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Abstract. Assemblage consists in blending base wines in order to create
a target wine. Recent advances in aroma analysis allow us to measure
chemical compounds impacting the taste of wines. This chemical analysis
makes it possible to design a decision tool for the following problem:
given a set of target wines, determine which volumes must be extracted
from each base wine to produce wines that satisfy constraints on aroma
concentration, volumes, alcohol contents and price. This paper describes
the modeling of wine assemblage as a non linear constrained Min-Max
problem (minimizing the gap to the desired concentrations for every
aromatic criterion) efficiently handled by the Ibex interval branch and
bound.

1 Introduction

Assemblage is the subtle blending of wine from different vineyard plots and/or
different grape varieties, each contributing its own special flavor.

Wine blending is generally carried out by oenologists working for wineries.
Oenologists can obtain wine blendings of the highest quality, but taste saturation
entails a strong limit in the number of daily wine tasting sessions. Therefore the
Nyseos company (www.nyseos.fr), which submitted this problem to us, provides
chemical analysis tools to avoid a number of tasting sessions. These tools can
analyze wine aromas by measuring a set of chemical compounds that impact wine
taste [6]. These tools make it possible to develop a decision-support software for
the following problem: given a set of target wines to be produced, which volumes
must be taken from each base wine in order to make wines satisfying constraints
on aroma concentrations, volumes, alcohol content, price, etc.

Moore and Griffin have shown that aroma concentrations of a wine blend-
ing satisfy linear constraints [11]. However, several other requirements lead to
nonlinear constraints. For instance, the Nyseos company works on a model that
could predict the color of a wine. The model will not be linear and the complex-
ity of color modeling is confirmed by other researches [8]. Another critical point
is that we cannot tranfer a too small amount of wine from a tank to the target
due to the loss of liquid in the pipes and to the manipulation cost. As we will
see in this article, this requirement leads to a disjunctive constraint that can be
modeled by boolean variables and nonlinear constraints.

An interesting algorithmic research on wine blending has been presented
in [8]. An artificial neural network approach has been used to select the wine
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quantities extracted from each base in order to elaborate a wine that respects
predefined aromatic criteria. In this work, aromatic criteria were not analyzed
chemically. Instead, a panel of students carried out tasting to quantify predefined
criteria. The neural network performed multicriteria optimization for adjusting
each aroma. The comparison with our approach is difficult in terms of quality
since we preferred to resort to monocriterion optimization. In addition, no per-
formance (CPU time) results are shown in [8]. Another research dealt with the
blending problem [7]. The main objective was to find the best matching between
chromatograms of base and target wines. This problem was modeled by a non
constrained nonlinear optimization solved by a local (Nelder-Mead) optimization
method.

We present in this article a mathematical modeling of the wine assemblage
problem. The problem is modeled by a mixed (discrete and continuous) nonlinear
program. We transform it into a non-linear (pure) continuous CSP handled by a
rigorous interval Branch and Bound (B&B). For minimizing in each target wine
the gap between desired aromatic concentrations and obtained concentrations,
while taking into account the minimal transfer disjunctive constraint, we have
built a constrained optimization problem from which absolute value and max
operators have been removed.

2 The wine assemblage problem

Figure 1 illustrates the definition of wine assemblage.
We consider a set of base wines numbered from 1 to B. We denote by volb

the volume of the base b ∈ 1..B.
For different reasons, it is sometimes impossible to completely empty a tank.

Let s−b be the minimum volume that must remain in tank b. (We have: 0 ≤
s−b ≤ volb.) All base wines are analyzed in order to measure the concentration
of selected key aroma compounds. These compounds are numbered from 1 to A.
We denote by cb,a the concentration of aroma a in base b.

A wine assemblage support tool shall help to simultaneously build several
target wines from a given set of bases. Hence, we consider a set of target wines,
numbered from 1 to W. For each wine w, we aim to produce an optimal volume
v̂olw. The final volume Vw of wine w shall be as close as possible to v̂olw and
must remain greater (resp. smaller) than a given lower bound vol−w (resp. an
upper bound vol+w), i.e.:

∀w ∈ 1..W, vol−w ≤ Vw ≤ vol+w (1)

These bounds are used to fulfill an order of a specific volume or to avoid pro-
ducing an excessive volume.

Each target wine w is a blend of wines extracted from several tanks. We
denote by Vw,b the volume of wine w that has been pumped from base tank b.
We have a direct relation with Vw:

∀w ∈ 1..W, Vw =

B∑
b=1

Vw,b (2)
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Fig. 1. Wine assemblage

On the other side, all the volumes extracted from the same base tank b must let
a minimum volume s−b in the tank.

∀b ∈ 1..B, s−b ≤ volb −
W∑

w=1

Vw,b (3)

When transferring wine between two tanks, a subpart is generally wasted in the
pipes. Hence it is impossible to transfer very small volumes. If δV is the mini-
mum volume that can be transferred between two tanks, we define the following
disjunctive constraint :

∀w ∈ 1..W,∀b ∈ 1..B, (Vw,b = 0) ∨ (δV ≤ Vw,b) (4)

In addition to volume, each target wine is described in terms of aroma compound
concentration. For a given wine w, we denote by ĉw,a the desired concentration
of aroma a.
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The concentration Cw,a achieved shall be as closed as possible to ĉw,a within
an interval [c−w,a, c

+
w,a], where c−w,a (resp. c+w,a) denotes the minimum (resp. max-

imum) admissible concentration of aroma a in wine w. The relation between
volumes and concentrations can be formulated as follows:

∀w ∈ 1..W, ∀a ∈ 1..A, c−w,a ≤
1

Vw

B∑
b=1

(Vw,b . cb,a) ≤ c+w,a (5)

In a similar way, we can model constraints on alcohol content or price per litter
for the target wines. These can be treated like additional aromas.

3 A MINLP formulation for wine blending

We can model the wine blending problem as a mixed nonlinear program (MINLP).
We show in Section 4 how to straightforwardly transform the MINLP into a nu-
merical CSP (NCSP) handled by interval methods. This explains why the bound
constraints are directly modeled below by bounded domains, i.e., intervals.

3.1 Variables

For handling realistic volumes (due to (4)), for each wine w ∈ 1..W and each
base b ∈ 1..B, we create:

– a 0/1 variable Pw,b and
– a variable V ′w,b with a domain D(V ′w,b) = [δV ,min(vol+w , volb)] representing

the volume coming from the base b in the wine w.
(We have: Vw,b ≡ Pw,b . V

′
w,b. The introduction of these 0/1 variables of

course avoids an explicit definition of the disjunctive constraint (4).)

For each volume of a wine w ∈ 1..W, we also define a variable Vw of domain
[vol−w , vol+w ] (see (1)).

3.2 Constraints

The system of constraints of our MINLP is described below.

– The channeling constraint (2) becomes:

∀w, Vw −
B∑

b=1

(Pw,b . V
′
w,b) = 0 (2.i)

– The surplus constraint (3) also remains similar:

∀b ∈ 1..B, s−b ≤ volb −
W∑

w=1

(Pw,b . V
′
w,b) (3.i)
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– To enhance the performance results, we have added a constraint redundant
to (3.i). This constraint simply ensures that the sum of the volumes of target
wines is inferior to the sum of the base volumes:

W∑
w=1

Vw ≤
B∑

b=1

volb (6)

Aroma concentration requirements (see (5)) are decomposed into two con-
straints, and both parts of inequalities are multipled by the positive volume Vw.
∀w ∈ 1..W and ∀a ∈ 1..A, we have:
for the lower bound,

0 ≤
B∑

b=1

Vw,b . (cb,a − c−w,a)

hence:

0 ≤
B∑

b=1

Pw,b . V
′
w,b . (cb,a − c−w,a) (5.i -)

and for the upper bound:

0 ≤
B∑

b=1

Vw,b . (c
+
w,a − cb,a)

hence:

0 ≤
B∑

b=1

Pw,b . V
′
w,b . (c

+
w,a − cb,a) (5.i +)

3.3 A Min-Max for reaching the highest quality of wines

In this application, the significant criterion is wine quality. Nevertheless, we
could extend the definition of E below to errors on alcohol content or price.
Recall that a target wine is defined by a set of desired concentrations ĉw,a for
each of its aroma. Therefore, a way to optimize the quality of the target wines
is to minimize a weighted sum of differences between the concentrations desired
ĉw,a and the concentrations obtained Cw,a (see (5)). Also, we want to minimize
the maximal error on the set of target wines:

max
w∈1..W

Ωw(λvolw . evolw +
∑

a∈1..A
(λw,a . ew,a)) (7)

where:

– Ωw is a parameter reflecting how much important is a given wine w (Ωw is
assumed to be in [0, 1]). This weight ensures a more accurate blending to the
best wines among the targets.

– ew,a denotes the discrepancy between ĉw,a and Cw,a.
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– evolw denotes the discrepancy between the volume v̂olw of wine w desired
and the volume Vw obtained.

– λw,a ∈ [0, 1] defines the weight of aroma a in the wine w. λvolw ∈ [0, 1]
weights the respect of the volume requirement of wine w compared to the
satisfaction of aroma concentrations. For a given target wine w, we assume
that λvolw +

∑
a∈1..A λw,a = 1.

All the parameters, including the aroma concentrations, are measured with
a given uncertainty. εa denotes the measure error related to the concentration of
aroma a. We thus want to minimize the gap between ĉw,a and Cw,a within the
limit given by this uncertainty εa. In other words, if the gap between the desired
and obtained concentrations remains below the uncertainty, it will be considered
as being null in the objective function. Thus, the variable ew,a describes the
normalized concentration error in each aroma a for each wine w, as follows:

ew,a = max(
|Cw,a − ĉw,a|

ĉw,a
− εa, 0) (8)

We can also describe the gap evolw between the volume of a target wine Vw
obtained and the volume v̂olw desired with a similar expression:

evolw = max(
v̂olw − Vw

v̂olw
− εvol, 0) (9)

Compared to the previous formula, the removal of the absolute value simply
means that no error is taken into account if the volume Vw computed falls be-
tween the maximum volume vol+w and the target v̂olw. This is illustrated by
Figure 2.

w

vol+w

vol−w

Vw

v̂olw

evolw

εvol

Fig. 2. Visualisation of the gap evolw

Following a usual way to define a Min-Max problem, we add a variable E ∈
[0,+∞] to be minimized and the following constraints:

∀w ∈ 1..W, Ωw(evolw .λvolw +
∑

a∈1..A
(ew,a . λw,a)) ≤ E (10)
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Removing max and absolute value operators

In order to increase the performance, we attempt to remove max and absolute
value operators. Observe that the maximum operator can be defined by

e = max(x, y) ≡ e ≥ x ∧ e ≥ y ∧ (e = x ∨ e = y).

In addition, if the quantity e must be minimal for any reason, the last conjunct
can be removed, thus simplifying the max operator. We can apply this simplifi-
cation to (8). Indeed, λw,a is positive so that minimizing E entails minimizing
every variable ew,a. Hence:

∀w ∈ 1..W,∀a ∈ 1..A, ((ew,a + εa) ĉw,a ≥ |Cw,a − ĉw,a|) ∧ (ew,a ≥ 0) (11)

The same simplification can be applied to (9), as follows:

∀w ∈ 1..W, ((evolw + εvol) v̂olw ≥ (v̂olw − Vw)) ∧ (evolw ≥ 0) (12)

We can also remove the absolute value operator above that can be transformed
into a max operator as follows:

e = |x| ≡ e = max(x,−x)

≡ e ≥ x ∧ e ≥ −x ∧ (e = x ∨ e = −x)

Again, if the quantity e must be minimal for any reason, the last conjunct can
be removed, thus replacing the absolute value operator with two inequalities.
We can apply this simplification to (11). Remember indeed that every variable
ew,a must be minimized and observe that ĉw,a is positive. Thus,
∀w ∈ 1..W,∀a ∈ 1..A,

(ew,a + εa) ĉw,a ≥
1

Vw
.

B∑
b=1

(Pw,b.V
′
w,b.cb,a)− ĉw,a

(ew,a + εa) ĉw,a ≥ −
1

Vw
.

B∑
b=1

(Pw,b.V
′
w,b.cb,a) + ĉw,a

Multiplying both parts of these inequalities by the positive volume Vw, we finally
obtain the following three categories of constraints: ∀w ∈ 1..W,∀a ∈ 1..A,

ew,a ≥ 0 (13)

Vw.(ew,a + εa + 1) . ĉw,a −
B∑

b=1

(Pw,b.V
′
w,b.cb,a) ≥ 0 (14)

Vw.(ew,a + εa − 1) . ĉw,a +

B∑
b=1

(Pw,b.V
′
w,b.cb,a) ≥ 0 (15)

As a result, we have succeeded in suppressing from our initial model all the
absolute value and max operators. Although our interval nonlinear constraint
solver can handle these operators, the performance is thus increased and the
simplified model can also be implemented in other solvers.
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3.4 Summary

In addition to the variables Pw,b, V
′
w,b and Vw defined in Section 3.1, we define

new variables for the Min-Max: one variable E ∈ [0,+∞], W.A variables ew,a ∈
[0, 1] (that absorb the unary constraints (13)) andW variables evolw ∈ [0, 1] that
absorb the unary constraints of (12).

In addition to the constraints (2.i), (3.i), (6), (5.i-), (5.i+) defined in Sec-
tion 3.2, we define new constraints for the Min-Max: (10), (12), (14), (15). The
objective function simply consists in minimizing the value of the variable E.

4 Solving the MINLP with an interval B&B

We wanted a free solver in order to embedd it in the final dedicated tool for Ny-
seos. In addition, the MINLP detailed above could be handled by any MINLP
solver such as Baron [13] or Couenne [2], but all of them are not rigorous (safe).
This means that they sometimes miss the best solution due to round-off errors
related to floating-point arithmetic. It is known that cases where the best solu-
tion is missed by unsafe solvers are rare but do occur in practice. Using a safe
optimizer was reassuring for Nyseos. Furthermore, since:

– our modeling of the wine blending problem contains only one type of 0/1
variables,

– the interval solver Ibex features a very efficient interval B&B called IbexOpt [14],
– the authors have a good command of Ibex [5, 4],

we decided to simply encode the MINLP problem as an NCSP, i.e., a standard
continuous system of nonlinear constraints (i.e., over the real numbers). To do
so, the 0/1 variables are encoded by real-valued variables P ′w,b of domain [0, 1].
To ensure these variables take 0/1 values, we simply add the following quadratic
constraints:

∀w ∈ 1..W and ∀b ∈ 1..B, 4(Pw,b −
1

2
)2 = 1 (16)

This means that the initial disjunctive constraints that produce mixed con-
straints in the MINLP model are handled by continuous quadratic constraints.

Our good command of the interval solver Ibex enabled to produce an ef-
ficient strategy, but it would be interesting to compare in a future work our
interval B&B with a MINLP solver like Couenne [2]. Quadratic solvers are not
our first alternative choice because our model will probably be extended with
other nonlinear (and non quadratic) constraints about color or wine varieties.
To our knowledge, only one rigorous interval B&B, called IBBA [12], is endowed
with a simple mechanism handling integral variables. IBBA could be compared
with Ibex, although the two solvers are merging.

4.1 Constrained global optimization with an interval B&B

A continuous constrained global optimization problem is defined as follows.
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Definition 1 (Constrained global optimization)
Consider a vector of variables x = (x1, ..., xn) varying in a domain [x] = [x1]×
· · · × [xn], a real-valued function f : Rn → R, vector-valued functions g : Rn →
Rm and h : Rn → Rp. We have g = (g1, ..., gm) and h = (h1, ..., hp).

Given the system S = (f, g, h, [x]), the constrained global optimization prob-
lem consists in finding:

min
x∈[x]

f(x) subject to g(x) ≤ 0 ∧ h(x) = 0.

f denotes the objective function; g and h are inequality and equality constraints
respectively.

Our IbexOpt constrained global optimizer [14] computes a floating-point vec-
tor x ε-minimizing1:

f(x) s.t. g(x) ≤ 0 ∧ (−εeq ≤ h(x) ≤ +εeq).

Note that equalities hj(x) = 0 are relaxed by “thick” equations hj(x) ∈ [−εeq,
+εeq], i.e., two inequalities: −εeq ≤ hj(x) ≤ +εeq. IbexOpt guarantees the global
optimum of the relaxed system, although εeq can often be chosen almost arbi-
trarily small. (Most of the global optimizers like Baron [13] or Couenne [2] cannot
offer any guarantee.)

In our wine blending problem, we set a constant ε1eq equal to 1e-4 in the
equality constraints (16). Another ε2eq is set to 1e-1 in the equality constraints
(2.i). This corresponds to 1 dl (deciliter), i.e., less than 0.1% of the target vol-
umes (at least 500 liters). This means that the volumes are computed with an
approximation significantly better than the ineluctable errors made during the
actual blending, i.e., the errors induced by measures and loss of residual matter
during the wine transfer from a base to a target tank.

4.2 Algorithmic features of Ibex

IbexOpt is implemented in Ibex (Interval Based EXplorer) and enriches this
C++ library devoted to interval solving [5].

IbexOpt [14] follows an interval Branch & Contract & Bound schema. The
process starts with an initial box [x] that is recursively subdivided by a branching
operator. The tree is traversed in best first search, in which a box with a smallest
minimum cost is selected first. IbexOpt applies the following operators at each
node (box) of the B&B:

Branch: A variable xi is chosen and its interval [xi] is split into two sub-boxes.

Contract: A filtering process contracts the studied box, i.e., improves the
bounds of its intervals, without loss of solutions.

1 ε-minimize f(x) means minimize f(x) with a precision εobj on the objective, i.e.,
find x such that for all y, we have f(y) ≥ f(x)− εobj .
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Bound: The improvement of the lower bound is similar to a contraction (con-
sidering an additional variable corresponding to the objective cost). The lower
bound guarantees that no feasible solution exists lower. Improving the upper
bound amounts in finding a good (although generally not the best) feasible
point, so as to cut branches in the search tree with a higher cost.

The process starts with an initial box [x] and terminates when the difference
between the upper and lower bounds reaches a given precision εobj or when all
the explored nodes reach a size inferior to a given precision.

At each node of the B&B, IbexOpt is called with efficient operators for reduc-
ing the search space and improving the lower bound of the objective function:

– The state-of-the-art HC4 [3, 10] (continuous) constraint propagation algo-
rithm is first used to contract the handled box.

– The operator X-Newton uses a specific interval Taylor to convexify the search
space, contract the box and improve the lower bound [1].

– Two original algorithms are used to improve the upper bound by heuristi-
cally extracting an inner (entirely feasible) region that contains only solution
points. This explains why equations are slightly relaxed. Roughly, the InHC4

algorithm is a dual algorithm of HC4 and InnerPolytope is a dual algorithm
of X-Newton.

The default optimizer uses, as bisection heuristic, the SmearSumRel variant
of Kearfott’s branching heuristic using the Smear function [9]. The SmearSumRel
and SmearMaxRel branching heuristics are described in [14].

5 Experiments on first instances

We have modeled and solved several instances of wine assemblage. We also report
in Section 5.6 a validation of our approach during a real tasting session.

For the ε-optimization, we have always required an accuracy εobj (goal pre-
cision) below 1e-4. The same precision is required for the solution (box) size:
under this size, a box is not studied (and split) by the interval Branch & Bound.
The goal accuracy is better than the errors εa made by the chemical tools when
they measure the aroma concentrations (e.g, for the cb,a’s).

5.1 Wine blending instances

We have modeled three instances of wine assemblage. The first one (WineBlen-
ding0) is a small and artificial instance. It was used to rapidly adapt the
MINLP/NCSP model presented above until a rapid solving could be obtained.
It contains 21 variables. WineBlending0 is solved in 0.18 seconds and only 6
branching nodes, independently from the accuracy required (1e-4 or 1e-8).
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Real instance 1

The second instance (WineBlending1) is a real instance provided by the Nyseos
company. The instance consists in producing W = 2 target wines from B = 7
bases wines, taking into account A = 11 aroma.

The Min-Max problem, modeled as described in Section 3.4, contains 55
variables and 116 constraints:

– 2 volume (relaxed) channeling constraints,
– 7 base surplus constraints,
– 44 aroma concentration constraints,
– 49 constraints coming from the Min-Max encoding,
– 14 quadratic constraints modelling the disjunctive realistic volume constraints.

Real instance 2

The second instance (WineBlending2) consists in assemblingW = 3 target wines
from B = 6 bases, taking into account A = 7 aroma.

The Min-Max problem contains 64 variables and 118 constraints:

– 3 volume (relaxed) channeling constraints,
– 6 base surplus constraints,
– 42 aroma concentration constraints,
– 49 constraints coming from the Min-Max encoding,
– 18 quadratic constraints modeling the disjunctive realistic volume constraints.

5.2 Results obtained by the default optimizer

All the results reported in this paper have been obtained on a 2010 MacBook
laptop with a 2.4 GHz Intel Core 2 Duo process.
We have first run the default optimizer of Ibex with a solution and goal preci-
sions set to 1e-4 and with a timeout set to 5 minutes.

The optimizer reaches the timeout for WineBlending1 and WineBlending2

although rather good solutions are computed:

– In 5 min and 7894 branching nodes, an accuracy 0.002 is obtained on the
goal (i.e., the maximum error on E) for WineBlending1.

– In 5 min and 8520 branching nodes, an accuracy 0.0054 is obtained on the
goal for WineBlending2.

5.3 Algorithmic analysis and improvements

The results above have been obtained with the by-default constrained optimiza-
tion strategy available in Ibex and briefly described in Section 4.2.

We have first analyzed which of the default features have an impact on per-
formance and which ones have not. This analysis was fruitful.
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Concerning the contraction/filtering part, the interval linearization operator
X-Newton is surprisingly counterproductive. On the contrary, all the contrac-
tion is performed by the HC4 constraint programming operator. Since the wine
blending model built is mainly linear, this result is counterintuitive.

The opposite and more intuitive observation has been made on the inner
regions extracted for improving the upperbound. The InHC4 operator, issued
from constraint programming principles (working constraint per constraint), ap-
peared to be useless. On the contrary, the InnerPolytope algorithm (dual of
X-Newton) that can extract an inner polytope from the feasible region is crucial.

Without this feature, we could not obtain any answer from the optimizer.
A second feature has a major impact on performance: the branching (bisec-

tion) strategy. We have observed that the basic bisection heuristics available in
Ibex are inefficient or show a poor performance. The largestFirst heuristic,
selecting a variable with the largest width, prevents the B&B from finding any
feasible point during the tree search. The roundRobin also shows generally a
poor performance, except if we rearrange statically the variables as preconised
by a first analysis reported in Section 5.4.

Only the Smear-based strategies behave well: the historical SmearMax and
SmearSum heuristics [9]; the SmearSumRel variant called in the default optimiza-
tion [14], and the SmearMaxRel variant that plays a fondamental role in our wine
blending problem.

Based on this analysis, we have designed a dedicated strategy. The X-Newton
operator has been first disconnected, thus bringing a speedup of a factor 4 on
the two real instances. Second, we have compared the performance of the four
Smear heuristic variants mentioned above. Table 1 gathers the results obtained.

We remark that SmearSum and, in particular, SmearMaxRel show a good
performance. Therefore SmearMaxRel has been chosen for our wine blending
dedicated strategy.

5.4 Towards a dedicated branching strategy

We have also experimentally analyzed which variables are selected by the op-
timization process in slow and fast runs. We have empirically learned that the
CSP variables Pw,b and V ′w,b shall often be selected, whereas the variables added
for the Min-Max optimization shall be rarely chosen. Therefore, we designed the
following dedicated branching strategy: only the above mentioned variables can
be selected for bisection. The SmearMaxRel heuristic is applied to the selected
subset of variables. This dedicated heuristic offers (only) the same performance
as SmearMaxRel (23 seconds versus 27 seconds on WineBlending2). We need of
course more instances to better learn from the data.

5.5 The wines produced

The layout of the solution computed for WineBlending1 is shown in Figure 3.
The details of the aroma concentrations (Cw,a) in the target wines are illustrated
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WineBlending1 WineBlending2

cputime (sec.) > 300 57
SmearSum precision 0.00014 1e-10

#nodes 21880 4146

cputime (sec.) > 300 > 300
SmearSumRel precision 0.0018 0.00017

#nodes 25864 24270

cputime (sec.) > 300 111
SmearMax precision 0.0013 1e-10

#nodes 25864 8851

cputime (sec.) 0.35 27.4
SmearMaxRel precision 1e-10 1e-10

#nodes 23 2048

Table 1. Comparison between the Smear-based branching heuristics. An entry is a
multiline containing 3 information about the results obtained by a given branching
strategy on a given instance. The first line of a multiline contains the CPU time, with
a timeout set to 5 min; the second line gives the error obtained at the end (1e-10
means that the last simplex call achieved by InnerPolytope finds a solution with no
error (rounded to 1e-10)); the third line reports the number of branching nodes.

by W = 2 radar graphs in Figure 4. The fact that the blue lines (ĉw,a) fall
between the green lines (ĉw,a−εa and ĉw,a +εa) highlights visually that the best
solution has been obtained within εa tolerances.

The details of the aroma concentrations (Cw,a) in the target wines for Wine-
Blending2 are illustrated by W = 3 radar graphs in Figure 5.

5.6 Tasting session

An interesting (qualitative) validation of our tool was carried out in collaboration
with an oenologist. He was asked by the Nyseos company to elaborate a (target)
wine by blending several given base wines. Nyseos wrote down the volumes the
oenologist selected for the assemblage and carried out a chemical analysis of
the final blend to measure its aromatic criteria. Then, using our tool, Nyseos
created a similar blend with the same base wines, but using eventually different
volumes extracted from each base wine. Nyseos finally compared the blendings
used to obtain the human-made wine with the computer-made wine and asked
the oenologist to carry out a blind-test on the two wines.

The results were as follows: despite the blendings being significantly different,
the oenologist could not distinguish between the two wines.

This one experiment is of course far from being representative, but is nonethe-
less a promising indication of the relevance of our tool.

5.7 A future configuration tool for wine assemblage

The first experimental results are preliminary and have been obtained on only
two real instances. However, they suggest that the current strategy, maybe en-
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Fig. 3. Layout of the results for WineBlending1: volumes of the target wines (below)
obtained by blending the bases (above)

dowed with a dedicated branching heuristic, can handle efficiently most of the
instances useful in practice. Therefore, to better fit the wishes of the client, we
can imagine using our optimization algorithm interactively, inside a configura-
tion tool. The user could interact with the system via radar graphs corresponding
to the different target wines, such as shown in Fig. 4 and Fig. 5.

A way to modify the blending is to increase (or decrease) the importance
(weight) Ωw of a wine. A slider under each radar graph could for instance be
used for this purpose. An optimization process could then recompute a new
solution with this specification.

Following the same idea, the user could modify the weight λw,a of a given
aroma in a wine (e.g., with a popup menu appearing when the mouse cursor
position is on the corresponding axis of a radar graph), and the tool would run
a new optimization.

A last and more intrusive possibility is to allow the client to strengthen the
maximum admissible concentration c+w,a (or minimum admissible concentration
c−w,a) of aroma a in wine w. The client would simply select a bound and our
tool could run two optimizations providing two information (assuming c+w,a is
selected):

– the smallest value of concentration Cw,a for which there is a solution that
respects all constraints. Note that such a solution is not necessarily optimal
for the maximum error E.

– hence we can compute the smallest feasible value of Cw,a that does not
increase the maximum error E.

These two bounds can be displayed as outstanding values for c+w,a.

6 Conclusion

We have reported in this paper a first attempt to handle the wine assemblage
problem with constraint programming techniques. The problem can be modeled



15

3MH

A3MH

4MMP

2-
phenylethanol

hexyl acetate

isoamyl
acetate

b-phenylethyl
acetate

ethyl
decanoate

ethyl
hexanoate

ethyl
octanoate

IBMP

3MH

A3MH

4MMP

2-
phenylethanol

hexyl acetate

isoamyl
acetate

b-phenylethyl
acetate

ethyl
decanoate

ethyl
hexanoate

ethyl
octanoate

IBMP

Fig. 4. Solution obtained by our Min-Max model on the two wines elaborated in in-
stance WineBlending1. Every axis in a radar graph shows a computed aroma concen-
tration Cw,a (shown in blue line), comprised within the imposed limits in red (c−w,a and
c+w,a), and as close as possible to the desired concentration ĉw,a. The 2 curves in green
represent the tolerances ĉw,a − εa and ĉw,a + εa on the desired concentration of aroma
a in wine w.

as a MINLP or a numerical CSP able to define disjunctive constraints that are
critical in practice. These constraints ensure that a minimal amount of wines
must be transfered from a base to target wine. We have resorted to mono-
criterion optimization and have worked to obtain a model with no max and no
absolute value operators. We have designed an optimization strategy dedicated to
wine blending that allows us to find in second the best solution (with no error in
the volumes or the concentration requirements) to two real instances given by the
Nyseos company. A tasting session carried out by an oenologist qualitatively has
validated our approach. These encouraging results offer the possibility to use our
approach within an interactive configuration tool dedicated to wine assemblage.

2-
phenylethanol

hexyl acetate

isoamyl
acetate

b-
phenylethyle

acetate

ethyl
decanoate

ethyl
hexanoate

ethyl
octanoate

2-
phenylethanol

hexyl acetate

isoamyl
acetate

b-phenylethyl
acetate

ethyl
decanoate

ethyl
hexanoate

ethyl
octanoate

2-
phenylethanol

hexyl acetate

isoamyl
acetate

b-
phenylethyle

acetate

ethyl
decanoate

ethyl
hexanoate

ethyl
octanoate

Fig. 5. Radar graphs obtained for the instance WineBlending2.
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