Metabolomic approach determine exposure to bioactive compounds after consumption of tropical highland blackberry (Rubus adenotrichus) juice


To cite this version:

j.M. Fallas-Ramírez, Claudine Manach, Jean-Francois Martin, Bernard Lyan, Estelle Pujos-Guillot, et al.. Metabolomic approach determine exposure to bioactive compounds after consumption of tropical highland blackberry (Rubus adenotrichus) juice. 6. Journée scientifique du CNRH Auvergne, Nov 2013, Clermont-Ferrand, France. 2013, 6ème Journée scientifique du CNRH Auvergne. hal-02747226

HAL Id: hal-02747226
https://hal.inrae.fr/hal-02747226
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Metabolomic approach determine exposure to bioactive compounds after consumption of tropical highland blackberry (Rubus adenotrichus) juice

Fallas-Ramírez JM, Manach C, Martin JF, Lyen B, Estelle Pujos-Guilhot, Vaillant F.

INTRODUCTION

Consumption of polyphenol-rich foods continues to be the focus of attention because of their putative impact on human health. Tropical highland blackberry (Rubus adenotrichus) juice is widely consumed from Mexico to Ecuador and represents an important source of ellagitannins and others phytochemicals for the population. Using blackberry as a model for other tropical fruits, we have shown how metabolomic profiling can be used to characterize individual exposure to bioactive molecules and their metabolites in a nutritional trial on healthy volunteers.

NUTRITIONAL STUDY DESIGN

Fourteen Costa Rican men consumed for 8 days a daily dose of 250mL of a locally produced and well characterized blackberry juice, as part of a controlled diet.

ANALYSIS

24hr urines collected before and at the end of the supplementation were analyzed with a non-targeted high-resolution mass spectrometry (UPLC-QToF) method.

RESULTS

The mass spectra of the discriminant ions show the parent ions, in both cases mono-anionic glucuronide. The chromatograms of the aglycone fragments at RT 9.78 and 10.39 had statistically significant differences (ANOVA, P < 0.01).

CONCLUSION

The metabolomic analysis discriminated the consumption of blackberry juice by the volunteers with more than 60 strong discriminants. Interestingly, the microbial metabolites of urolithins, urolithin A-glucuronide and urolithin B-glucuronide, were the most important discriminants but other ions currently under identification could also contribute to blackberry juice health effects. Correlations will be searched between all discriminant metabolites and the individual capacity to produce UA and UB to further investigate inter individual variation in response to blackberry juice intake.