
x ∈ X has a finite domain, domain(x), of values that can be assigned to it.
The maximum domain size is denoted by d. For a set of variables S ⊆ X , l(S)
denotes the set of all labelings of S, i.e., the Cartesian product of the domain
of the variables in S. For a given tuple of values t, t[S] denotes the projec-
tion of t over S. A cost function fS ∈ F , with scope S ⊆ X , is a function
fS : l(S) �→ [0, k] where k is a maximum integer cost used for forbidden as-
signments. A cost function over one (resp. zero) variable is called a unary (resp.
nullary, i.e., a constant cost payed by any assignment) cost function, denoted
either by f{x} or fx (resp. by f∅). We denote by Γ (x) the set of cost functions
on variable x, i.e., Γ (x) = {fS ∈ F |{x} ⊆ S}.

The Weighted Constraint Satisfaction Problem consists in finding a complete
assignment tminimizing the combined (sum) cost function

∑
fS∈F fS(t[S]). This

optimization problem has an associated NP-complete decision problem.
Enforcing a given local consistency property on a problem P involves trans-

forming P = (X,F, k) into a problem P ′ = (X,F ′, k) that is equivalent to
P (all complete assignments keep the same cost) and that satisfies the con-
sidered local consistency property. This enforcing may increase f∅ and pro-
vide an improved lower bound on the optimal cost. It is achieved using Equiv-
alence Preserving Transformations (EPTs) that move costs between different
scopes [8–12, 21, 22, 24, 31]. In particular, node consistency [21] (NC) satisfies
∀x ∈ X, mina∈domain(x) fx(a) = 0, ∀a ∈ domain(x), f∅ + fx(a) < k. Soft arc
consistency (AC∗) [21, 31] satisfies NC and ∀fS ∈ F, ∀x ∈ S, ∀a ∈ domain(x),
mint∈l(S\{x}) fS(t ∪ {(x, a)}) = 0.

3 Dead-End Elimination

The original dead-end elimination criterion is [14]:

∑

fS∈Γ (x)

max
t∈l(S\{x})

fS(t ∪ {(x, a)}) ≤
∑

fS∈Γ (x)

min
t∈l(S\{x})

fS(t ∪ {(x, b)}). (1)

Dead-End Elimination for WCSP 265

This condition implies that value b can be safely removed from the domain of x
since the total cost of all the cost functions on x taking their best assignment
with x assigned b is still worse than that produced by their worst assignment
with x assigned a. This condition was further improved in [17]:

∑

fS∈Γ (x)

max
t∈l(S\{x})

fS(t ∪ {(x, a)})− fS(t ∪ {(x, b)}) ≤ 0. (2)

where the best and worst-cases are replaced by the worst difference in costs for
any labeling of the remaining variables in the scope of each cost function. It is
easy to see that this condition is always stronger than the previous one.

More recently, the authors in [26] reformulated Equation 2 in the specific
context of WCSP with bounded cost addition a⊕ b = min(k, a+ b) proving that
the reformulated criterion1 is equivalent to soft neighborhood substitutability
when Γ (x) is separable (i.e., ∀fS , fS′ ∈ Γ (x) × Γ (x), S ∩ S′ = {x}) and α < k.
In practice, testing Eq. 2 or its reformulation will prune the same values.

They also noticed that if the problem is soft arc consistent then the worst-cost
differences are always positive. Equation 1 can be further simplified thanks to
soft AC because all the best-case terms are precisely equal to zero:

∑

fS∈Γ (x)

max
t∈l(S\{x})

fS(t ∪ {(x, a)}) ≤ fx(b). (3)

We propose a stronger condition than Eq. 2 or Eq. 3 by discarding forbidden
partial assignments with x assigned b when computing the worst-cost difference:

∑

fS∈Γ (x)

max
t∈l(S\{x}) st. C(fS ,t∪{(x,b)})<k

fS(t ∪ {(x, a)})− fS(t ∪ {(x, b)}) ≤ 0. (4)

where C(fS , t) = fs(t) +
∑

y∈S,|S|>1 fy(t[y]) + f∅. This new condition is equiv-
alent to Eq. 2 except that some tuples have been discarded from the max op-
eration. These discarded tuples t are forbidden partial assignments when x is
assigned b because the sum of the associated cost function fS(t ∪ {(x, b)}) plus,
if |S| > 1, all the unary costs on the variables in S assigned by t ∪ {(x, b)} plus
the current lower bound f∅ is greater than or equal to the current upper bound
k. Such tuples t do not need to be considered by the max operation because
t∪ {(x, b)} does not belong to any optimal solution, whereas t∪ {(x, a)} can be.

For CSP (i.e., k = 1), Eq. 2 and Eq. 4 are both equivalent to neighborhood
substitutability [15]. For Max-SAT, Eq. 3 and Eq. 2 are equivalent if the problem
is soft AC, and correspond to the Dominating 1-clause rule [29]. In the general
case, Eq. 4 is stronger2 (more domain values can be pruned) than Eq. 2, which is

1 They replace the maximum of cost differences α−β by the opposite of the minimum
of cost pairs (β, α), ordered by the relation (β, α) ≤ (β′, α′) ≡ β − α < β′ − α′ ∨
(β − α = β′ − α′ ∧ α < α′). Equation 2 becomes

∑
fS∈Γ (x)∪fx

mint∈l(S\{x})(fS(t ∪
{(x, b)}), fS(t ∪ {(x, a)})) ≥ 0 where (β, α) ≥ 0 if β ≥ α.

2 The definition of soft AC on fair VCSPs [12] makes Eq. 4 and Eq. 2 equivalent.

266 S. de Givry, S. Prestwich, and B. O’Sullivan

stronger than Eq. 3. More complex dominance criteria have been defined in the
context of protein design (e.g., a value being dominated by a set of values instead
of a single one, see [30] for an overview), but they all incur higher computational
costs. In the next section, we recall how to enforce Eq. 2 in WCSP, as originally
shown in [26]. Then, in Section 5, we present a modified version to partially
enforce the two conditions, Eq. 4 and 3, with a lower time complexity.

4 Enforcing Soft Neighborhood Substitutability

Assuming a soft arc consistent WCSP (see e.g., W-AC*2001 algorithm in [24]),
enforcing partial3 soft neighborhood substitutability (PSNSr) is described by
Algorithm 1. For each variable x, all the pairs of values (a, b) ∈ domain(x) ×
domain(x) with a < b are checked by the function DominanceCheck to see if b
is dominated by a or, if not, vice versa (line 3). At most one dominated value
is added to the value removal queue Δ at each inner loop iteration (line 2).
Removing dominated values (line 4) can make the problem arc inconsistent,
requiring us to enforce soft arc consistency again. We successively enforce soft
AC and PSNSr until no value removals are made by both enforcing algorithms.

Algorithm 1: Enforce PSNSr [26]

Procedure PSNSr(P : AC∗ consistent WCSP)
Δ := ∅ ;
foreach x ∈ variables(P) do1

foreach (a, b) ∈ domain(x)× domain(x) such that a < b do2
R := DominanceCheck(x, a → b) ;
if R = ∅ then R := DominanceCheck(x, b → a) ;3
Δ := Δ ∪ R ;

foreach (x, a) ∈ Δ do remove (x, a) from domain(x) ;4

/* Check if value a dominates value b */
Function DominanceCheck(x, a → b): set of dominated values

if fx(a) > fx(b) then return ∅ ;5
δa→b := fx(a) ;
foreach fs ∈ F such that {x} ⊂ S do

δ := getDifference(fs , x, a → b) ;
δa→b := δa→b + δ ;
if δa→b > fx(b) then return ∅ ;6

return {(x, b)} /* δa→b ≤ fx(b) */ ;

/* Compute largest difference in costs when using a instead of b */
Function getDifference(fs , x, a → b): cost

δa→b := 0 ;7
foreach t ∈ l(S \ {x}) do

δa→b := max(δa→b, fs(t ∪ {(x, a)}) − fs(t ∪ {(x, b)})) ;

return δa→b ;

Function DominanceCheck(x, a → b) computes the sum of worst-cost differ-
ences as defined by Equation 2 and returns a non-empty set containing value b if
Eq. 2 is true, meaning that b is dominated by value a. It exploits early breaks as

3 Enforcing complete soft neighborhood substitutability is co-NP hard as soon as
k �= +∞ (i.e., no restriction on α in the reformulated Equation 2).

Dead-End Elimination for WCSP 267

soon as Eq. 2 can be falsified (lines 5 and 6). Worst-cost differences are computed
by the function getDifference(fs, x, a → b) applied to every cost function related
to x. Worst-cost differences are always positive (line 7) due to soft AC.

The worst-case time complexity of getDifference is O(dr−1) for WCSP with
maximum arity r. DominanceCheck is O(qdr−1) where q = |Γ (x)|. Thus, the
time complexity of one iteration of Algorithm 1 (PSNSr) is O(nd2qdr−1+nd) =
O(edr+1) where e = nq. Interleaving PSNSr and soft AC until a fixed point is
reached is done at most nd times, resulting in a worst-case time complexity of
PSNSr in O(nedr+2). Its space complexity is O(nd2) when using residues [26].

In the following, we always consider PSNSr using the better condition given
by Equation 4 instead of Eq. 2. This does not change the previous complexities.

5 Enforcing Partial SNS and Dead-End Elimination

In order to reduce the time (and space) complexity of pruning by dominance,
we test only one pair of values per variable. The new algorithm is described in
Algorithm 2. We select the pair (a, b) ∈ domain(x) × domain(x) in an opti-
mistic way such that a is associated with the minimum unary cost and b to the
maximum unary cost (lines 8 and 9). Because arc consistency also implies node
consistency, we always have fx(a) = 0.4 When all the unary costs (including the
maximum) are null (line 10), we select as b the maximum domain value (or its
minimum if this value is already used by a). By doing so, we should favor more
pruning on max-closed or submodular subproblems5.

Instead of checking the new Equation 4 for the pair (a, b) alone, we also check
Eq. 3 for all the pairs (a, u) such that u ∈ domain(x) \ {a}. This is done in
the function MultipleDominanceCheck (lines 16 and 17). This function computes
at the same time the sum of maximum costs uba for value a (lines 12 and 13)
and the sum of worst-cost differences δa→b for the pair (a, b). The new func-
tion getDifference-Maximum(fs, x, a → b) now returns the worst-cost difference,
discarding forbidden assignments with t ∪ {(x, b)} (line 18), as suggested by
Eq. 4, and also the maximum cost in fS for x assigned a. By construction of
the two criteria, we have δa→b ≤ uba, so the stopping condition is unchanged at
line 14. When the maximum cost of a value is null for all its cost functions, we
can directly remove all the other values in the domain avoiding any extra work
(line 15). Finally, if the selected pair (a, b) prunes b, then a new pair is checked.

Notice that DEEr is equivalent to PSNSr on problems with Boolean variables,
such as Weighted Max-SAT. For problems with non-Boolean domains, DEEr is
still able to detect and prune several values per variable. Clearly, its time (resp.
space) complexity is O(nedr) (resp. O(n) using only one residue per variable),
reducing by a factor d2 the time and space complexity compared to PSNSr.

4 In fact, we set the value a to the unary support offered by NC [21] or EDAC [22].
5 Assuming a problem with two variables x and y having the same domain and a single
submodular cost function f(x, y) = 0 if x ≤ y else x− y or a single max-closed con-
straint x < y, then DEEr assigns x = min(domain(x)) and y = max(domain(y)).

268 S. de Givry, S. Prestwich, and B. O’Sullivan

Algorithm 2: Enforce DEEr

Procedure DEEr(P : AC∗ consistent WCSP)
Δ := ∅ ;
foreach x ∈ variables(P) do

a := argminu∈domain(x) fx(u) ;8

b := arg maxu∈domain(x) fx(u) ;9

if a = b /* ∀u ∈ domain(x), fx(u) = 0 */ then10
if a = max(domain(x)) then

b := min(domain(x)) ;
else

b := max(domain(x)) ;

R := MultipleDominanceCheck(x, a → b) ;
if R = ∅ then R := MultipleDominanceCheck(x, b → a) ;11
Δ := Δ ∪ R ;

foreach (x, a) ∈ Δ do remove (x, a) from domain(x) ;

/* Check if value a dominates value b and possibly other values */
Function MultipleDominanceCheck(x, a → b): set of dominated values

if fx(a) > fx(b) then return ∅ ;
δa→b := fx(a) ;
uba := fx(a) ;12
foreach fs ∈ F such that {x} ⊂ S do

(δ, ub) := getDifference-Maximum(fs, x, a → b) ;
δa→b := δa→b + δ ;
uba := uba + ub ;13
if δa→b > fx(b) then return ∅ ;14

if uba = 0 then return {(x, u)|u ∈ domain(x)} \ {(x, a)} ;15
R := {(x, b)} /* δa→b ≤ fx(b) */ ;
foreach u ∈ domain(x) such that u �= a do16

if (fx(u) ≥ uba) then R := R ∪ {(x, u)} ;17

return R ;

/* Compute largest cost difference and maximum cost for value */
Function getDifference-Maximum(fs , x, a → b): pair of costs

δa→b := 0 ;
uba := 0 ;
foreach t ∈ l(S \ {x}) do

if fs(t ∪ {(x, b)}) + f∅ + fx(b) +
∑

y∈S\{x} fy(t[y]) < k then18
δa→b := max(δa→b, fs(t ∪ {(x, a)}) − fs(t ∪ {(x, b)})) ;

uba := max(uba, fs(t ∪ {(x, a)})) ;

return (δa→b, uba) /* δa→b ≤ uba */ ;

6 Experimental Results

We implemented PSNSr and DEEr in toulbar26. All methods use residues and
variable queues with timestamps as in [26]. PSNSr uses MultipleDominanceCheck
and getDifference-Maximum instead of DominanceCheck and getDifference. Mul-
tipleDominanceCheck prunes the dominated values directly instead of queuing
them into R. It speeds-up further dominance checks without assuming soft AC
anymore during the process (soft AC being restored at the next iteration until a
fixed point is reached for AC and SNS/DEE). We compared PSNSr and DEEr on
a collection of binary WCSP benchmarks (http://costfunction.org) (except

6 C++ solver version 0.9.6 mulcyber.toulouse.inra.fr/projects/toulbar2/

http://costfunction.org
mulcyber.toulouse.inra.fr/projects/toulbar2/

Dead-End Elimination for WCSP 269

for spot5 using ternary cost functions). The celar [4] (n ≤ 458, d ≤ 44) and com-
putational protein design [1] (n ≤ 55, d ≤ 148) have been selected as they offer
good opportunities for neighborhood substitutability, at least in preprocessing
as shown in [14, 20]. We added Max SAT combinatorial auctions using the CATS
generator [27] with 60 goods and a varied number of bids from 70 to 200 (100
to 230 for regions) [23]. Other benchmarks were selected by [26] and include:
DIMACS graph coloring (minimizing edge violations) (n ≤ 450, d ≤ 9), optimal
planning [7] (n ≤ 1433, d ≤ 51), spot5 (n ≤ 1057, d = 4) [2], and uncapacitated
warehouse location [22] (n ≤ 1100, d ≤ 300). Experiments were performed on a
cluster of AMD Opteron 2.3 GHz under Linux.

In Table 1, we compared a Depth First Branch and Bound algorithm using
EDAC [22] alone (EDAC column), EDAC and DEEr (EDAC+DEEr), EDAC and
PSNSr in preprocessing only (EDAC+PSNSr

pre), EDAC and PSNSr in prepro-
cessing and DEEr during search (EDAC+PSNSr

pre+DEEr), EDAC and PSNSr

(EDAC+PSNSr), and no initial upper bound for all. For each benchmark, we
report the number of instances, and for each method, the number of instances
optimally solved in less than 1,200 seconds. In parentheses, average CPU time
over the solved instances (in seconds), average number of nodes, and average
number of value removals per search node are reported where appropriate. First,
we used a static lexicographic variable ordering and a binary branching scheme
(toulbar2 options -nopre -svo -d:). DEEr solved always a greater or equal num-
ber of instances compared to EDAC alone, and it performed better than PSNSr

on celar, planning, protein, and warehouse benchmarks, all having large domains.
We also give the results, when available, in terms of the number of solved in-
stances by PSNSr over the total number of instances solved by at least one
method as reported in [26], showing the good performance of our approach. They
used the same settings except a cluster of Xeon 3.0 GHz and max degree static
variable ordering (only identical to our lexicographic ordering for warehouse). In
addition, we solved the celar7-sub1 instance with the same max degree ordering:
EDAC+DEEr solved in (7.7 seconds, 57,584 nodes, 0.96 removals per node),
and EDAC+PSNSr in (69.5, 39,346, 7.2), or (86.4, 70,896, 6) as reported in [26].
Secondly, we used a dynamic variable ordering combining Weighted Degree with
Last Conflict [25] and an initial Limited Discrepancy Search (LDS) phase [18]
with a maximum discrepancy of 2 (option -l=2, except for protein using also
-sortd -d: as in [1]). This greatly improved the results for all the methods and
benchmarks except for warehouse where LDS slowed down the methods. DEEr

remained the best method in terms of the number of solved instances; PSNSr

in preprocessing and DEEr during search being a good alternative, especially
on the protein benchmark. We compared a subset of our results with the last
Max SAT 2012 evaluation (http://maxsat.ia.udl.cat:81/12). With roughly
the same computation time limit (20 min. with 2.3 GHz instead of 30 min. with
AMD Opteron 1.5 GHz), for auction/paths and auction/scheduling, DEEr solved
85+82 instances among 170, being in 3rd position among 11 Max SAT solvers.

http://maxsat.ia.udl.cat:81/12

270 S. de Givry, S. Prestwich, and B. O’Sullivan

T
a
b
le

1
.
F
o
r
ea
ch

m
et
h
o
d
,
n
u
m
b
er

o
f
in
st
a
n
ce
s
o
p
ti
m
a
ll
y
so
lv
ed

in
le
ss

th
a
n
1
,2
0
0
se
co
n
d
s,

a
n
d
in

p
a
re
n
th
es
es
,
av

er
a
g
e
C
P
U

ti
m
e
(i
n

se
co
n
d
s)

ov
er

th
e
so
lv
ed

in
st
a
n
ce
s,

av
er
a
g
e
n
u
m
b
er

o
f
se
a
rc
h
n
o
d
es
,
a
n
d
av

er
a
g
e
n
u
m
b
er

o
f
va

lu
e
re
m
ov
a
ls

p
er

n
o
d
e
w
h
er
e
a
p
p
ro
p
ri
a
te

#
in
st
.

E
D
A
C

E
D
A
C
+
D
E
E

r
E
D
A
C
+
P
S
N
S
r p
r
e
E
D
A
C
+
P
S
N
S
r p
r
e
+
D
E
E

r
E
D
A
C
+
P
S
N
S
r

[2
6
]

D
e
p
th

F
ir
s
t
B
r
a
n
c
h

a
n
d

B
o
u
n
d

w
it
h

s
ta

ti
c

v
a
r
ia
b
le

o
r
d
e
r
in

g
c
e
la
r

4
6

2
4

(1
8
0
.6

,
9
5
4
K
)

2
4
(1

8
7
.2
,
8
7
7
K
,
0
.8
0
)

2
4
(1

8
8
.4
,
9
4
5
K
)

2
4
(1

8
7
.7
,
8
7
7
K
,
0
.7
7
)

1
7
(1

6
8
.0
,
1
0
0
K
,
8
.3
3
)
1
2
/
1
6

c
o
lo
ri
n
g

4
0

1
9
(4

7
.7
,
2
.4
M

)
1
9
(4

5
.7
,
2
.2
M

,
0
.0
8
)

1
9
(4

6
.9
,
2
.3
M

)
1
9
(4

5
.6
,
2
.2
M

,
0
.0
8
)
2
0

(1
0
3
.5

,
3
.7

M
,
0
.9

6
)

8
/
8

p
la
n
n
in
g

7
6

6
8
(9

.8
,
3
9
K
)

7
5
(7

.2
,
3
2
K
,
4
.4
6
)

6
9
(1

8
.3
,
1
2
7
K
)

7
5

(6
.9

,
3
2
K
,
4
.4

6
)

7
5
(1

0
.5
,
3
1
K
,
5
.2
7
)
2
7
/
2
7

p
ro

te
in

1
2

9
(3

4
.4
,
7
0
K
)

9
(3

0
.9
,
4
2
K
,
1
.5
0
)

9
(2

6
.0
,
5
0
K
)

9
(2

5
.7

,
4
0
K
,
1
.3

2
)

9
(1

3
9
.0
,
3
1
K
,
4
.3
7
)

sp
o
t5

2
4

4
(0

.1
,
6
8
)

7
(9

3
.7
,
2
.7
M

,
0
.4
2
)

6
(1

7
2
.7
,
3
.7
M

)
7
(9

3
.2
,
2
.7
M

,
0
.3
9
)

7
(8

7
.0

,
2
.5

M
,
0
.4

2
)

3
/
3

w
a
re
h
o
u
se

5
5

4
6

(5
5
.6

,
7
0
9
)

4
6
(6

6
.1
,
5
4
2
,
3
4
.3
4
)

4
6
(6

1
.3
,
6
8
8
)

4
6
(5

8
.6
,
5
4
2
,
3
4
.7
3
)

4
5
(5

6
.3
,
4
2
9
,
7
5
.0
0
)
2
9
/
3
4

a
u
c
ti
o
n
/
p
a
th

s
4
2
0

1
3
8
(2

2
5
.4
,
5
.9
M

)
1
4
8

(2
1
2
.8

,
5
.2

M
,
0
.0

6
)
1
3
8
(2

2
3
.5
,
5
.9
M

)
1
4
8
(2

1
3
.7
,
5
.2
M

,
0
.0
6
)

1
4
8
(2

1
4
.0
,
5
.2
M

,
0
.0
6
)

a
u
c
t.
/
re
g
io
n
s

4
2
0

3
6
4
(1

3
7
.5
,
3
.3
M

)
4
0
4
(9

8
.1
,
1
.9
M

,
0
.0
3
)
3
7
3
(1

3
1
.2
,
3
.2
M

)
4
0
3
(9

4
.3
,
1
.9
M

,
0
.0
3
)

4
0
5

(1
0
0
.2

,
2
M

,
0
.0

3
)

a
./
sc
h
e
d
u
li
n
g

4
2
0
3
9
2

(1
1
5
.3

,
2
.3

M
)

3
9
2
(1

1
8
.4
,
2
.3
M

,
0
.0
0
)
3
9
2
(1

1
3
.3
,
2
.3
M

)
3
9
1
(1

1
5
.6
,
2
.2
M

,
0
.0
0
)

3
9
0
(1

1
4
.1
,
2
.2
M

,
0
.0
0
)

to
ta

l
1
5
1
3

1
0
6
4

1
1
2
4

1
0
7
6

1
1
2
2

1
1
1
6

D
e
p
th

F
ir
s
t
B
r
a
n
c
h

a
n
d

B
o
u
n
d

w
it
h

d
y
n
a
m

ic
v
a
r
ia
b
le

o
r
d
e
r
in

g
a
n
d

in
it
ia
l
L
D
S

w
it
h

m
a
x
im

u
m

d
is
c
r
e
p
a
n
c
y

o
f
2

c
e
la
r

4
6

4
0
(2

2
.7
,
4
5
K
)

4
0
(2

4
.5
,
4
3
K
,
1
.9
0
)

4
0

(1
9
.8

,
4
0
K
)

4
0
(2

4
.9
,
3
8
K
,
1
.8
0
)

3
8
(1

1
4
.0
,
2
5
K
,
1
0
.6
4
)

c
o
lo
ri
n
g

4
0

2
3
(6

.6
,
1
6
7
K
)

2
4
(3

9
.4
,
4
8
4
K
,
0
.8
6
)

2
3
(6

.7
,
1
6
7
K
)

2
4
(3

8
.9
,
4
8
4
K
,
0
.8
6
)

2
4

(9
.1

,
1
6
2
K
,
1
.1

9
)

p
la
n
n
in
g

7
6

7
6
(1

.3
,
1
.5
K
)

7
6
(1

.2
,
1
.4
K
,
3
.0
5
)

7
6

(
0
.8

,
1
.1

K
)

7
6
(1

.3
,
1
.5
K
,
3
.0
2
)

7
6
(1

.2
,
1
.3
K
,
3
.3
4
)

p
ro

te
in

1
2

9
(1

0
.1
,
7
.7
K
)

9
(1

0
.5
,
8
K
,
1
.7
7
)

9
(9

.0
,
1
0
K
)

9
(8

.5
,
8
K
,
1
.3

3
)

9
(5

5
.0
,
1
1
K
,
5
.6
7
)

sp
o
t5

2
4

8
(2

1
.7
,
6
6
9
K
)

8
(1

4
.1
,
4
1
8
K
,
0
.1
3
)

8
(2

7
.1
,
8
4
1
K
)

8
(1

6
.2
,
4
8
3
K
,
0
.1
4
)

8
(1

2
.3

,
3
5
0
K
,
0
.1

9
)

w
a
re
h
o
u
se

5
5

4
5

(6
7
.1

,
9
5
7
)

4
3
(3

0
.7
,
6
3
0
,
1
7
.8
7
)

4
5
(7

0
.8
,
9
4
9
)

4
3
(3

0
.2
,
6
1
8
,
1
8
.6
5
)

4
2
(8

.7
,
4
1
1
,
3
1
.4
5
)

a
u
c
ti
o
n
/
p
a
th

s
4
2
0

3
4
5
(1

3
9
.0
,
2
.5
M

)
3
5
6

(1
3
7
.4

,
2
.4

M
,
0
.1

6
)
3
4
6
(1

3
8
.5
,
2
.5
M

)
3
5
6
(1

3
7
.6
,
2
.4
M

,
0
.1
6
)

3
5
5
(1

3
9
.0
,
2
.4
M

,
0
.1
6
)

a
u
c
t.
/
re
g
io
n
s

4
2
0

4
2
0

(2
.5

,
2
7
K
)

4
2
0

(2
.5

,
2
7
K
,
0
.0

3
)

4
2
0

(2
.5

,
2
7
K
)

4
2
0

(2
.5

,
2
7
K
,
0
.0

3
)

4
2
0

(2
.5

,
2
7
K
,
0
.0

3
)

a
./
sc
h
e
d
u
li
n
g

4
2
0

4
1
3

(5
4
.8

,
1
.5

M
)

4
1
3
(5

7
.8
,
1
.5
M

,
0
.0
0
)

4
1
3
(5

5
.5
,
1
.5
M

)
4
1
3
(5

7
.8
,
1
.5
M

,
0
.0
0
)

4
1
3
(5

7
.8
,
1
.5
M

,
0
.0
0
)

to
ta

l
1
5
1
3

1
3
7
9

1
3
8
9

1
3
8
0

1
3
8
9

1
3
8
5

Dead-End Elimination for WCSP 271

7 Conclusion

We have presented a lightweight algorithm for automatically exploiting a dead-
end elimination dominance criterion for WCSPs. Experimental results show that
it can lead to significant reductions in search space and run-time on several
benchmarks. In future work, we plan to study such dominance criteria applied
during search in integer linear programming.

Acknowledgements. We thank the Genotoul Bioinformatic platform for the
cluster and Seydou Traoré, Isabelle André, and Sophie Barbe for the protein
instances.

References

1. Allouche, D., Traoré, S., André, I., de Givry, S., Katsirelos, G., Barbe, S., Schiex, T.:
Computational protein design as a cost function network optimization problem.
In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 840–849. Springer, Heidelberg
(2012)

2. Bensana, E., Lemâıtre, M., Verfaillie, G.: Earth observation satellite management.
Constraints 4(3), 293–299 (1999)

3. Bistarelli, S., Faltings, B.V., Neagu, N.: Interchangeability in Soft CSPs. In: Van
Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 31–46. Springer, Heidelberg
(2002)

4. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency
assignment. Constraints Journal 4, 79–89 (1999)

5. Chu, G., Banda, M., Stuckey, P.: Exploiting subproblem dominance in constraint
programming. Constraints 17(1), 1–38 (2012)

6. Chu, G., Stuckey, P.J.: A generic method for identifying and exploiting dominance
relations. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 6–22. Springer,
Heidelberg (2012)

7. Cooper, M., Cussat-Blanc, S., de Roquemaurel, M., Régnier, P.: Soft arc con-
sistency applied to optimal planning. In: Benhamou, F. (ed.) CP 2006. LNCS,
vol. 4204, pp. 680–684. Springer, Heidelberg (2006)

8. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artificial Intelligence 174, 449–478 (2010)

9. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M.: Virtual arc con-
sistency for weighted CSP. In: Proc. of AAAI 2008, Chicago, IL (2008)

10. Cooper, M.C.: High-order consistency in Valued Constraint Satisfaction. Con-
straints 10, 283–305 (2005)

11. Cooper, M.C., de Givry, S., Schiex, T.: Optimal soft arc consistency. In: Proc. of
IJCAI 2007, Hyderabad, India, pp. 68–73 (January 2007)

12. Cooper, M.C., Schiex, T.: Arc consistency for soft constraints. Artificial Intelli-
gence 154(1-2), 199–227 (2004)

13. Dahiyat, B., Mayo, S.: Protein design automation. Protein Science 5(5), 895–903
(1996)

14. Desmet, J., Maeyer, M., Hazes, B., Lasters, I.: The dead-end elimination theorem
and its use in protein side-chain positioning. Nature 356(6369), 539–542 (1992)

15. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction prob-
lems. In: Proc. of AAAI 1991, Anaheim, CA, pp. 227–233 (1991)

272 S. de Givry, S. Prestwich, and B. O’Sullivan

16. Georgiev, I., Lilien, R., Donald, B.: Improved pruning algorithms and divide-and-
conquer strategies for dead-end elimination, with application to protein design.
Bioinformatics 22(14), e174–e183 (2006)

17. Goldstein, R.: Efficient rotamer elimination applied to protein side-chains and re-
lated spin glasses. Biophysical Journal 66(5), 1335–1340 (1994)

18. Harvey, W.D., Ginsberg, M.L.: Limited discrepency search. In: Proc. of the 14th
IJCAI, Montréal, Canada (1995)

19. Jouglet, A., Carlier, J.: Dominance rules in combinatorial optimization problems.
European Journal of Operational Research 212(3), 433–444 (2011)

20. Koster, A.M.C.A.: Frequency assignment: Models and Algorithms. Ph.D. thesis,
University of Maastricht, The Netherlands (November 1999),
www.zib.de/koster/thesis.html

21. Larrosa, J.: On arc and node consistency in weighted CSP. In: Proc. AAAI 2002,
Edmondton (CA), pp. 48–53 (2002)

22. Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: get-
ting closer to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI,
Edinburgh, Scotland, pp. 84–89 (August 2005)

23. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving.
Artif. Intell. 172(2-3), 204–233 (2008)

24. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif.
Intell. 159(1-2), 1–26 (2004)

25. Lecoutre, C., Säıs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in
constraint programming. Artificial Intelligence 173, 1592–1614 (2009)

26. Lecoutre, C., Roussel, O., Dehani, D.E.: WCSP Integration of Soft Neighborhood
Substitutability. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 406–421.
Springer, Heidelberg (2012)

27. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a Universal Test Suite for
Combinatorial Auction Algorithms. In: ACM E-Commerce, pp. 66–76 (2000)

28. Looger, L., Hellinga, H.: Generalized dead-end elimination algorithms make large-
scale protein side-chain structure prediction tractable: implications for protein de-
sign and structural genomics. Journal of Molecular Biology 307(1), 429–445 (2001)

29. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. J.
Algorithms 36(1), 63–88 (2000)

30. Pierce, N., Spriet, J., Desmet, J., Mayo, S.: Conformational splitting: A more
powerful criterion for dead-end elimination. Journal of Computational Chem-
istry 21(11), 999–1009 (2000)

31. Schiex, T.: Arc consistency for soft constraints. In: Dechter, R. (ed.) CP 2000.
LNCS, vol. 1894, pp. 411–424. Springer, Heidelberg (2000)

www.zib.de/koster/thesis.html

	Dead-End Elimination for Weighted CSP
	Introduction
	Weighted Constraint Satisfaction Problems
	Dead-End Elimination
	Enforcing Soft Neighborhood Substitutability
	Enforcing Partial SNS and Dead-End Elimination
	Experimental Results
	Conclusion

