C. Bauer and L. Londe, Conception, construction et fermeture d'alvéoles de stockage, vol.334, 2008.

A. Roulet, Colis de stockage de déchets B, 2004.

L. R. Van-loon, Z. Kopajtic, and Z. , Complexation of Cu 2+ , Ni 2+ and UO 2 2+ by radiolytic degradation products of bitumen, 1990.

L. R. Van-loon and W. Hummel, The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: Effect on radionuclide speciation, rapport technique Nagra, pp.95-103, 1995.

M. F. Libert and I. Walczak, Effect of radio-oxidative ageing and pH on the release of soluble organic matter from bitumen, ATALANTE 2000 Scientific Research on the Back-end of the Fuel Cycle for the 21th Century, p.4, 2000.

I. Walczak, M. F. Libert, S. Camaro, and J. M. Blanchard, Quantitative and qualitative analysis of hydrosoluble organic matter in bitumen leachates, Agronomie, vol.21, pp.247-257, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00886113

A. Albrecht, A. Bertron, and M. Libert, « Microbial catalysis of redox reactions in concrete cells of nuclear waste repositories: a review and introduction », in Cement-Based Materials for Nuclear Waste Storage, 2012.

J. F. Devlin, R. Eedy, and B. J. Butler, « The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer, Journal of Contaminant Hydrology, vol.46, issue.2, pp.81-97, 2000.

L. Truche and G. Berger, « Etude expérimentale de la réduction des nitrates en présence d'hydrogène et de trois différents types d'acier: acier carbone, inox 316L et Hastelloy C276, 2010.

L. Truche, G. Berger, L. Domergue, and E. A. Albrecht, « Abiotic nitrate reduction induced by carbon steel and hydrogen: Application to deep geological repositories, Applied Geochemistry

M. Alquier, C. Kassim, B. Erable, A. Bertron, N. Jacquemet et al., « Etudes expérimentales de la réactivité des nitrates à l'interface bitume -eau cimentaire -ciment en conditions biotiques, 2012.

M. Libert, O. Bildstein, L. Esnault, M. Jullien, and R. Sellier, « Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories, Physics and Chemistry of the Earth, Parts A/B/C, vol.36, pp.1616-1623, 2011.

M. Libert, I. Pointeau, and R. Sellier, Bactéries dénitrifiantes en milieu alcalin », Rapport Andra, 2012.

D. Y. Sorokin, A. J. Janssen, and G. Muyzer, Biodegradation Potential of Halo(alkali) philic Prokaryotes, Critical reviews in environmental science and technology, vol.42, issue.8, pp.811-856, 2012.

I. P. Sarethy, Y. Saxena, A. Kapoor, M. Sharma, S. K. Sharma et al., Alkaliphilic bacteria: applications in industrial biotechnology, Journal of industrial microbiology & biotechnology, vol.38, issue.7, pp.769-790, 2011.

M. R. Mormile, M. F. Romine, M. T. Garcia, A. Ventosa, T. J. Bailey et al., Halomonas campisalis sp, nov., a denitrifying, moderately haloalkaliphilic bacterium, Systematic and Applied Microbiology, vol.22, pp.551-558, 1999.

B. M. Peyton, M. R. Mormile, and J. Petersen, Nitrate reduction with Halomonas campisalis. Kinetics of denitrification at pH 9 and 12.5% NaCl, Wat. Res, vol.35, issue.17, pp.4237-4242, 2001.

F. Berendes, G. Gottschalk, E. Heine-dobbernack, E. R. Moore, and B. J. Tindall, Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works, Systematic and Applied Microbiology, vol.19, issue.2, pp.158-167, 1996.

B. Zhao, Q. An, Y. L. He, and J. S. Guo, N2O and N-2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR, Bioresource technology, vol.116, pp.379-385, 2012.

V. Mateju, S. Cizinska, J. Krejei, and T. Janoch, Biological water denitrification: a review, Enzyme Microbe Technol, vol.14, pp.170-183, 1992.