Characteristics of epidemic processes Diusion approximation for density dependent Markov Jump processes

Inference for epidemics using diusion processes

Constraints related to the observation of the epidemic process Mechanistic model, mathematical formalism and statistical framew

λ 0 basic trans. rate, λ 1 seasonal eect λ 1 = 0 ⇒ oscillations vanish Observations: taken as new infecteds or new removeds (short infectious period) Consider statistics for diusion processes for an analytic approach (third step) ⇒ Before the third step: need of a rigorous and user-friendly method to build diusion processes (second step). 

E → R + indexed by l ∈ E - (Z N (t), t ≥ 0) Markov process with state space E, starting from Z(0) = Nz 0 Transition rates k → k + l : q k,k+l (t) = α l (t, k)
Fundamental assumption for density dependent Markov process (H): The functions α l (.) satisfy:

∀x ∈ [0, 1] d , ∀t ∈ [0, T], 1 N α l (t, [Nx]) → β l (t, x) as N → ∞ (for y = (x 1 , . . . , x d ) ∈ R d , [y ] = ([y 1 ], . . . , [y d ]) with [y i ] integer part of y i

Main idea

The deterministic limit of Z N (t) N , the Gaussian approximation of 

ll τ β l (t, x) Approximation result Deterministic limit: x(t) = z 0 + t 0 b(s, x(s))ds satises, sup t∈[0,T] Z N (t) N -x(t) -→ N→∞ 0 in probability.
CLT: Dene Φ(t, s) as the solution of dΦ(t,s) Q-matrix of Z(t): q k,k+L = α L (k).

dt = ∂b ∂x (t, x(t))Φ(t, s), Φ(s, s) = Id √ N( Z(t) N -x(t)) -→ N→∞ g(t) centered Gaussian process with covariance Cov(g(t), g(r)) = t∧r 0 Φ(t ∧ r, s)Σ(s, x(s))Φ(t ∧ r, s) τ ds Di. Approx.: Dene σ(t, x(t)) a solution of σσ τ = Σ, Xt solution of dXt = b(t, Xt)dt + 1 √ N σ(t, Xt)dBt, X 0 = z 0 : sup t∈[0,T] Z(t) N -Xt ≤ C T log(N)/N if 1 N α l (•) ≡ β l (•) 9/25
Computation of the limit functions β L (x)

Let x = (s, i) ∈ [0, 1] 2 1 N α (-1,1) ([Nx]) = 1 N λ N [Ns][Ni] -→ N→+∞ β (-1,1) (s, i) = λsi 1 N α (0,-1) ([Nx]) = 1 N γ[Ni] -→ N→+∞ β (0,-1) (s, i) = γi.
Functions b and Σ depend on the two parameters 

(λ, γ) ⇒ b (λ,γ) (s, i), Σ (λ,γ) (s, i), b (λ,γ) (s, i) = -λsi -1 1 + γi 0 -1 = -λsi λsi -γi . Σ (λ,γ) (s, i) = λsi -1 1 -1 1 + γi 0 -1 0 -1 = λsi -λsi -λsi λsi + γi . 11/25
N , I 0 N ) -→ N→+∞ (s 0 , i 0 ) = x 0 ; Choose σ(s, i) = √ λsi 0 - √ λsi √ γi solution of σσ τ = Σ dSt = -λSt Itdt + 1 √ N √ λSt ItdB 1 (t) dIt = (λSt It -γSt )dt -1 √ N √ λSt ItdB 1 (t) + 1 √ N √ γIt dB 2 (t)
Small values of R 0 = λ γ : appropriate signal/noise ratio in large population 

Notations: (s, i) = ( S N , I N ) ∈ [0, 1] 2 β (-1,+1) (s, i) = λs(i + η), β (0,-1) (s, i) = (γ + µ)i, β (-1,0) (s, i) = µs, β (1,0) (s, i) = µ + δ(1 -s -i) ODE and Diusion approximation b(t, (s, i)) = L Lβ L (t, (s, i)) = -λ(t)s(i + η) + δ(1 -s -i) + µ(1 -s) λ(t)s(i + η) -(γ + µ)i Σ(t, (s, i)) = L β L (t, (s, i))LL τ = λ(t)s(i + η) + δ(1 -s -i) + µ(1 + s) -λ(t)s(i + η) -λ(t)s(i + η) λ(t)s(i + η) + (γ + µ)i .
MLE: -1 θ MLE 1 -θ 0 1 → N 0, I b (θ 0 1 , θ 0 2 ) -1
Discrete observations of the diusion on [0, T] Minimum contrast approaches: estimation of θ 2 at rate √ n (⇒ ∆ = ∆n → 0).

Diusion approximation of density dependent processes and Epidemics

= 1

√ N ; Identical parameters in the drift and diusion coecients: θ 1 = θ 2 .

N >> n ⇒ Focus on θ 1 for a more accurate estimation 12)):

-1 ( θ0 1 -θ 0 1 ) → N (0, I -1 b (θ 0 1 , θ 0 2 ))

For → 0, ∆ xed (Guy et al. ( 2012)): -1 ( θ0

1 -θ 0 1 ) → N (0, I -1 ∆ (θ 0 1 , θ 0 2 ))
Contrast for discrete observations from (Guy et al. ( 13))

Ũ = n k=1 log(det(C k (θ 1 ))) + 1 2 ∆ t N k (θ 1 )C -1 k (θ 1 )N k (θ 1 ), with C k (θ 1 ) = 1 ∆ t k t k-1
Φ(t k , s)Σ(x(s))Φ(t k , s) τ ds, N k (θ 1 ) = X t k -x θ 1 (t k ) -Φ(t k , t k-1 )(X t k -x θ 1 (t k ))

Fundamental property based on the Gaussian process g g(t k ) = Φ(t k , t k-1 )g (t k-1 ) + t k t k-1 

First

  step (Mechanistic model): Compartmental representation of the population dynamics Dene: Nb. of health states, possible transitions and associated rates Notations N population size, λ transmission rate, γ recovery rate (R 0 = λ γ , d = 1 γ ) S, I, R numbers of susceptible, infected, removed individuals One outbreak: SIR model Closed population ⇒ N=S + I + R Well-mixing population ⇒ (S, I) λSI /N → (S -1, I + 1) Several outbreak: SIRS with seasonality δ: waning immunity rate (years) -1 µ: demog. renewal rate (decades) -1 λ(t) = λ 0 (1 + λ 1 sin(2π t Tper ))

  Other links between the processes Taylor stochastic expansion of the diusion Under regularity assumptions, Xt = x(t) + 1√ N g(t)+ O P ( 1 N ), ⇒ g(t) =t 0 Φ(t, s)σ(x(s))dBs Conclusion: Gaussian approximation and diusion approximation of the Markov Jump process are mainly equivalent as N → ∞ → Diusion approximation → Expansion in N of the process → Taylor's stochastic expansion Characteristics of the approximation Diusion with small diusion coecient b(t, x) = l∈E - lβ l (t, x), Σ(t, x) = l∈E - ll τ β l (t, x) ⇒ same parameter in the drift and diusion functions 10/25 Romain GUY 1,2 Joint work with C. Larédo 1,2 and E. Vergu 1 Characteristics of epidemic processes Diusion approximation for density dependent Markov Jump processes Inference for epidemics using diusion processes Diusion approximation for time dependent Markov jump processes Links with other approximations Application to SIR and SIRS epidemic models Application: diusion approximation of the SIR epidemics (1/2) Collection functions α L (.) Only two transitions: (S, I) → (S -1, I + 1) and (S, I) → (S, I -1), L = (-1, +1) ⇒ α L (S, I) = λS I N , L = (0, -1) ⇒ α L (S, I) = γI .

Figure : FigureρλSt

 : Figure: Number of infected It through time for N = 10000, R0 = 1.5,γ = 1/3,(s0, i0 ) = (0.9990.001) (signal/noise ratio : I t √ N ∈ [0.1, 7]) 12/25 Romain GUY 1,2 Joint work with C. Larédo 1,2 and E. Vergu 1

  14/25 Romain GUY 1,2 Joint work with C. Larédo 1,2 and E. Vergu 1 Characteristics of epidemic processes Diusion approximation for density dependent Markov Jump processes Inference for epidemics using diusion processes Diusion approximation for time dependent Markov jump processes Links with other approximations Application to SIR and SIRS epidemic models A model appropriate for very large populations Dierent behaviors depending on the parameters (λ 1 bifurcation parameter) Proportion of infected over time (N = 10 7 , R 0 = 1.5 1 γ = 3(day), Tper = 365(day), 1 δ = 2(yrs), η = 10 -6 and λ 1 ∈ {0.05, 0.15} (λ(t) = λ 0 (1 + λ 1 cos(2πt/T)) ⇒ Due to reporting rate ρ, signal/noise ratio is lower for Sentinelles data Observations for SIRS model t k+1 t k ρλSt Itdt =ρ(St k -St k+1 ) ⇒≈ ρλ∆St k It k Ito req.: b(t, x) ⇒ b (t, x)
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	Pure jump processes (State space N d ) d nb of dierent health states, Exponential holding times ⇒ Markov processes.	ODEs solutions on R d Statistical inference usually based on Least squares methods
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	Observation of all the jumps: MLE,	

t+∆ t λSIdt or t+∆ t γIdt 5/25 Romain GUY 1,2 Joint work with C. Larédo 1,2 and E. Vergu 1 ⇒ Infectious and recovery dates observed for all individuals, Incomplete observations: data augmentation methods (e.g. Breto et al (09), Toni et al (09)), ⇒ Computer intensive simulations ⇒ Computation times: too large especially for large population sizes Not addressed: parameter identiability given the data.
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N are completely determined by the collection of functions (β l ) l∈E - 8/25 Romain GUY 1,2 Joint work with C. Larédo 1,2 and E. Vergu 1

  Multidimensional diusion process onR d , dXt = b(θ 1 , Xt)dt + σ(θ 2 , Xt)dBt, X 0 = x 0 ∈ R d . Observations: Discrete observations with sampling ∆ on [0, T] Xt k for t k = k∆, k ∈ {0, .., n}, t k ∈ [0, T] (n∆ = T), T is xedDierent rates of convergence for parameters in the drift and in the diusion coecient ⇒ splitting the parameters θ 1 , θ 2 required Continuous observation of the diusion on [0, T] (Kutoyants (80))
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ργIt dt ≈ ργIt k 15/25 Romain GUY 1,2 Joint work with C. Larédo 1,2 and E. Vergu 1

  Characteristics of epidemic processes Diusion approximation for density dependent Markov Jump processes Inference for epidemics using diusion processes Theoretical results for discrete observations on a nite time interval Partial observations of the epidemics Case of Time dependent diusion Existing results for multidim. autonomous di. with small di. coe., discretely obs. For , ∆ → 0 (Sorensen & Uchida (03), Gloter & Sorensen (09), Guy et al. (
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  Results hold for dXt = b(t, Xt)dt + σ(t, Xt)dBt Taylor Stoch. expansion (Azencott (82)) still valid for non autonomous di.

Φ(t k , s)σ(x(s))dBs Extension Rem: Results do not hold for general model dXt = b (t, Xt)dt + σ (t, Xt)dBt ⇒ But hold for b (t, x) = b 0 (t, Xt) + 2 b 1 (t, Xt) (case of new infecteds) 18/25 Romain GUY 1,2 Joint work with C. Larédo 1,2 and E. Vergu 1

t , Y 0 = y 0 ; Continuous observation of Xt, functions ft, bt, σt known: consistence and asymptotic normality (at rate -1 ) for MLE of parameter θ. Generalization by linearization of the drift function around its deterministic limit Identiability assumption based on identiability of the deterministic limit of ft(θ)E Yt|X s≤t (James & Le Gland (95)): Consistence result for the MLE estimator in the general case of bidimensionnal process (Xt , Yt) with only the coordinate Xt observed ⇒ identiability of parameters based on x(t) deterministic limit of Xt ⇒ If we observe only the increments of ργIt k for the SIRS model: the deterministic identiability is ensured for θ 1 = (ρ, λ 0 , λ 1 , γ, δ) with η, µ, s 0 , i 0 xed.

Our result (ongoing work) Consistency and CLT, in the asymptotics → 0, ∆ → 0: