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CONTEXT

Recent climate change: Increase vulnerability of forests:
(Choat et al. 2012 Nature)
v Decrease productivity
v Increase drought prone area world wide {Gels ca il ATTD i)
(Dai 2012 Nature Climate Change) v Increase mortality

(Allen et al. 2010 FEM; Carnicer et al. 2012 PNAS)

Dryer climate in the future! Anticipating the future of forests:

~>

Improving process based models

~>

Finding out
the most influencial
processes that drives
growth & C allocation

320 & Giorgi 2008 GPC

Summer rainfall anomaly (%)
[1961 2000] — [2070 2100]



MOTIVATIONS: THE EXPERIMENTAL SITE OF PUECHABON

Puechabon experimental site v Mediterranean climate
http://puechabon.cefe.cnrs.fr/
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v’ Evergreen Quercus ilex (~65 years old)

v’ Long term records (1998->)

» Fluxes: ecosystem (Eddy Covariance,
litterfall) ; tree (sap flow); organ (Chamber)

A Riat » C stocks: forest inventory, litter fall

» Phenology, growth, cavitation
curves, storage
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MOTIVATIONS: SEASONAL PATTERN OF GROWTH & C FLUXES
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MOTIVATIONS: SEASONAL PATTERN OF GROWTH & C FLUXES
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MOTIVATIONS: SEASONAL PATTERN OF GROWTH & C FLUXES
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MOTIVATIONS: SEASONAL PATTERN OF GROWTH & C FLUXES
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THE MODEL CASTANEA

Heterotrophic
Respiration

C litter

surface

C deen
Davi et al., 2005; Dufréne et al., 2005 Ecological Modelling

2D Stand-scale model
Half Hourly time step

Average Tree (Monospecific)

Water budget

Carbon Budget

Carbon allocation




ALLOCATION IN CASTANEA & HYPOTHESIS TESTING
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ALLOCATION IN CASTANEA & HYPOTHESIS TESTING
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ALLOCATION IN CASTANEA & HYPOTHESIS TESTING

— — Maintenance —— | Carbon available
Respiration — for growth

Data assimilation (MCMC) Extensive calibration
Eddy Covariance, sapflow (Rodriguez-Calcerrada et al 2012)
(Rodriguez-Calcerrada et al sub

Prescribed
(in situ measurements
litterfall & phenology)

Simulated
by testing 3 different
hypothesis




ALLOCATION IN CASTANEA & HYPOTHESIS TESTING
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ALLOCATION IN CASTANEA & HYPOTHESIS TESTING
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potential = Available Carbon
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Growth is Limited by water
potential = Available Carbon
is allocated to Storage




ALLOCATION IN CASTANEA & HYPOTHESIS TESTING
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H1: Source Limitation

Growth depends
on available carbon only

H2: Sink-FineRoots

Growth is Limited by water
potential = Available Carbon
is allocated to Fine Roots

H3: Sink-Storage

Growth is Limited by water
potential = Available Carbon
is allocated to Storage

VALIDATION:

Yearly wood increment (forest inventory + allometric relationship): 2000 = 2010
Temporal dynamic of Storage concentration

Temporal dynamic & Level of

FineRoot

biomass

Leaf




RESULTS: STEM GROWTH MEASURED vs. SIMULATED

Source Limitation H2: Sink-FineRoots H3: Sink-Storage
120 | | °
I R2=0.4 | R2=0.6 | RrR=0.6
100 | Slope=0.45 .| Slope=0.8 g Slope=0.8
g 80 :
S 60
3
S 40
©
S 20
c y
< of b ]

O 20 40 60 80 100 1200 20 40 60 80 100 1200 20 40 60 80 100 120

Annual growth measured (gC m? year?!)



RESULTS: STEM GROWTH MEASURED vs. SIMULATED

120

Annual growth simulated
D
o

o

Source Limitation

H2: Sink-FineRoots

H3: Sink-Storage

100

0]
o
T

(o))
o
T

N
o
T

R2=0.4 R2=0.6 R2=0.6
Slope=0.45 s - Slope=0.8 Slope=0.8
(e]

° o //

7o

7 O
) o o
20 40 60 80 100 1200 20 40 60 80 100 1200 20 40 60 80 100 120

Annual growth measured (gC m? year!)



RESULTS: STORAGE & FINE ROOT /LEAF BIOMASS

H2: Sink-FineRoots H3: Sink-Storage
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> Fine roots are sensitive to ¥, (Growth: Lockhart 1965 ; Mortality: Anderegg et al., 2012)



RESULTS: STORAGE & FINE ROOT /LEAF BIOMASS
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NEW HYPOTHESIS
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NEW HYPOTHESIS

Storage in the sapwood
at the Puechabon site
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SUMMARY

v’ Stem growth is likely not C-limited and can be accurately model
assuming a direct effect of water potential

v The carbon sequestered during the drought period might be used for
fine root production or reconstruction

v A model accouting for fine roots mortality and reconstruction was
consistent with the observations of increasing storage concentration
during the seasonal drought



SUMMARY

v’ Stem growth is likely not C-limited and can be accurately model
assuming a direct effect of water potential

v The carbon sequestered during the drought period might be used for
fine root production or reconstruction

v A model accouting for fine roots mortality and reconstruction was
consistent with the observations of increasing storage concentration
during the seasonal drought

v’ The process simulated by the improved model are believed to be

involved in tree vulnerability to drought (mcbowell et al. 2011 Trends. Ecol.
Evolution)

v This model might be a step in assessing tree’ outcomes under
climate changes
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