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Optimal adaptation strategies to shocks on groundwater

resources.

Abstract

We consider an exogeneous and irreversible shock on a groundwater resource: a

decrease in the recharge rate of the aquifer. We compare optimal extraction paths and

social costs for optimal adaptation in two cases: under certainty, i.e. when the date of

occurrence of the shock is known and under uncertainty, when the date of occurrence

of the shock is a random variable. We show that the increase of uncertainty leads to a

decrease in precautionnary behaviour, in the short-run and in the long-run. Moreover,

we apply our model to the particular case of the Western la Mancha aquifer. We show

in this context that information aquisition may not be interesting for the manager of

the resource, at least when the shock occurs later in time.

JEL classi�cation: C61,Q25.

Key words: Groundwater resource, optimal behavior, exogeneous shock,

uncertainty.

1 Introduction

Our study relates to the situation of a common groundwater resource, used by several
farmers for irrigation, which is subject to droughts (see Amigues [1], Zilberman and al.
[20]). The aquifer is managed by a social planner, the water agency, which seeks to adapt
optimally to these episodes of low precipitation. In a near future, the problem of low
precipitations may become more important, with the phenomenon of global warming. In
this context, the evolution of the natural system may be subject to abrupt changes which
can be quali�ed as "regime shifts". In this paper, we model this type of problem through
shocks in the dynamics of the resource, and we characterize the impact of the shock on
the optimal management of the water agency. In particular, we study the optimal path
of extraction, and we estimate the consequences of these adaptation strategies from an
ecological point of view, via the study of the aquifer level, and from an economic point of
view, via the calculation of social welfare.

To do so, we use a simple groundwater model, the Gisser and Sanchez [11] model (for
similar model frameworks, see for example Cummings [5] or Roseta-Palma (2002, 2003)
[15] [16]), in which we introduce two types of shocks: a deterministic shock at a given

1



date and a random shock which may occur with a certain probability. This shock may
correspond to a decrease in mean precipitations which leads to a decrease in the recharge
of the aquifer, or it may correspond to an abstraction of a certain amount of water which
is dedicated to other uses in case of a drought, such as the �lling of drinking water reservoirs.

First, when the date of the shock is known, the intuition may be that the water agency
could prepare herself, with a strategy of more careful extraction. We will see that our
results contradict our initial intuitions and that extractions are more important in the
short-term. We can �nd this result in the existing literature (see Di Maria et al. 2012
[8]), in the context of polluting resources, where the phenomenon is known as the "an-
nouncement e�ect" or the "abundance e�ect". Second, when the date of the shock is a
random variable, we may derive some intuitions on the type of solutions from the exist-
ing literature on catastrophic events, in the context of groundwater resource management,
(see Tsur and Zemel (1995,2004) [17], [19]), and pollution control (see Clarke and Reed
(1994) [4], Brozobic and Schlenker (2011) [2], Tsur and Zemel (1996) [18], and de Zeeuw
and Zemel (2012) [7]). Indeed, there is an extensive literature on the relationship between
precautionary behaviour and uncertainty: there are papers that show that an increase in
uncertainty leads to non-monotonic changes in precautionary behaviour (see Clarke and
Reed 1994 [4], Brozobic and Schlenker (2011) [2]), other papers show that an increase in
uncertainty leads to a decrease in precautionary behaviour (see Tsur and Zemel (1995,
2004) [17], [19]), and again other papers conclude that more uncertainty leads to an in-
crease in precautionary behaviour (see Zeuw and Zemel 2012 [7], Tsur and Zemel [19]).
Clarke and Reed �nd this non-monotonic relation for an irreversible event, which is exoge-
nous, Brozovic and Schlenker for a reversible event which is endogenous, i.e. occurs when
a threshold level is reached. Tsur et Zemel proved in [19], that the increase in uncertainty
leads to more intensive extractions, and thus lower levels of the long-term tablecloth of
the aquifer in the case of exogenous irreversible events. However, they also showed that
a more precautionary behavior can happen in the long-run when the event is exogenous
and reversible or when the event is endogenous. In contrast, in [7], Zeeuw et Zemel proved
that the introduction of a random jump in the damage function of a pollution control
model leads to more precautionary behaviour, both for endogenous events and irreversible
exogenous events.

In this article, we study irreversible exogenous events and analyse analytically the re-
lation between the caracteristics of the shock and the adaptation behavior in the long run
and the short run. We show that our results correspond to the solutions found by Tsur and
Zemel in [19], but our paper di�ers from [19] in several ways: First, Tsur and Zemel study
catastrophic events (such as saltwater intrusion) which render further use of the resource
impossible (unless restoration activites are undertaken). We are interested in a shock (on
the recharge rate) that does not hinder further exploitation. Second, Tsur and Zemel focus
on endogenous events. In that case, when the threshold level that triggers the event is
known, it is optimal to avoid the occurence of the event. In our study, the deterministic
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exogenous shock can not be avoided. Lastly, when Tsur and Zemel consider a case with
an exogenous shock, they only compare the solution to the non-event solution. We are
interested in comparing the deterministic shock to the randomly occuring shock.

Moreover, we are interessed in applying our model to the Western la Mancha aquifer,
in the South of Spain. In this area, the state of the groundwater resources is preoccupying,
jeopardizing the maintainance of important ecosystem services (see Esteban and Albiac
(2011) [9] and Esteban and Dinar (2012) [10] for details). The average annual ground-
water recharge in this aquifer is 360 Millions of cubic meters. Unfortunately, in the last
decades, the aquifer has been subject to droughts. For example, in 1999, the recharge
rate has decreased by aproximatively 100 Millions of cubic meters. We have decided to
analyse the impact of shocks that have the magnitude of past variations in recharge rates,
but we study a lower benchmark problem with one variation in the recharge rate. Even
though we suppose that the water agency adapts optimally to these shocks, we show that
the costs to society are important, and can reach values of the order of several millions
of euros. Moreover, we want to know whether the water agency should try to forsee the
date of the shock or not. We show that it may not be interesting for the water agency to
aquire additional information on the occurence date of the shock, even if this information
were costless. Indeed, we show that information aquisition is only interesting, when the
shock takes place in the distant future. However, we con�rm that it is always better for
the water agency to have an adaptative behavior, with or without knowledge on the date
of the shock, than not to prepare to the shock.

This paper is organized in the following way. In section 2, we remind the underlying
model, the Gisser and Sanchez model. We then introduce an exogenous shock which in-
corporates the idea of the lack of water, and we derive some theorical results. In section
3, we make a numeric illustration where we analyze optimal adaptation behavior and the
impact of the shock on social welfare, in the short run and in the long-run. Finally, in
section 4, we conclude and give some perspectives for future research.

2 The model

We base our analysis on the groundwater extraction model by Gisser and Sanchez, (see
[11]), where G(t) and g(t) are respectively the stock of the aquifer (in volume)1 and water
pumping of the aquifer as a function of time2. We assume that

1G corresponds to the volume of water, and it is calculated multiplying H, the water table elevation
above sea level by, A*S, where A is the area of the aquifer and S is the storavity coe�cient.

2We omit the time indicator in all following equations, whenever this is possible without causing mis-
understandings, in order to make equations more easily readable.
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g = a− bp (1)

is a linear function that represents the demand for irrigation water, where p is the price
of water, and a,b are coe�cients of the demand function, with a>0, b>0.

Consider a linear cost function for extractions costs:

C̄ = z − cG,
where z are �xed costs, c marginal pumping costs and z,c are coe�cients of the linear

cost function, with z>0, c>0.
The dynamics of the aquifer,

Ġ = −(1− α)g + r (2)

depend on hydrological characteristics of the aquifer, where r is the recharge rate and α is
the return �ow coe�cient.

The total revenu of farmers, using the agricultural surface characterized by the demand
function of water, equation (1)), is then:∫

p(g)dg =

∫
a− g
b

dg =
a

b
g − 1

2b
g2.

The problem of the social planner is to maximise the social welfare, that is the present
value of private revenus of farmers, with ρ, the discount rate, taking into account the
dynamics of the aquifer (see equation (2)), and subject to initial conditions and positivity
contraints:

max
g(.)

∫ ∞
0

F (G, g) e−ρt dt,

where,

F (G, g) =
a

b
g − 1

2b
g2 − (z − cG)g,

Ġ = −(1− α)g + r,

G(0) = G0 given,

g ≥ 0 G ≥ 0.

The full resolution of the problem is described in the Appendix (A.2).

In the following sections, we are going to introduce an exogeneous shock to our initial
model, the decrease in the recharge rate of the aquifer at the moment ta. First, we solve
the deterministic case where the moment of the shock ta is known, and second, we solve
the stochastic case where ta, is a random variable that follows an exponential distribution.
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2.1 The deterministic case

We assume that there is a decrease in the recharge rate from r1 to r2 at the known instant
ta. Indeed, the main problem is to model the fact that the availability of water for irrigation
decreases from ta. This can happen because there is an estimation of a decrease in mean
precipitations or because of a speci�c extraction of water for other uses from ta on. In
theory, these ideas are equivalent and we can describe them as a decrease of the recharge
rate (see proof on appendix A.1).

We are interested in the optimal path of extractions in presence of this "dry period".
The problem of the social planner is now :

max
g(.)

∫ ∞
0

F (G, g) e−ρt dt,

where,

F (G, g) =
a

b
g − 1

2b
g2 − (z − cG)g,

Ġ =

{
−(1− α)g + r1 if t ≤ ta
−(1− α)g + r2 if t > ta,

(3)

G(0) = G0, ta given, r1 > r2,

g ≥ 0 G ≥ 0.

We can solve the problem in two steps. First, we �nd φ(ta,Gta), the scrap value
function that represents the maximisation between ta and ∞, that is:

φ(ta,Gta) = max
g(.)

∫ ∞
ta

F (G, g)e−ρ(t−ta)dt.

After this, our problem is to �nd G,g and G(ta) that maximise:∫ ta

0
F (G, g)e−ρtdt + e−ρtaφ(ta,Gta).

We may write the Hamiltonian of this last problem:

H = F (G, g) + π(−(1− α)g + r1),

where π is the adjoint variable. We are now in a free-endpoint problem, with ta known and
need an additional transversality condition (see for example Léonard and Ngo van Long
[14]):

π(ta) =
∂φ(ta,Gta)

∂Gta
.
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The full resolution of this modi�ed extraction problem is deferred to the Appendix, (A.3).

Now, we present some theorical results proved by studying analytical solutions of the
previous problems.

Let

• g∗SP (t)(and G∗SP (t)) be optimal extractions and the stock of the simple problem
(r1 = r2 > 0);

• g∗
r12

(t)(and G∗
r12

(t)) be optimal extractions and the stock of the deterministic shock

when (r2 = r12), where r1 > r2 = r12 > 0;

• g∗
r22

(t)(and G∗
r22

(t)) be optimal extractions and the stock of the deterministic shock

when (r2 = r22), where r1 > r2 = r22 > 0.

Proposition 2.1 If r1 > r2 > 0, G∗SP (∞) > G∗r2(∞).

Proof :
As we can see in appendix A.2 and A.3, the steady state of the simple problem and

the steady state of the modi�ed problem are given by equation (22) and (29) respectively,
with r = r1,

G∗SP (∞) =
r1

(1− α)cb
+
r1
ρ
− a

bc
+
z

c
,

G∗r2(∞) =
r2

(1− α)cb
+
r2
ρ
− a

bc
+
z

c
,

so,

G∗SP (∞)−G∗r2(∞) = (r1 − r2)
(

1

(1− α)cb
+

1

ρ

)
> 0, (4)

and then, G∗SP (∞) > G∗r2(∞).

According to proposition 2.1, the steady-state of the stock of the modi�ed problem is
smaller than the steady-state of the stock of the simple problem. Indeed, when the shock
takes place, the resource is more exploited in the long term.

Proposition 2.2 G∗r2(ta) is a decreasing monotonous function of r2, i.e., the optimal value

of the stock in ta decreases when the value of the shock increases, (when r2 decreases).
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We prove this analytically but expressions are too long to be given here. The proof is
available from the authors.

Proposition 2.2 states that the more important the value of the shock, the more ex-
ploited the resource in ta.

Proposition 2.3 If r1 > r2, g
∗
SP (∞) > g∗r2(∞), i.e., extractions are more conservative in

the long run, when the shock takes place.

Proof :

g∗SP (∞) =
r1

(1− α)

g∗r2(∞) =
r2

(1− α)

As r1 > r2, then, g
∗
SP (∞) > g∗r2(∞).

Proposition 2.4 g∗r2(0) is a decreasing monotonous function of r2 =⇒ g∗SP (0) < g∗
r12

(0) <

g∗
r22

(0), with, r1 > r12 > r22, that is, optimal extractions in t=0, increase the more important

the shock.

The proof is available from the autors.

Proposition 2.5 g∗r2(ta) is a decreasing monotonous function of r2 =⇒ gta < g∗
r12

(ta) <

g∗
r22

(ta), with, r1 > r12 > r22, that is, optimal extractions in t = ta, increase the more

important the shock.

The proof is available from the autors.

Proposition 2.6
r1−r12

G∗
SP (ta)−G∗

r12

(ta)
=

r1−r22
G∗

SP (ta)−G∗
r22

(ta)
.

The proof is available from the autors.

Corolaire 1 G∗SP (ta) − G∗
r22

(ta) =
r1−r22
r22−r12

(G∗
r12

(ta) − G∗
r22

(ta)), i.e., the distance between

optimal values of the stock in ta, G
∗
ta, for two di�erent shocks, depends only on the values

of di�erent shocks.

This is the result of proposition 2.6.

Logically, as the moment of the shock, ta, is known, the di�erence (or distance) between
optimal solutions for di�erent shocks in ta, depends only on the value of shocks.
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2.2 The stochastic case

Now, the moment when the shock takes places (Ta), that is, the moment of the decrease
in the recharge rate, is a random variable.3 Let fT (t) be the density function, and ψT (t)
the distribution function of T

with,

ψT (t) =

∫ t

0
fX(x)dx,

and

ΩT (t) = 1− ψT (t).

The problem of the social planner is now to maximise the expected value of total
revenus of farmers,

max
g(.)

ET (

∫ ∞
0

e−ρtF(G, g) dt) (5)

Ġ =

{
−(1− α)g + r1 if t ≤ T
−(1− α)g + r2 if t > T

G(0) = G0 given,

g ≥ 0 G ≥ 0.

with the pro�t function F(G,g), as in the previous problem,

F (G, g) =
a

b
g − 1

2b
g2 − (z − cG)g. (6)

Following the procedure used in Dasgupta and Heal (see [6]), let φ(t, G(t)) be the scrap
value function,

φ(t, G(t)) = max
g(t)

∫ ∞
T

e−ρ(t−T)F(G(t), g(t))dt.

Equation (5) is equal to

max
g(.)

∫ ∞
0

fT (T )[

∫ T

0
e−ρtF(G, g)dt + e−ρTφ(T,G(T))] dT, (7)

so:

3In what follows, we note Ta = T for simplicity.
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max
g(.)

∫ ∞
0

fT (T )[

∫ T

0
e−ρtF(G, g)dt] dT +

∫ ∞
0

e−ρTfT(T)φ(T,G(T)) dT. (8)

Solving by parts the �rst integral in the previous equation (8), we �nd that:

∫ ∞
0

fT (T )[

∫ T

0
e−ρtF(G, g)dt] dT =

∫ ∞
0

e−ρTΩT(T)F(G(T), g(T)) dT.

Equation (8) and hence equation (5) can be written as:

max
g(.)

∫ ∞
0

e−ρt[ΩT(t)F(G, g) + fT(t)φ(t,G)] dt, (9)

Next, we want to estimate the distribution of the random shock. Meteorological studies
showed that the gamma distribution gives a good estimation of annual recharges4, (see for
example Leizarowitz and Tsur [13]). To simplify the resolution of our stochastic problem
and to obtain analytical solutions, we choose an exponential distribution to estimate the
moment of the shock, that is a particular case of the law of gamma, γ(1, θ).

T follows now an exponential distribution, where fT (t), is the density fonction:

fT (t) = θe−θt t = 0..∞

and, ΩT (t) is the inverse of the distribution function,

ΩT (t) = e−θt t = 0..∞

The problem of the social planner becomes:

max
g(.)

∫ ∞
0

e−(ρ+θ)t[F(G, g) + θφ(t,G)] dt (10)

Ġ = −(1− α)g + r1 (11)

G(0) = G0 given, (12)

g ≥ 0 G ≥ 0. (13)

The full resolution of this modi�ed extraction problem is deferred to the Appendix A.4.

4It is important to know that the �lling of the aquifer is made from seasonal rains.
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3 Numerical application

In this section, we apply our problem to the Western la Mancha aquifer. We use real
values of parameters from several sources (e.g. Esteban and Albiac(2011) [9], Esteban and
Dinar(2012) [10]). This leads us to use the parameters values listed in table 1.
The Western la Mancha aquifer is located in Southeastern Spain. The development of
intensive irrigation agriculture in recent decades has led to an increase in groundwater
extractions and, as a consequence, the decrease in the water table. This problem has caused
signi�cant damages to aquatic ecosystems and also to human uses downstream. Moreover,
the Western la Mancha aquifer has su�ered from ine�cient management regimes, (see for
details [9]). In presence of a dry period, this problem may become more acute.

Parameters Description Units Value 
b Water demand slope Euros/Millions of m3 0.097 
a Water demand intercept Euros/Millions of m3 4403.3 
z Pumping costs intercept Euros/Millions of m3 266000 
c Pumping costs slope Euros/Millions of m3. 

Millions of m3 
3.162 

α Return flow coefficient  0.2 
r Natural recharge Millions of m3 360 
G0 Current water table (in 

volume) 
Millions of m3 80960 

ρ Social discount rate % 0.05 

Figure 1: Values of parameters of the Western la Mancha aquifer.

3.1 Optimal solutions for the deterministic case

We �rst give a numerical example of the deterministic case. Figure 2 depicts optimal solu-
tions of stock G∗(t) (left-hand side) and water pumping g∗(t) (right-hand side) in millions
of cubic meters, for the initial problem described in section 2 (in green) and for di�erent
values of the deterministic shock after the �ve �rst years of resource use, (i.e in ta = 5).
More speci�cally, we can see optimal solutions for a decrease in the recharge from an initial
level of r1= 360 to a level of r2= 330 (in red), 300 (in magenta) and 290 (in black) millions
of cubic meters (Mm3).5.

First, we note that the steady state of the stock and the water pumping is smaller
when r2 decreases. Hence the resource is driven to a lower level and extractions are more
conservative in the long-run. For example, the level of the resource decreases by 8000
Mm3 (and extractions by 400 Mm3 respectively) for a shock of 70Mm3. Second, we can
observe that the resource is more exploited at the moment of the shock when the shock

5We have chosen ta = 5 years and the di�erent values of the shock following the observations made in
the area in the 90s, (see [10] for details)
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G(t) g(t)

t t

Figure 2: G∗(t)(left-hand side) et g∗(t)(right hand side) in ta=5 years for di�erent values
of r2 ,in millions of cubic meters.

is more important, i.e. G∗(ta) decreases and g∗(ta) increases by about 300 Mm3, when
r2 decreases by about 70 Mm3. We can also con�rm that the resource is more exploited
in the beginning of the exercice (i.e. for t = 0), when the shock is more important: g∗(0)
increases from 750 to 950Mm3, when r2 decreases by 70Mm3. These results can illustrate
the above propositions 2.1, 2.2, 2.3, 2.4 and 2.5, proved in section 2.1.

We can also observe a surprising behaviour of optimal water pumping: when the shock
is more important (in black), there is an increase of extractions just before the occurence
of the shock. This result can be explained intuitively by the fact that when the shock is
important, the water agency does not have time to adapt to it quickly enough.

Next, in table 3, we calculated the social welfare for our numerical example. We notice
that social welfare increases in the �rst period (before ta, column 1) and decreases in the
second period (after ta, column 2) the more important the shock. Logically, the total social
welfare (column 3) decreases by about 67 Millions of euros, when the value of the shock
increases by 70 Mm3.

As a result, the theorical and numerical solutions make clear that in the �rst period,
there is an increase in extractions when the shock takes place. This happens in order to
accumulate gains and compensate the losses of the second period. In the second period,
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Social Welfare    
(in millions of 
euros) 

      [0, ta] 
          (1) 

      [ta, ∞] 
          (2) 

     [0, ∞] 
        (3) 

    (1)/(3) 
     (in %) 

    (2)/(3) 
      (in %) 

    

           92          215         307  30 70 

    

         102           174        276  37 63 

    

         112          137        249 45 55 

    

         115          126        240  48 52 
 

Figure 3: Social welfare for di�erent values of r2 in ta = 5.

there is a decrease in extractions. However, the level of the resource is lowered in the
long-run, because of the behavior adopted in the �rst period.

3.2 Optimal solutions for the stochastic case

We now construct a numerical example for the stochastic case. Ta, the moment of the shock,
is a random variable which follows an exponential distribution, that is the occurence of
shock is less probable in later time periods.

In �gure 4, we can see the optimal solutions of stock G∗(t) and extractions g∗(t) in
millions of cubic meters, for the initial problem described in section 2 (in green) and for
di�erent values of the stochastic shock (r2= 330 (in red), 290 (in magenta) and 100 (in
black) Mm3), when θ = 0.01. More speci�cally, a shock that occurs before the end of the
�fth year would for example have a probability of 95 pourcent. In the right corner of the
�gure, we can see a zoom of optimal extractions between t=0 and t=2 years.

First, we observe that as before, the steady state of the stock is smaller (of around 400
Mm3) but water pumping is the same in the long-run, when the shock is more important
(r2 decreases). In the right corner of the �gure, we can note that there is an increase in
extractions in t = 0 if we compare the stochastic shock (in black) with the simple problem
without shock (in green). Furthermore, it is important to notice that for the stochastic
shock, the steady states of G(t) and g(t) are reached earlier that in the simple problem.
Thus, extractions are more intensive in the �rst years for the stochastic shock.

Second, we study optimal solutions for di�erent values of θ, the parameter of the dis-
tribution function. In �gure 5, we observe similar behaviour than in �gure 4. When it is
more likely that the shock takes place in the �rst few years (, i.e. when θ increases), there
is an increase in extractions (aproximatively 200 Mm3) in t = 0, and for this reason the
level of the resource is lowered in the long run.
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G(t) g(t)

Figure 4: G∗(t)(left-hand side) et g∗(t)(right hand side) for di�erent values of r2 and
θ = 0.01. Upper Right-hand corner: zoom of g∗(t) between t = 0 and t = 2 years.

Finally, we calculate social welfare for di�erent scenarios of occurrence probability (θ)
and values of the shock (r2). When the occurrence probability (θ) is �xed, social welfare
decreases the more important the shock (, i.e. the higher r2). Likewise, when the value of
the shock (r2) is �xed, social welfare decreases the greater the probability that the shock
takes place in the �rst few years(, i.e. the higher θ).

3.3 Deterministic case vs. Stochastic case

In this section, we compare optimal solutions of the simple problem, the deterministic case
and the stochastic case.

The di�erences can be seen in Figure 7. We compare optimal solutions of the stock
G∗(t) and extractions g∗(t) for the initial problem described in section 2 (in green) for the
deterministic shock (in black) and for the stochastic shock (in magenta), when the value
of the shock is �xed (r2 = 300). Focusing on the left-hand side of the �gure, we note
that the level of the resource is (about 1000 Mm3) smaller in the long run in case of the
deterministic shock than in the the case of the stochastic shock. In the short run, however,
the inverse holds: the stock is lower in the stochastic case than in the deterministic case.
On the other hand, in the right hand side of the �gure, we can see that extractions at
the initial time are much bigger (of about 2500 Mm3) in the stochastic case than in the
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G(t) g(t)

Figure 5: G∗(t)(left-hand side) et g∗(t)(right hand side) for di�erent values of θ and r2 =
300 millions of cubic meters. Upper Right-hand corner: zoom of g∗(t) between t = 0 and
t = 2 years.

Social Welfare   
(in millions of 
euros) 

   ϴ=0.001   
          

    ϴ=0.01     ϴ=0.05 
       

 288 288 286 

    

 288 285 275 

    

 288 281 265 

    

 287 280 262 
 
Figure 6: Social welfare for di�erent values of θ when r2 = 300.

deterministic case, although extractions are similar and rather conservative in the long-run.

Next, we determine the di�erence (D) of the social welfare between the deterministic
case and the stochastic case, (see table 8). In absence of any shock and for a given value
of θ, we note that there is no di�erence between social welfares that occur at di�erent
moments in time, e.g. for ta = 5 and ta = 50 years.6. However, if a shock occurs, we see

6Remember when θ = 0.01, a shock that occurs before the end of the �fth year (or before the end of
the �ftieth year) would have a probability of 95 pourcent (or 60 pourcent respectively)
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G(t) g(t)

Figure 7: G∗(t)(left-hand side) et g∗(t)(right hand side) for the simple problem(in green),
the deterministic shock(in black) and the stochastic shock(in magenta), when r2 = 300
millions of cubic meters.

that D is almost always negative when ta = 5 and always positive when ta = 50. This
means that, when the shock takes place earlier (for example in ta = 5), the stochastic shock
is more pro�table for the society, that is, it is more favorable to have some information on
the moment of the shock. In contrast, when the shock takes place later (for example in
ta = 50), the deterministic shock is more pro�table for the society, that is, it is better to
know the moment of the shock. Moreover, the sign of D does not depend on the probability
of occurence of the shock.

     
 

(in millions of 
euros) 

      ϴ=0.001  
 Ta=5      Ta=50     
          

      ϴ=0.01 
Ta=5       Ta=50     

       ϴ=0.05 
Ta=5       Ta=50    

       

    19           19   19              19   21              21 

    

   -12           18    -9              21     1              31 

    

   -39           16  -32              23  -16              39 

    

   -47           17  -40              24  -22              42 
 

Figure 8: Di�erence between Social welfare of the deterministic case and the stochastic
case for di�erent values of θ, r2 = 300 and ta.
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For the water agency in the La Mancha basin, this means that it is not always interesting
to acquire more information on the occurence date of the shock, even if this information
was available. Indeed, in some cases, it is less costly for the water agency to adapt to a
randomly occurring shock rather than to a deterministic shock.

3.4 Adaptation vs. Non Adaptation

G(t) G(t)

Figure 9: G∗(t) for the problem of non-adaptation (in red) and adaptation (in green) in
ta = 5 (left-hand side) and ta = 50 (right-hand side).

Finally, we computed the optimal solutions of our problem when the water agency ig-
nores the information about the occurrence of the shock, that is, the water agency does not
adapt to the shock. In this paper, we don't write in details the analytical resolution of this
case. It is just necessary to say that the resolution of the problem consists in considering
two simple and in�nity problems for the two di�erent periods of the problem. Indeed, as
the water agency does not have any information about the shock until it happens, optimal
behaviour corresponds to optimal solutions of the simple problem (appendix A.2) with
r = r1, before the shock. In contrast, from the moment of occurrence of the shock (ta),
optimal behaviour corresponds to optimal solutions of the simple problem, but now taking
into account the value of the shock (i.e r = r2).

Next, we compare the situation of non-adaptation (in red) to the situation with adap-
tation (in green), that is a case in which the water agency does adapt to the shock and
it corresponds to the problem of the deterministic shock descrived previously in section
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2.1. As depicted in �gure 9, the resource is more heavily used in the short term when
the shock is anticipated (in green). Indeed, the level of the aquifer is bigger in the total
unertainty case than in the adaptation case: when ta = 5 (ta = 50), the long-term stock
is higher in about 100 Mm3 (in about 400 Mm3). We observe in �gure 10 that losses due
to non-adaptation are important in the short and long term. For example, we see that
total welfare losses from inadaptation are around 42 Millions of euros (respectively 15 M.
of euros), when the shock correspond to a decrease of the recharge in about 60 Mm3, and
takes place early in time , ta = 5,(respectively when it takes place later, ta = 50).

As a conclusion, it is interesting for the agency to take into account information about
the occurrence of the shock, although this information entails more intensive extraction
before the occurrence of the shock.

Social welfare 
(in millions of 
euros) 

        [0,ta] 
 
ta=5        ta=50 

      [ta, ∞] 
 
ta=5        ta=50 

       Total 
 

ta=5        ta=50 
non-adaptation  92             288 147                1 239            289 
adaptation  97             289 184              15 281            304 
 

Figure 10: Social welfare for the problem of non-adaptation and adaptation in ta = 5 and
ta = 50, for a shock of 60 Mm3.

4 Conclusions and extensions

We conclude that from an ecological point of view, the increase of uncertainty leads to
more intensive extractions before the shock and more conservative extractions after the
shock, but a lowered level of the aquifer in the long run. Moreover, from an economic
point of view, this loss of information may lead to an increase or a decrease in social costs,
depending on the date of occurence of the shock.

There are various possible extensions to our paper. We can introduce a subsidy (or
more generally a taxation policy) in the second period of the problem to avoid the over-
exploitation of the resource, and then, calculate social costs of this environmental policy.
We can also study the impact of several successive changes in recharge rates: for example
the recharge could decrease because of decreased precipitations, as discussed above, but it
could then increase again, for example as a result of investments in desalinisation plants.
Finally, uncertainty about the extend of climate change may diminish over time: if new
information is acquired during the considered time period, we would need a new optimiza-
tion method, taking into account rolling horizons.
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A The model

A.1 Proof of equivalently of problems

If you want to introduce a decrease in the recharge rate in the dynamics of the resource,
we have to write equation (3), so:

Ġ(t) =

{
−(1− α)g + r1 if t ≤ ta
−(1− α)g + r2 if t > ta

If there is an speci�c extraction of value A, from ta, caused by a need for other uses
(for example: water consumption), we can introduce a di�erent dynamic of the aquifer,

Ġ(t) =

{
−(1− α)g + r if t ≤ ta
−(1− α)g − (1− α)A+ r if t > ta

(14)

If we analyze the right-hand side of equation(14) from ta,

Ġ = −(1− α)g − (1− α)A+ r =⇒ (15)

Ġ(t) = −(1− α)g − (1− α)A+ r =⇒ (16)

Ġ(t) = (r − (1− α)A)− (1− α)g (17)

We can observe that the right-hand side of equation (17) is equivalent of the right-hand
side of equation (14) from ta, if,

r2 = r − (1− α)A = r1 − (1− α)A =⇒ r1 − r2 = (1− α)A, (18)

that is, if the decrease in the recharge rate is equal to the value of water extracted of
the aquifer for other uses, multiplied by the inverse of the return �ow coe�cient, so the
real "lack" of water. After this, we present only results for the problem of the decrease on
the recharge rate, caused by the equivalence of problems.

A.2 Resolution of the simple problem

The Hamiltonian (for interior solution) of this problem is given by:

H = F (G, g) + λ(−(1− α)g + r),

18



where λ is the adjoint variable. Applying the maximum principle and supposing interior
solutions, we have the usual �rst order conditions:

∂H

∂g
= 0 ⇒ a

b
− 1

b
g − (z − cG)− λ(1− α) = 0, (19)

λ̇ = −∂H
∂G

+ ρλ ⇒ λ̇ = − ∂c
∂G

g + ρλ. (20)

From (19), we �nd the optimal extraction volume as a function of the resource stock
and the shadow price:

g = a− zb+ cbG− λb(1− α). (21)

Substituting (21) into the equations of motion of the state (2) and adjoint variable (20),
we have the following dynamic system:

Ġ = C1− cbG+ λb(1− α),

λ̇ = C2− c2bG+ (cb+ ρ)λ,

with C1 and C2 constants, and G(0) = G0, which allows us to �nd the roots of the
characteristic polynom:

ρ1,2 =
ρ±

√
ρ2 + 4cbρ

2
.

We can also �nd the steady state of the system, for Ġ = 0 and λ̇ = 0:

G∞ =
r

cb
+
r

ρ
− a

cb
+
z

c
, (22)

λ∞ = cr/ρ. (23)

Equation (22) results from substitution of (21) into the equation of motion of the state
variable (2) and equation (23) results from substitution of (21) and (19) into (20).
Finally, we have the optimal extraction paths, with ρ2, the negatif root:

G∗SP (t) = eρ2t(G0 −G∞) + G∞, (24)

and
λ∗SP (t) = eρ2t(λ0 −

cr

ρ
) +

cr

ρ
, (25)

λ0 =
a

b
− z + cG0 −

1

b
(r − ρ2(G0 −G∞)),

which we �nd with (2) and (19).
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A.3 Resolution of the modi�ed extraction problem

To solve this problem, we will separate it in two parts and proceed by backward induction.
First, we solve the maximisation between ta and in�nity, proceeding as in (A.2).
We have the functions:

G+
r2(t) = eρ2(t−ta)(Gta −G∞) + G∞, (26)

λ+r2(t) = eρ2(t−ta)(λta −
cr2
ρ

) +
cr2
ρ
, (27)

g+r2(t) = k1− k2eρ2(t−ta), (28)

with,
k1 = r2,

k2 = ρ2(Gta −G∞),

and,

G∞ =
r2
cb

+
r2
ρ
− a

cb
+
z

c
, (29)

λta =
a

b
− z + cGta −

r2
b

+
1

b
ρ2(Gta −G∞), Gta unknown. (30)

Substituting (26),(27) and (28) into the objective function, we can compute the scrap
value: φ(ta,Gta).

We can now turn to the second part of the problem, between 0 et ta, considering the
optimal solution of the �rst part. We know that the solutions of the problem are of the
shape:

G−r1(t) = Āeρ1t + B̄eρ2t + C̄,

λ−r1(t) = D̄eρ1t + Ēeρ2t + F̄.

We have di�erential equations (2), (20) and the conditions

G−r1(0) = Ā+ B̄ + C̄ = G0, (31)

π(ta) = D̄eρ1ta + Ēeρ2ta + F̄ =
δφ(ta,Gta)

δGta
, (32)

r = r1, and G−r1(ta) = G+
r2(ta) (33)

This constitutes a system of 6 equations and 6 unknowns, which we can solve to �nd op-
timal solutions of the problem for the �rst period, between 0 and ta

7.

7We do not detail analytical solutions because equations are too long. They are available from the
authors
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A.4 Resolution of the stochastic problem

To solve this problem, we can use the dynamic programing principle. The value fonc-
tion V(t,G) has to verify the hamilton-jacobi-bellmann equation (see for resolution details
Kamien and Schwartz [12] and Caputo [3] ):

(ρ+ θ)V (t, G) = max
g(.)

F (G, g) + θφ(t, G) + VG(t, G)(r1 − (1− α)g) (34)

with,

V (t, G) = AG2 +BG+ C,

and,

φ(t, G) = σ + τG+ υG2, proved and available from the authors.

First, we �nd the optimal extraction path, g∗SC , for the right-side of equation (34),

g∗SC = b(
a

b
− z + cG− 2(1− α)AG− (1− α)B). (35)

After the substitution of g∗SC in (34), by equalizing the right-side and left-side of equa-
tion 34), we �nd the optimal coe�cients A,B,C of the value fonction V (t, G). Next, sub-
stituting optimal values A,B,C in equation (35), we �nd the optimal path of extractions.

Finally, substituting equation (35) in the equation of the dynamic of the aquifer, we
can solve the di�erential equation (11), with initial condition (12) and obtain the optimal
value of stock, for the stochastic case8.

8We do not detail analytical solutions because equations are too long. They are available from the
authors
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