

Yeast lipid bodies under sunlights, dynamic and structural studies using SMIS and DISCO beamlines

Jean-David J.-D. Vindigni, Yann Gohon, Roselyne Tâche, Frederic Jamme, Alexandre A. Giuliani, Franck Wien, Thierry Chardot, Pierre Briozzo, Marine Froissard

► To cite this version:

Jean-David J.-D. Vindigni, Yann Gohon, Roselyne Tâche, Frederic Jamme, Alexandre A. Giuliani, et al.. Yeast lipid bodies under sunlights, dynamic and structural studies using SMIS and DISCO beamlines. Soleil User Meeting, 2012, 2012. hal-02746365

HAL Id: hal-02746365 https://hal.inrae.fr/hal-02746365

Submitted on 3 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

YEAST LIPID BODIES UNDER SUNLIGHTS AgroParisTech DYNAMIC AND STRUCTURAL STUDIES USING SMIS AND DISCO BEAMLINES

Jean-David Vindigni¹, Yann Gohon¹, Roselyne Tâche¹, Alexandre Giuliani^{2,3}, Frédéric Jamme^{2,3}, Franck Wien², Thierry Chardot¹, Pierre Briozzo¹, Marine Froissard¹

¹ Dynamique et Structure des Corps Lipidiques, UMR 1318 IJPB, INRA AgroParisTech, 78 026 Versailles; ² Synchrotron SOLEIL, 91 192 Gif-sur-Yvette, ³ CEPIA, U1008, INRA, 44 316 Nantes

CONTEXT

Lipid body: a complex and dynamic organelle

In cells, neutral lipids (triglycerides and stery) esters) are stored in organelles called lipid bodies (LB) [1]. They are present in all organisms, from bacteria to plants and animals.

Lipid bodies: not well known but with rising interest

From biologists

- LB is not an inert fat depot but a dynamic organelle which regulates cell metabolism and signaling

From medical field

→ LBs have a crucial role in diseases with increasing prevalence (obesity, diabetes) [2]

→Oleosins (from peanut and hazelnut), seed LB associated proteins are allergens [3].

From industrials

crushing : oils for food and non food (biofuel and green chemistry) productions are extratcted from seed LBs

⇒ food processing industry, cosmetic and health : oleosins harbor interfacial properties and could be use as emulsifying agents or in drug delivery systems [4]

Oleosins, seed lipid body associated proteins

Oleosins are LB integral proteins

Predicted structure = tri-block organization :

⇒ variable N-terminal and C-terminal part, exposed at the surface and in contact with the cytosol

> highly hydrophobic central part inserted into the phospholipid monolayer and/or the TAG core.

Questions and objectives

⇒ Role on lipid filling

⇒ Role on LB structure and stabilization

data ⇒ Structural oleosins on LB inserted into (natural environment)

cytosol

RESULTS

Oleosins are targeted to lipid bodies in S. cerevisiae

Photonic microscopy pictures (bright field and epifluorescence) of yeast expressing Erg6p-RFP (lipid body Delta(24)-sterol C-methyltransferase) and AtClo1-GFP [5].

Nomarski

Erg6p-RFP

AtClo1-GFP

overlay

STRUCTURAL STUDIES

Ats3 oleosin structures in surfactants are contradictory

Using SRCD on DISCO beamline, we obtained the structure of AtS3 oleosin solubilized in various surfactants, 2% SDS, Amphipol 0,5% A8-35R and 10 mM Foscholine [6]

What is the fold of AtS3 in a natural environment?

Oleosins induce neutral lipid accumulation in yeast

Thin sections of yeasts expressing AtS3-GFP or AtClo1-GFP (transmitted electron microscopy)

Lipid bodies, round and white structures, are more abundant in cells expressing oleosins when compared to the control cells.

DYNAMIC STUDIES

Neutral lipid content heterogeneity revealed by single cell FTIR analysis

AtS3 oleosin is massively associated with lipid bodies in yeast

Purified LBs are analyzed:

- using microscopy
- using dynamic light scattering

The associated proteins are

AtS3-GFP

AtS3 oleosin structure in natural environment is mainly beta

Conclusion and perspectives of structural studies

- > We obtained the first SRCD data on whole organelle and information on the fold of AtS3 oleosin in a natural environment, lipid bodies. We observed that the fold in LB was the same as the fold of AtS3 solubilized in Foscholine
- → We would validate our results using SRCD-FTIR coupled analysis on dry films. We obtained the first spectra on DISCO and SMIS in December 2011.

BIBLIOGRAPHIE [1] Murphy (2011). Protoplasma. [2] Bostrom et al. (2007). Nat. Cell Biol. 9, 1286. [3] Pons et al. (2002). Allergy. 57, 88. [4] Capuano et al. (2007). Biotechnol. Adv. 25, 203. [5] Froissard et al. (2009). FEMS Yeast Res. 9, 428. [6] Gohon et al. (2011). Biochim. Biophys. Acta. 1808, 706. [7]

Neutral lipid increase is correlated with global metabolic modifications

Metabolic modifications were detected using FTIR and confirmed by biochemical analysis

Conclusion and perspectives of dynamic studies

- → Using ZnSe hemisphere and synchrotron radiation, we obtained yeast single cell FTIR spectra. We confirmed the cell heterogeneity observed with fluorescence microscopy.
- ⇒ We observed that lipid accumulation induces global metabolic modifications. These results were confirmed by biochemical analysis and revealed a link between storage lipid and storage carbohydrate fluxes
- > Now, we will determine if these metabolic modifications are the consequence of pathway regulations

Bassan et al. (2010). The Analyst. 135, 268.

at the transcription level by conducting a transcriptomic analysis of yeast cells