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During the last ten years, the Workshop on Computational Systems Biology 

(WCSB) has brought together the researchers across the world studying 

computational systems biology. The meeting has offered a multidisciplinary 

discussion forum for high quality multidisciplinary science, where many 

interdisciplinary bridges have been built. The WCSB is organized by the Computational Systems Biology 

Research Group in the Department of Signal Processing at Tampere University of Technology (TUT), and 

collaborating European research groups. During the years the meeting has expanded reflecting the rapid 

development in experimental biosciences and growth in the research of computational methods for systems 

biology. 

The first four WCSB events in 2003 -2006 were organized in Tampere University of Technology, Finland. In 

2008 the program committee set the target to render the event more international and since then WCSB has 

been organized together with our collaborators across Europe including 

 WCSB 2008 hosted by the University of Leipzig, Germany,   

 WCSB 2009 hosted by Aarhus University, Denmark,  

 WCSB 2010 hosted by University of Luxembourg,  Luxembourg, 

 WCSB 2011 hosted by ETH Zürich, Switzerland, and  

 WCSB 2012 hosted by Ulm University, Germany. 

This year WCSB is celebrating its 10th year anniversary. The 10th International Workshop on Computational 

Systems Biology is brought back to its hometown Tampere, Finland. For the occasion, WCSB 2013 is proud 

to present 10 invited talks from internationally acknowledged experts of their respective fields in systems 

biology research. In addition, this year WCSB called for longer full length research papers with 3000 words, 

as well as abstracts. Further, this year WCSB is collaborating with the well-recognized publisher BioMed 

Central, and the best papers of the WCSB 2013 are published as Supplements to BMC Bioinformatics and 

BMC Systems Biology. Together 9 papers are accepted to be published in the Supplement to BMC 

Bioinformatics - Selected articles from the 10th International Workshop on Computational Systems Biology 

(WCSB) 2013: Bioinformatics, and 5 papers in Supplement to BMC Systems Biology - Selected articles from 

the 10th International Workshop on Computational Systems Biology (WCSB) 2013: Systems Biology.  

This Proceedings of the 10th International Workshop on Computational Systems Biology - WCSB 2013, 

collects together the abstracts of the keynote and invited talks, the abstracts of the papers accepted to the BMC 

Supplements, the full research papers as well as the abstracts submitted to WCSB 2013. 

We would like to thank the authors, the reviewers and the organizers for their contributions to WCSB and the 

proceedings. In addition, the financial support of The Federation of Finnish Learned Societies, Tampere 

Graduate School in Information Science and Engineering (TISE), Tampere International Center for Signal 

Processing (TICSP), and the Academy of Finland is gratefully acknowledged. 

Reija Autio and Olli Yli-Harja 
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A. Häkkinen, H. Tran, O. Yli-Harja, B. Ingalls, A.S. Ribeiro 25

Identification of Genetic Markers with Synergistic Survival Effect in Cancer

R. Louhimo, M. Laakso, T. Heikkinen, S. Laitinen, P. Manninen, V. Rogojin, M. Miettinen, C. Blomqvist,

J. Liu, H. Nevanlinna, S. Hautaniemi 26

A New Model to Simulate and Analyze Proliferating Cell Populations in BrdU Labeling Ex-

periments

D. Schittler, F. Allgöwer, R.J.D. Boer 27
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the DIADIMMUNE Study Group 119

A Multi-platform Transcriptional Profiling Provides Novel Insights into Early T-helper Cell

Differentiation

K. Kanduri, S. Tripathi, A. Larjo, H. Mannerström, R. Lund, J.Z. Chen, H. Lähdesmäki 120
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The 10 th International Workshop on Computational Systems Biology, WCSB 2013

UNRAVELING PRINCIPLES OF GENE REGULATION USING THOUSANDS 
OF DESIGNED REGULATORY SEQUENCES 

Eran Segal1

1Department of Computer Science And Applied Mathematics, Weizmann Institute of Science, Israel 

eran.segal@weizmann.ac.il 

 

ABSTRACT 

Genetic variation in non-coding regulatory regions accounts for a significant fraction of changes in gene expression 
among individuals from the same species. However, without a ‘regulatory code’ that informs us how DNA sequences 
determine expression levels, we cannot predict which sequence changes will affect expression, by how much, and by 
what mechanism. To address this challenge, we developed a high-throughput method for constructing libraries of thou-
sands of fully designed regulatory sequences and measuring their expression levels in parallel, within a single experi-
ment, and with an accuracy similar to that obtained when each sequence is constructed and measured individually. Us-
ing this ~1000-fold increase in the scale with which we can study the effect of sequence on expression, we designed and 
measured the expression of libraries in which the location, number, affinity and organization of different types of regu-
latory elements has been systematically perturbed. Our results provide several new insights into principles of gene regu-
lation, bringing us closer towards a mechanistic and quantitative understanding of which how expression levels are en-
coded in DNA sequence. 
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The 10 th International Workshop on Computational Systems Biology, WCSB 2013

ASSEMBLY AND INTERROGATION OF TUMOR-SPECIFIC REGULATORY 

MODELS REVEALS MASTER REGULATORS OF TUMOR MAINTENANCE 

AND CHEMOSENSITIVITY  

Andrea Califano

Department of Biomedical Informatics and Center for Computational Biology and Bioinformatics, 

Columbia University, New York, NY 10032, USA 

califano@c2b2.columbia.edu  

 

ABSTRACT 

The recent onslaught of molecular data, across multiple human malignancies, is producing an unprecedented repertoire 

of genetic and epigenetic alterations contributing to tumorigenesis and progression. Yet, the direct impact of this 

knowledge on tumor treatment and prevention is still largely unproven. Loss of tumor suppressor function is difficult to 

target pharmacologically and, with a handful of exceptions, alterations providing potential drug targets are relatively 

infrequent in cancer patients and are thus unlikely to support clinical development. 

By reconstructing and interrogating the in vivo regulatory logic of the cancer cell, which integrates multiple aberrant 

signals resulting from genetic and epigenetic alterations, systems biology is starting to elucidate and mechanistically 

validate both oncogene and non-oncogene addiction mechanisms. These mechanisms are exquisitely dependent on the 

molecular landscape of cancer subtypes, can be targeted pharmacologically, and are frequently synergistic, thus provid-

ing uniquely specific entry points for combination therapy.  

In this presentation, we will discuss recent result in the discovery of synergistic, non-oncogene addiction mechanisms 

and their application to the stratification and treatment of high-grade glioma, non-small cell lung cancer, and prostate 

cancer. The approach is highly extensible and has been applied to a variety of additional tumor subtypes, to the study of 

stem cell differentiation, reprogramming, and pluripotency control, as well as to the study of neurodegenerative diseases. 
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INVITED TALKS



The 10 th International Workshop on Computational Systems Biology, WCSB 2013

LEARNING SPATIAL AMINO ACID CONTACTS FROM MANY HOMOLO-
GOUS PROTEIN SEQUENCES 

Erik Aurell1

1KTH Royal Institute of Technology, Stockholm, Sweden 
eaurell@kth.se 

 

ABSTRACT 

Spatially proximate amino acids in a protein tend to co-evolve. A protein's three-dimensional (3D) structure hence 
leaves an echo of correlations in the evolutionary record. Reverse engineering 3D structures from such correlations is an 
open problem in structural biology, pursued with increasing vigor as more and more protein sequences continue to fill 
the data banks. Within this task lies a statistical inference problem, rooted in the following: correlation between two 
sites in a protein sequence can arise from firsthand interaction but can also be network-propagated via intermediate 
sites; observed correlation is not enough to guarantee proximity. 
An approach to separating direct from indirect interactions is to learn a plausible probabilistic model from the data, and 
then score putative interactions by the corresponding terms in the model. In the context of protein sequences and learn-
ing the a model of at most pair-wise interactions (a Potts model) this approach has been referred to as direct-coupling 
analysis. The computational tasks involved are not trivial as in these problems a maximum likelihood approach is un-
feasible, and one must resort to approximations. 
I will discuss this field focusing on our recent result that the pseudolikelihood method significantly outperforms other 
existing approaches to the direct-coupling analysis. 
This is joint work with Magnus Ekeberg, Cecilia Lövkvist, Yueheng Lan and Martin Weigt published in Phys. Rev. E 
87, 012707 (2013), URL: http://link.aps.org/doi/10.1103/PhysRevE.87.012707 Code implementing the pseudolikeli-
hood method for these problems is available at http://plmdca.csc.kth.se/. 
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The 10 th International Workshop on Computational Systems Biology, WCSB 2013

GENOME-SCALE GENE REGULATORY NETWORKS IN BIOLOGY AND 
MEDICINE: FROM E. COLI TO BREAST CANCER  

Frank Emmert-Streib1

1 Computational Biology and Machine Learning Laboratory, Center for Cancer Research and Cell 
Biology, School of Medicine, Dentistry and Biomedical Sciences,  

Queen's University Belfast, Belfast, UK.  
f.emmert-streib@qub.ac.uk 

 

ABSTRACT 

Within recent years the availability of large-scale gene expression data enabled the inference of genome-scale regu-
latory networks for biological and biomedical data sets. Interestingly, the overlap between such networks and phenome-
nological networks like the protein interaction network and the transcriptional regulatory network has received little 
attention. For this reason, we provide an in-depth analysis of the structural, functional and chromosomal relationship 
between a protein interaction network, a transcriptional regulatory network and an inferred gene regulatory network, for 
S. cerevisiae and E. coli. As a result our study provides guidelines for the integration of different types of biological 
networks. Furthermore, we present regulatory networks for B cell lymphoma, breast cancer and colorectal cancer.  
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The 10 th International Workshop on Computational Systems Biology, WCSB 2013

SEGMENTATION OF MICROCOPY IMAGES USING GRADIENT PATH    
LABELING AND ARTIFICIAL INTELLIGENCE TECHNIQUES  

Jose Fonseca

Computational Intelligence Research Group, Uninova, Portugal 
jmf@uninova.pt 

 

ABSTRACT 

Recent studies using microbes as model organisms rely on microscope imaging which needs to be complemented 
with reliable and fast methods of computer assisted image processing. These methods aim at facilitating the extraction of 
information from images of bacterial populations with single cell resolution, by avoiding manual analysis, which is fas-
tidious, time consuming and subject to observer variances. To isolate single cells in microscopy images, image segmen-
tation techniques are essential. However, segmentation of nontrivial images is one of the most difficult tasks in image 
processing. In this talk several segmentation methods will be compared and discussed. Artificial intelligence techniques 
to circumvent the over-segmentation typical of most classical segmentation methods will also be presented. Practical 
application examples will be shown to illustrate the results of the different techniques. 
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Cecilia Garmendia-Torres1, Alexander Skupin1,2, Sean Michael1, Pekka Ruusuvuori3, Nathan 
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To regulate translation, RNA transcripts can be stored in cytoplasmic granules that influence biological 
processes ranging from germ cell development to neuronal plasticity. For example, they transport maternal 
RNAs from the oocyte to the embryo and in mammalian neurons; neuronal granules transport RNA over long 
distances to the synaptic dendrites where translation can initiate in response to stimulation. The disruption of 
proper localization of these granules contributes to developmental and neurological diseases. A better 
knowledge of their subcellular movements is important to better understand how cells regulate post-
transcriptional gene expression. That is the reason why we chose to study a subclass of RNA granules present in 
eukaryote cells called processing bodies (p-bodies).  

To understand P-bodies involvement in RNA transport we measured the spatiotemporal dynamics of p-bodies 
over the course of the yeast cell cycle by integrating microfluidic-based single-cell imaging, automated image 
analysis, assessment of biophysical parameters, and genetics. Our results demonstrate that these granules 
undergo a unidirectional transport from the mother to the daughter cell during mitosis. This transport is 
dependent on the yeast RNA transport machinery composed of the myosin Myo4p, the protein adaptor She3p, 
and the RNA binding protein, She2p. We also find that p-bodies exhibit a constrained motion near the bud site 
as much as half an hour before the bud is observable and that this ‘corralled’ movement is also Myo4p and 
She2p dependent. 

Our results imply that the mother cell sends RNAs to the daughter cell in a unidirectional manner under specific 
conditions and that these might participate in important aspects of cell division. 
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ABSTRACT 

Systems level understanding of complex diseases requires coordinated efforts to collect and share genome-scale data 

from large patient cohorts. However, translating genome-scale data into knowledge and further to effective diagnosis, 

treatment and prevention strategies requires effective computational approaches that allow analysis and integration of 

multidimensional data with clinical parameters and knowledge available in bio-databases. 

In this presentation I present an efficient computational ecosystem called Anduril that allows advanced analysis of 

large-scale biomedical data as  well as integration to clinical data. I present examples on how Anduril based approach 

has resulted in biomedically interesting genes and their regulations in breast cancer, glioblastoma multiforme and pros-

tate cancer. 
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ABSTRACT 

Prostate cancer is the most frequently diagnosed male cancer in developed nations. Most prostate tumors are slow grow-

ing and non-invasive, but some tumors develop an aggressive phenotype. Such tumors respond to androgen ablation, but 

eventually relapse with a castration resistant phenotype. The cause of this transformation is not fully understood, and no 

effective treatments exist. To shed light on the alterations giving rise to castration resistance we used integrative high 

throughput sequencing to study cancer-associated alterations in 53 prostate tumors at the DNA, RNA and epigenetic 

levels. The cohort included both untreated and castration resistant prostate cancers. 

 

We identified a number of new genomic alterations and transcripts that are linked to prostate cancer progression, includ-

ing two new functionally relevant fusion genes a number of novel prostate cancer associated transcripts, including tran-

scripts specific to castration resistant tumors. Based on chip-seq data from prostate cancer cell lines, many of these nov-

el transcripts are regulated by known oncogenes such as ERG and AR.  Methylation sequencing revealed hypermethyla-

tion signature for castration resistant prostate cancer. Promoter hypermethylation suppressed the expression of hundreds 

of genes, but a subset of genes characterized by promoter H3K27 trimethylation responded to hypermethylation with 

increased expression. 
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ABSTRACT 

Rapid development of next-generation sequencing technologies provides an opportunity for systematic characterization 
of cell transcriptomes. Accessibility to transcriptome-scale information is energizing the study of RNA and it is having 
profound effects to fields such as molecular biology, medicine, biomedical research, bioinformatics, and evolutionary 
biology. High-throughput transcriptome sequencing (RNA-seq) has applications, such as gene/transcript/exon expres-
sion quantification at unprecendented scale, discovery of new events such as expressed fusion genes and alternative 
splicing, and indentification of expressed small scale mutations. RNA-seq has already deepened our understanding of 
gene fusions in cancer. An overview of different RNA-seq analysis methods is presented. 
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ABSTRACT 

Zebrafish embryos have recently been established as a xenotransplantation model of the metastatic behaviour of prima-

ry human tumours. At the moment, the existing tools for automated data extraction from microscope images are re-

strictive concerning the developmental stage of the embryos, usually require laborious manual image preprocessing, 

and, in general, cannot characterize the metastasis as a function of the internal organs. We present a tool, ZebIAT, 

that allows both automatic or semi-automatic registration of the outer contour and inner organs of zebrafish embryos. 

The tool provides a registration at different stages of development and an automatic analysis of cancer metastasis per 

organ, thus allowing the study of cancer progression. The semi-automation relies on a graphical user interface. After 

validating the methods and exemplifying the usage of ZebIAT, we discuss its applicability. ZebIAT should be of use in 

high-throughput studies of cancer metastasis in zebrafish embryos. 

 

14



The 10 th International Workshop on Computational Systems Biology, WCSB 2013

CELL SEGMENTATION BY MULTI-RESOLUTION ANALYSIS AND 

 MAXIMUM LIKELIHOOD ESTIMATION (MAMLE) 

 

Sharif Chowdhury1, Meenakshisundaram Kandhavelu1, Olli Yli-Harja1,2 and Andre S. Ribeiro1

1 Department of Signal Processing, Tampere University of Technology, 33101 Tampere, Finland. 
2 Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109-5234, USA. 

sharif.chowdhury@tut.fi, andre.ribeiro@tut.fi 

 

ABSTRACT 

Background: Cell imaging is becoming an indispensable tool for cell and molecular biology research. However, most 

of the studied processes are stochastic in nature, and require the observation of a large amount of cells and events. 

Ideally, extraction of information from these images ought to rely on automatic methods. Here, we propose a novel 

segmentation method, MAMLE, for detecting cells within dense clusters. 

Methods: The proposed framework executes cell segmentation in two main stages. The first relies on state of the art 

filtering technique, edge detection in multi resolution with morphological operator and threshold decomposition for 
adaptive thresholding. From this initial segmentation result, a correction procedure is applied that exploits maximum 

likelihood estimate as an objective function. Also, it acquires morphological features from the initial segmentation for 

constructing the likelihood parameter, after which the final segmentation results are obtained. 

Conclusions: We performed an empirical evaluation that includes sample images from different imaging modalities and 

diverse cell types. The new method attained very high (above 90%) cell segmentation accuracy in all test scenarios. 

Finally, its accuracy is compared to several recently proposed methods, and in all test samples, the method proposed 
here outperformed all of these in segmentation accuracy. 
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ABSTRACT 

Background: High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, de-

mands fast automated image analysis methods to assist unlocking the full potential of such studies. Image segmenta-

tion is typically at the forefront of such analysis as performance of the subsequent steps, for example, cell 

classification, cell tracking etc., often relies on the results of segmentation. 

Methods: We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image back-

ground using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space 

representation. A novel outline learning-based classification method is developed using regularized logistic regression 

with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. 

Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the 

nuclei segmentation is used as contextual information. 

Results and conclusions: We evaluate the proposed segmentation methodology using two challenging test cases, pre-

senting images with completely different characteristics, with cells of varying size, shape, texture and degrees of over-

lap. The feature selection and classification framework for outline detection produces very simple sparse models which 

use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative 

comparison of the results for the two test cases against state-of-the-art methods show that our methodology outper-

forms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results 

obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also gener-

alizes well to different segmentation tasks. 
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ABSTRACT 

The circadian clock is an important molecular mechanism that enables many organisms to anticipate and adapt to 

environmental change. Pokhilko et al. recently built a deterministic ODE mathematical model of the plant circadian 

clock in order to understand the behaviour, mechanisms and properties of the system. The model comprises 30 

molecular species (genes, mRNAs and proteins) and over 100 parameters. The parameters have been fitted heuristically 

to available gene expression time series data and the calibrated model has been shown to reproduce the behaviour of the 

clock components. Ongoing work is extending the clock model to cover downstream effects, in particular metabolism, 

necessitating further parameter estimation and model selection. This work investigates the challenges facing a full 

Bayesian treatment of parameter estimation. Using an efficient adaptive MCMC proposed by Haario et al. and working 

in a high performance computing setting, we quantify the posterior distribution around the proposed parameter values 

and explore the basin of attraction. We investigate if Bayesian inference is feasible in this high dimensional setting and 
thoroughly assess convergence and mixing with different statistical diagnostics, to prevent apparent convergence in 

some domains masking poor mixing in others. 
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ABSTRACT 

Background: Diffusion is a key component of many biological processes such as chemotaxis, developmental 

differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-

vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-

resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying 

mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse 

observations, which result in uncertainties of the model parameters. 

Methods: We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based 

upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-

constrained optimization methods. To asses the uncertainty and practical identifiability of the parameters we introduce 

profile likelihoods for diffusion processes. 

Results and Conclusion: As proof of concept, we model certain aspects of the guidance of dendritic cells towards 

lymphatic vessels, an example haptotaxis. Using a realistic set of artificial measurement data, we estimate the five 

kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model 

parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion 

processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local 

approximation methods. 
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ABSTRACT 

In this paper we present an algorithm based on the sum-product algorithm that finds elements in the preimage of a feed-

forward Boolean networks given an output of the network. Our probabilistic method runs in linear time with respect to 

the number of nodes in the network. We evaluate our algorithm for randomly constructed Boolean networks and a 

regulatory network of Escherichia coli and found that it gives a valid solution in most cases. 
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ABSTRACT 

With the improvement of protocols for the assembly of transcriptional parts, synthetic biological devices can now be 

reliably assembled based on a design. The standardization of the parts open up the way for in silico design tools that 

improve the construct and optimize devices with respect to given formal specifications. The simplest such optimization 

is the selection of kinetic parameters and protein abundances such that the specified constraints are robustly satisfied. In 

this chapter we address the problem of determining parameter values that fulfill specifications expressed in terms of a 

functional on the trajectories of a dynamical model. We solve this inverse problem by linearizing the forward operator 

that maps parameter sets to specifications, and then inverting it locally. This approach has two advantages over brute-

force random sampling. First, the linearization approach allows us to map back intervals instead of points and second, 

every obtained value in the parameter region is satisfying the specifications by construction. 
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ABSTRACT 

Transcription factor (TF) binding to DNA can be modeled in a number of different ways. It is highly debated which 

modeling methods are the best, how should the models be built and what can they be applied to. In this study a linear k-

mer model proposed for predicting TF specificity in protein binding microarrays (PBM) is applied to a high-throughput 

SELEX data and the question of how to choose the most informative k-mers to the binding model is studied. 

We implemented the standard cross-validation scheme to reduce the number of k-mers in the model and observed that 

the number of k-mers can often be reduced significantly without a great negative effect on prediction accuracy. We also 

found that the later SELEX enrichment cycles provide a much better discrimination between bound and unbound 

sequences as model prediction accuracies increased for all proteins together with the cycle number. 

We compared prediction performance of k-mer and position specific weight matrix (PWM) models derived from the 

same SELEX data. Consistent with previous results on PBM data, performance of the k-mer model was on average 9 

%-units better. For the 14 proteins in the SELEX data set classification accuracies were on average 71% and 62% for k-

mer and PWMs, respectively. 

Finally, the k-mer model trained with SELEX data was evaluated on ChIP-seq data demonstrating substantial 

improvements for some proteins. For GATA1 the model can distinguish between true ChIP-seq peaks and negative 

peaks. For RFX3 and NFATC1 data the model is as good as quessing. 
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ABSTRACT 

Background: Classification methods of DNA most commonly use comparison of the differences in DNA symbolic 

records, which requires the global multiple sequence alignment. This solution is often inappropriate, causing a number 
of imprecisions and requires additional user intervention for exact alignment of the similar segments. The similar 

segments in DNA represented as a signal are characterized by a similar shape of the curve. The DNA alignment in 

genomic signals may adjust whole sections not only individual symbols. The dynamic time warping (DTW) is suitable 

for this purpose and can replace the multiple alignment of symbolic sequences in applications, such as phylogenetic 

analysis. 

Methods: The proposed method is composed of three main parts. The first part represent conversion of symbolic 
representation of DNA sequences in the form of a string of A,C,G,T symbols to signal representation in the form of 

cumulated phase of complex components defined for each symbol. Next part represents signals size adjustment realized 

by standard signal preprocessing methods: median filtration, detrendization and resampling. The final part necessary for 

genomic signals comparison is position and length alignment of genomic signals by dynamic time warping (DTW). 

Results: The application of the DTW on set of genomic signals was evaluated in dendrogram construction using cluster 

analysis. The resulting tree was compared with a classical phylogenetic tree reconstructed using multiple alignment. 
The classification of genomic signals using the DTW is evolutionary closer to phylogeny of organisms. This method is 

more resistant to errors in the sequences and less dependent on the number of input sequences. 

Conclusions: Classification of genomic signals using dynamic time warping is an adequate variant to phylogenetic 

analysis using the symbolic DNA sequences alignment; in addition, it is robust, quick and more precise technique.  
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ABSTRACT 

Background: In bioprocess development, the needs of data analysis include (1) getting overview to existing data sets, 

(2) identifying primary control parameters, (3) determining a useful control direction, and (4) planning future 

experiments. In particular, the integration of multiple data sets causes that these needs cannot be properly addressed by 

regression models that assume linear input-output relationship or unimodality of the response function. Regularized 

regression and random forests, on the other hand, have several properties that may appear important in this context. 

They are capable, e.g., in handling small number of samples with respect to the number of variables, feature selection, 
and the visualization of response surfaces in order to present the prediction results in an illustrative way. 

Results: In this work, the applicability of regularized regression (Lasso) and random forests (RF) in bioprocess data 

mining was examined, and their performance was benchmarked against multiple linear regression. As an example, we 

used data from a culture media optimization study for microbial hydrogen production. All the three methods were 

capable in providing a significant model when the five variables of the culture media optimization were linearly 

included in modeling. However, multiple linear regression failed when also the multiplications and squares of the 
variables were included in modeling. In this case, the modeling was still successful with Lasso (correlation between the 

observed and predicted yield was 0.69) and RF (0.91). 

Conclusion: We found that both regularized regression and random forests were able to produce feasible models, and 

the latter was efficient in capturing the non-linearity in the data. In this kind of a data mining task of bioprocess data, 

both methods outperform multiple linear regression. 
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ABSTRACT 

We explore whether the process of multimerization can be used as a means to regulate noise in the abundance of 

functional protein complexes. Additionally, we analyze how this process affects the mean level of these functional 

units, response time of a gene, and temporal correlation between the numbers of expressed proteins and of the 

functional multimers. We show that, although multimerization increases noise by reducing the mean number of 

functional complexes it can reduce noise in comparison with a monomer, when abundance of the functional proteins are 

comparable. Alternatively, reduction in noise occurs if both monomeric and multimeric forms of the protein are 

functional. Moreover, we find that multimerization either increases the response time to external signals or decreases 
the correlation between number of functional complexes and protein production kinetics. Finally, we show that the 

results are in agreement with recent genome-wide assessments of cell-to-cell variability in protein numbers and of 

multimerization in essential and non-essential genes in Escherichia coli, and that the effects of multimerization are 

tangible at the level of genetic circuits. 
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ABSTRACT 

Cancers are complex diseases arising from accumulated genetic mutations that disrupt intracellular signaling net-

works. While several predisposing genetic mutations have been found, these individual mutations account only for a 

small fraction of cancer incidence and mortality. With large-scale measurement technologies, such as single nucleo-

tide polymorphisms (SNP) microarrays, it is now possible to identify combinatorial effects that have significant impact 

on cancer patient survival. The identification of synergetic functioning SNPs on genome-scale is a computationally 

daunting task and requires advanced algorithms. We introduce a novel algorithm, Geninter, to identify SNPs that have 

synergetic effect on survival of cancer patients. Using a large breast cancer cohort we generate a simulator that allows 

assessing reliability and accuracy of Geninter and logrank test, which is a standard statistical method to integrate ge-

netic and survival data. Our results show that Geninter outperforms the logrank test and is able to identify SNP-pairs 

with synergetic impact on survival.  
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ABSTRACT 

Background: This paper presents a novel model for proliferating cell populations in labeling experiments. It is 

especially tailored to the technique of Bromodeoxyuridine (BrdU), which is taken up by dividing cells and thus 

accumulates with increasing division number during uplabeling. The study of the evolving label intensities of BrdU 

labeled cell populations is aimed at quantifying proliferation properties such as division and death rates. 

Results: In contrast to existing models, our model considers a labeling efficacy that follows a distribution, rather than a 

uniform value. It thereby allows to account for noise as well as possibly space-dependent heterogeneity in the effective 
label uptake of the individual cells in a population. Furthermore, it enables more informative comparison with 

experimental data: The population-level label distribution is provided as a model output, thereby increasing the 

information content compared to existing models that give the fraction of labeled cells or the mean label intensity.  

We employ our model to study some naturally arising examples of heterogeneity in label uptake, which are not covered 

by existing models. With simulations of noisy and spacially heterogeneous label uptake, we demonstrate that our model 

contributes a more realistic quantitative description of labeling experiments.  

Conclusion: The presented model is to our knowledge the first one that predicts the full label distribution for BrdU 

labeling experiments. Thus, it can exploit more information, namely the full intensity distribution, from labeling 

measurements, and thereby opens up new quantitative insights into cell proliferation. 
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ABSTRACT 

Background: Cancer is a broad group of genetic diseases which account for millions of deaths worldwide each year. 

Cancers are classified by various clinical, pathological and molecular methods, but even within a well-characterized 

disease, there is a significant inter-patient variability in survival, response to treatment, and other parameters. Especially 

in molecular level, tumours of the same category can appear significantly dissimilar due to complex combinations of 

genetic aberrations leading to a similar malignancy. We sought to extend the current classification methods by studying 

tumour heterogeneity at pathway level. 

Methods: We computed the rate of alterations in 1994 pathways and 2210 tumours consisting of eight different 

cancers. Using gene set enrichment analysis, each sample was computed a pathway aberration profile that reflected its 

molecular state. The profiles were analysed together to infer the characteristic aberration rates for each pathway within 

each cancer. Subgroups of tumours defined by similar pathway aberrations were identified using clustering analyses. 

The pathway aberration and gene expression profiles of the subgroups were consecutively compared across all eight 

cancer types to search for similar tumours crossing the standard classification. 

Results: We identified pathways and processes that were common to all cancers as well as traits that are unique to a 

cancer type or closely related cancers. Studying the gene expression patterns within the pathway context suggested 

potential alteration mechanisms. Clustering analysis revealed five clinically relevant subgroups of tumours in four 

cancers that exhibited significant differences in survival compared to others. The cross-cancer analysis of the subgroups 

resulted in the identification of tumours that shared potentially significant alterations. 

Conclusions: This study represents the first effort to extend the molecular characterizations towards pathway level 

descriptions across the family of cancers. In addition to providing a proof-of-concept for single sample pathway 

aberration analysis in this context, we present a comprehensive pathway aberration dataset that can be used to study 

pathway aberration patterns within or across cancers. Significant similarities between subgroups of different cancers on 

pathway and gene expression levels provide interesting hypotheses for understanding variable drug response, or 

transferring treatments across diseases by identifying common druggable pathways or genes, for example. 
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ABSTRACT

We assess the accuracy of three established regression
methods for reconstructing gene and protein regulatory
networks in the context of circadian regulation. Data are
simulated from a recently published regulatory network of
the circadian clock inArabidopsis thaliana, in which pro-
tein and gene interactions are described by a Markov jump
process based on Michaelis-Menten kinetics. We closely
follow recent experimental protocols, including the en-
trainment of seedlings to different light-dark cycles and
the knock-out of various key regulatory genes. Our study
provides relative assessment scores for the comparison of
state-of-the art regression methods, investigates the influ-
ence of systematically missing values related to unknown
protein concentrations and mRNA transcription rates, and
quantifies the dependence of the performance on the de-
gree of recurrency.

1. INTRODUCTION

Plants have to carefully manage their resources. The pro-
cess of photosynthesis allows them to utilize sunlight to
produce essential carbohydrates during the day. How-
ever, the earth’s rotation predictably removes sunlight, and
hence the opportunity for photosynthesis, for a significant
part of each day, and plants need to orchestrate the accu-
mulation, utilisation and storage of photosynthetic prod-
ucts in the form of starch over the daily cycle to avoid
periods of starvation, and thus optimise growth rates.

In the last few years, substantial progress has been
made to model the central processes of circadian regula-
tion, i.e. the mechanism of internal time-keeping that al-
lows the plant to anticipate each new day, at the molecular
level [1, 2]. Moreover, simple mechanistic models have
been developed to describe the feedback between carbon
metabolism and the circadian clock, by which the plant
adjusts the rates of starch accumulation and consumption
in response to changes in the light-dark cycle [3]. What is
needed is the elucidation of the detailed structure of the
molecular regulatory networks and signalling pathways
of these processes, by utilization and integration of tran-
scriptomic, proteomic and metabolic concentration pro-

files that become increasingly available from international
research collaborations like Agrogenomics1 and Timet2.

The inference of molecular regulatory networks from
postgenomic data has been a central topic in computa-
tional systems biology for over a decade. Following up
on the seminal paper in [5], a variety of methods have
been proposed [6], and several procedures have been pur-
sued to objectively assess the network reconstruction ac-
curacy [7, 8, 6]. The present study follows up on this
work and extends it in four important respects. Firstly,
to make the evaluation more targeted at the specific prob-
lem of inferring gene and protein interactions related to
circadian regulation, we take the central circadian clock
network inArabidopsis thaliana, as published in [2] , as
a ground truth for evaluation, and closely follow recent
experimental protocols for data generation, including the
entrainment of seedlings to different light-dark cycles, and
the knock-out of various key regulatory genes. Secondly,
to make the data generated from this network as realistic
as possible, we model gene and protein interactions as a
Markov jump process based on Michaelis-Menten kinet-
ics. This is to be preferred over mechanistic models based
on ordinary differential equations (used e.g. in [1]), as
it captures the intrinsic stochasticity of molecular interac-
tions. Thirdly, we assess the impact of missing values on
the reconstruction task. Protein-gene interactions affect
transcription rates, but both these rates as well as protein
concentrations might not be available from the wetlab as-
says. In such situations, mRNA concentrations have to
be taken as proxy for protein concentrations, and rates
have to be approximated by finite difference quotients.
For both approximations, we quantify the ensuing deteri-
oration in network reconstruction accuracy. Fourthly and
finally, we investigate the dependence of the network re-
construction accuracy on the degree of recurrency in the
network. The central circadian clock network is densely
connected with several tight feedback loops. However,
we expect the regulatory network, via which the clock
acts on carbon metabolism, to be sparser and with more
feed-forward structures. In our study we therefore quan-

1https://agronomics.ethz.ch/
2http://timing-metabolism.eu/
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Figure 1. Model network of the circadian clock in Arabidopsis thaliana based on [4] and subject to knock-outs.
Each graph shows interconnections of core circadian clock genes, where solid lines indicate protein influence on mRNA
transcription, and dashed lines represent protein modifications. The top left panel shows the wildtye; the legends of the
remaining panels indicate constant knock-outs of certain target proteins. Light influence is symbolized by a sun symbol,
and grey boxes highlight set of regulators or regulated components.

tify how the network reconstruction depends on the degree
of recurrency, and how the performance varies as critical
feedback cycles are pruned.

2. METHOD OVERVIEW

2.1. Notation

Throughout the paper we use the following notation: For
the regression models, which we will use to infer the
network interactions, we have target variablesyg (g =
1, . . . , N ), each representing the temporal mRNA concen-
tration gradient of a particular geneg. The realizations
of each target variableyg can then be written as a vector
yg = (yg,1, . . . , yg,T )

T, whereyg,t is the realization ofyg
in observationt. The potential covariates are either gene
or protein concentrations, and the task is to infer a set of
covariatesπg for each response variableyg. The collec-
tive set of covariates{π1, . . . ,πN} defines a regulatory
interaction network,M. In M the covariates and the tar-
get variables represent the nodes, and from each covariate
in πg a directed interaction (or ”edge”) is pointing to the
target nodeg. The complete set of regulatory observa-
tions is contained in the design matrixX. Realizations of
the covariates in the setπg are collected inXπg

, where
the columns ofXπg

are the realizations of the covariates
πg. Design matrixX andXπg

are extended by a constant

element equal to 1 for the intercept.

2.2. Sparse regression

A widely applied linear regression method that encour-
ages network sparsity is the Least Absolute Shrinkage and
Selection Operator (Lasso) introduced in [9]. The Lasso
optimizes the parameters of a linear model based on the
residual sum of squares subject to anL1-norm penalty
constraint on the regression parameters,‖wg‖1, which ex-
cludes the intercept [10]:

ŵg = argmin

{
||yg −XTwg||

2

2 + λ1‖wg‖1
}

(1)

whereλ1 is a regularisation parameter controlling the
strength of shrinkage. Equation (1) constitutes a con-
vex optimization problem, with a solution that tends to
be sparse. Two disadvantages of the Lasso are arbitrary
selection of single predictors from a group of highly cor-
relation variables, and saturation atT predictor variables.
To avoid these problems, the Elastic Net method was pro-
posed in [11], which combines the Lasso penalty with a
ridge regression penalty of the standard squaredL2-norm
‖wg‖22 exluding the intercept:

ŵg = argmin



||yg −XTwg ||22 + λ1‖wg‖1 + λ2‖wg‖22
ff

(2)
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Like Equation (1), Equation (2) constitutes a convex
optimization problem, which we solve with cyclical coor-
dinate descent [10] implemented in the R software pack-
ageglmnet . The regularization parametersλ1 and λ2

were optimized by 10-fold cross-validation.

2.3. Bayesian regression

In Bayesian regression we assume a linear regression
model for the targets:

yg|(wg, σg, πg) ∼ N (XT
πg
wg, σ

2
gI) (3)

whereσ2
g is the noise variance, andwg is the vector of

regression parameters, for which we impose a Gaussian
prior:

wg|(σg, δg, πg) ∼ N (0, δgσ
2
gI) (4)

δg can be interpreted as a ”signal-to-noise” hyperparame-
ter [12]. For the posterior distribution we get:

wg|(σg, δg, πg,yg) ∼ N (ΣgXπg
yg, σ

2
gΣg) (5)

whereΣ−1
g = δ−1

g I + Xπg
XT

πg
, and the marginal like-

lihood can be obtained by application of standard results
for Gaussian integrals [13]:

yg|(σg, δg, πg) ∼ N (0, σ2
g(I+ δgX

T
πg
Xπg

)) (6)

For σ−2
g and δ−2

g we impose conjugate gamma priors,
σ−2
g ∼ Gam(ν/2, ν/2), andδ−1

g ∼ Gam(αδ, βδ).3 The
integral resulting from the marginalization overσ−2

g ,

P (yg|πg, δg) =

∫ ∞

0

P (yg|σg, δg, πg)P (σ−2
g |ν)dσ−2

g

is then a multivariate Student t-distribution with a closed-
from solution (e.g. [13, 12]). Given the data for the po-
tential covariates ofyg, symbolicallyD, the objective is to
infer the set of covariatesπg from the marginal posterior
distribution:

P (πg|D,yg, δg) =
P (πg)P (yg|πg, δg)∑
π⋆
g
P (π⋆

g)P (yg|π⋆
g , δg)

(7)

where the sum is over all valid covariate setsπ⋆
g , P (πg) is

a uniform distribution over all covariate sets subject to a
maximal cardinality,|πg| ≤ 3, andδg is a nuisance param-
eter, which can be marginalized over. We sample sets of
regulators (or covariates)πg, signal-to-noise parameters
δg, and noise variancesσ2

g from the joint posterior dis-
tribution with Markov chain Monte Carlo (MCMC), fol-
lowing a Metropolis-Hastings within partially collapsed
Gibbs scheme [12].

3. DATA

We generated data from the central circadian gene regula-
tory network inArabidopsis thaliana, as proposed in [2]

3We set:ν = 0.01, αδ = 2, andβδ = 0.2, as in [12].
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PRR7,PRR9

Gradient Type
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Figure 2. Pairwise AUROC comparisons including all
regression methods. Covariate type: AUROC differ-
ences of protein against mRNA as covariates.Gradient
type: AUROC difference of fine against coarse gradient
for mRNAs (grey box) and proteins (white box). The re-
maining panels show the AUROC differences of various
pruned networks as displayed in Figure 1 versus wild-
type network for mRNA (grey boxes) and proteins (white
boxes) as covariates.

and depicted in the top right panel of Figure 1 . Follow-
ing [14], the regulatory processes of transcriptional regu-
lation and post-translational protein modification were de-
scribed with a Markov jump process based on Michaelis-
Menten kinetics, which defines how mRNA and protein
concentrations change in dependence on the concentra-
tions of other interacting components in the system (see
appendix of [2] for detailed equations). We simulated
mRNA and protein concentration time courses with the
Gillespie algorithm [15], using the Bio-PEPA modelling
framework [16]. To investigate the influence of recur-
rent interactions on the network reconstruction, we elimi-
nated feedback loops successively via targeted downregu-
lation of protein translation (knock-outs) and replacement
of corresponding concentrations by white Gaussian noise.
This gave us five modified network structures, as shown
in Figure 1. For each network type we created 11 inter-
ventions in consistency with standard biological protocols
(e.g. [17]). These include knock-outs of proteins ’GI’,
’LHY’, ’PRR7,PRR9’, ’TOC1’, and varying photoperi-
ods of 4, 6, 8, 12, or 18 hours of light in a 24-hour light-
dark (LD) cycle. For each intervention we simulated pro-
tein and mRNA concentration time courses over 6 days.
The first 5 days served as entrainment to the indicated LD
cycles. This was followed by a day of persistent dark-
ness (DD) or light (LL), during which concentrations of
mRNAs and proteins were measured in 2 hour intervals.
Combining 13 observations for each intervention yielded
143 observations in total for each network type. All con-
centrations were standardized to unit standard deviation.
The temporal mRNA concentration gradient was approx-
imated by a difference quotient of mRNA concentrations
based on two alternative temporal resolutions: at -2 and
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Figure 3. Method comparison. Mean AUROC values
as a measure of network reconstruction performance for
Lasso, Elastic Nets and Bayesian Regression applied to 6
distinct data types generated from networks shown in Fig-
ure 1. Empty symbols correspond to mRNA covariates,
filled symbols to protein covariates.

+2 hours (coarse gradient), and at -12 and +12 minutes
(fine gradient), followed by z-score standardization.

When trying to reconstruct the regulatory network
from the simulated data, we ruled out self-loops, such as
from LHY (modified) protein to LHY mRNA, and ad-
justed for mRNA degradation by enforcing mRNA self-
loops, such as from the LHY mRNA back to itself. Pro-
tein ’ZTL’ was included in the stochastic simulations, but
excluded from structure learning because it has no direct
effect on transcription. We carried out two different net-
work reconstruction tasks. The first was based on com-
plete observation, including both protein and mRNA con-
centration time series. The second was based on incom-
plete observation, where only mRNA concentrations were
available, but protein concentrations were systematicaly
missing. All network reconstructions were repeated on
five independent data instantiations.

4. RESULTS

For Bayesian regression, we compute the marginal poste-
rior probabilities of all potential interactions. For Lasso
and Elastic Nets, we record the absolute values of non-
zero regression parameters. Both measures provide a
means by which interactions between genes and proteins

AUROC values for decreasing Connectivity

Mean AUROC
0.5 0.6 0.7 0.8 0.9 1.0
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coarse  
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coarse  
fine  

coarse  
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PRR5,PRR7,PRR9,TOC1  Lasso
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Figure 4. Performance comparison in dependence on
network connectivity. Mean AUROC values for sparser
networks in descending order for coarse (4 hour) and fine
(24 minutes) response gradients. Empty symbols corre-
spond to mRNA covariates, filled symbols to protein co-
variates.

can be ranked in terms of their significance or influence.
Given that the true network is known, this ranking defines
the Receiver Operating Characteristic (ROC) curve, where
the sensitivity or recall is plotted against the complemen-
tary specificity. By numerical integration we then obtain
the area under the curve (AUROC) as a global measure
of network reconstruction accuracy, where larger values
indicate a better performance, starting from AUROC=0.5
to indicate random expectation, to AUROC=1 for per-
fect network reconstruction. The results of our study are
shown in Figures 2, 3 and 4 and can be summarized as
follows.

Comparison between the methods.The performance
of Lasso and Elastic Net is very similar, while Bayesian
regression achieves slightly better results, especially when
protein concentrations are included and temporal gradi-
ents are computed at fine resolution. This indicates a jus-
tification of the higher computational costs of inference
based on MCMC.

Influence of gradient estimation.A finer temporal res-
olution for the gradient estimation tends to improve the
network reconstruction. This affects in particular data
for which the reconstruction based on coarse gradients
is close to random expectation, and Bayesian regression
models applied to protein concentrations. However, the
coarse gradient leads to a noticeable improvement in the
reconstruction with Bayesian regression based on mRNA
profiles alone for the sparser networks in Figure 1. Prelim-
inary investigations indicate that this unexpected trend is
related to confounding correlations between the profiles of
the two LHY isoforms, which are more important (propul-
sive) regulators in the sparser networks. However, a closer
analysis is still required.

Influence of missing protein concentrations.With the
noticeable exception of Bayesian regression applied to
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data with coarse gradient estimation, discussed above, the
inclusion of protein concentrations significantly improves
the network reconstruction accuracy. Our study allows a
quantification of the degree of improvement in terms of
AUROC score differences, with a mean improvement of
0.09 and a p-value of 8e-06 (from a two a sided t-test) in-
dicating significant higher values using protein covariates
(Figure 2).

Influence of feedback loops.An important aspect of
our study is the investigation of how the network recon-
struction accuracy depends on the connectivity of the true
network and the proportion of recurrent connections. To
this end we have successively pruned feedback interac-
tions, as shown in Figure 1. Figures 2 and 4 suggest that
there is a noticeable trend, with less recurrent networks
appearing to be easier to learn.

5. CONCLUSION

We have carried out a comparative evaluation of three es-
tablished machine learning methods for regulatory net-
work reconstruction (Lasso, Elastic Nets, Bayesian re-
gression) based on the central gene regulatory network of
the circadian clock inArabidopsis thaliana, and a series
of synthetic gene knock-outs that affect the proportion of
recurrent interactions. Our study allows a quantification
of the improvement in network reconstruction accuracy
as a consequence of including protein concentrations, the
dependence of the performance on the recurrent network
connectivity, and the influence of the numerical approxi-
mation of the gradient (i.e. transcription rates) by finite-
size difference quotients.
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ABSTRACT 

Discovery  of  human  interactome  is  crucial  for  the 

understanding  of  complex  biological  processes  and  

pathways,  and  for  drug  discovery.  Bench-work exper-

iments  to  determine  protein-protein  interactions (PPIs) 

are costly in terms of time, materials, equipment, and  

technical  and  scientific  expertise.  Thus,  in  recent 

years  computational  machine  learning  methods  have 

been  proposed  to  predict PPIs. These methods require 

training  data  to  learn  the  classification  models;  but, 

currently known interactions are not sufficient to create 

an  accurate  model  to  predict  the  whole interactome 

or even  a  significant  fraction  thereof.  If  it  is  poss i-

ble  to seek  additional  training  data  experimentally,  

which  are the  protein-pairs  that  should  be  chosen  to  

yield maximally-informative  instances  so  as  to  max-

imize prediction accuracy for a given cost/effort level? 

Active machine  learning  (AL)  methods  are  designed  

to select instances  (protein-pairs)  to  create optimal 

training data and  thus  maximize  their  value  in  terms  

of prediction accuracy. Improving the relative accuracy 

is the pursuit of research in AL. However AL assumes 

the existence of an omniscient oracle (an experiment or 

an expert), which would give the correct label for every 

instance that it is asked, and it would do so for both pos i-

tive and negative labels. In reality in the context of PPIs, 

an “oracle” can provide  labels  for  only  some  interact-

ing  pairs (reluctance),  and  cannot give labels for non-

interacting pairs (one-class nature). We develop algo-

rithms for AL appropriate to this scenario of PPI predic-

tion. Our results are  superior  compared  to  both  a  ran-

dom  baseline  and also generic state-of-the-art AL. 

1. INTRODUCTION 

Computationally discovering protein-protein interactions 

(PPIs) of the human interactome is a challenging task for 

many  reasons. Supervised  machine  learning algorithms 

have been applied to PPI prediction, which treat the task 

as a  binary  classification  problem. Positive  class  data, 

namely the interacting  protein-pairs,  are  only one-in-a-

thousand or less from amongst 500 million possible pairs 

[1]. There  are  no  known  negative-class  data,  namely 

virtually no probably  non-interacting pairs. Therefore, a 

classification model must be built using training data that 

consists of a pool of known interactions and a pool of  

randomly  paired proteins not known to interact that are  

treated  as  non-interacting  pairs  [2].  The  best  esti-

mates of the total number of interactions [3] indicate that 

only 5-10% are currently known, and it is possible that 

these  interactions  are  not  representative  of  the  entire 

interaction space – i.e. they are not drawn randomly or 

i.i.d. from the interacting distribution. For more than half 

of all the proteins, there is not even one known interac-

tion.  In  order to  learn  an  accurate  PPI  class ifier,  one 

must  sample  the  space  and  determine  labels  of  those 

instances by experimental methods. However, acquiring 

more interactions would require performing bench work 

experiments, including  medium  to  high-throughput 

methods such as yeast 2-hybrid [4] or mass spectrometry 

techniques  [5],  which  are  costly  and  time  consuming 

processes  that  also  require  considerable amount of re-

sources,  high-end  equipment  and  technical  expertise. 

Therefore, designing  strategies that optimally select in-

stance  pairs that are most informative for incrementally 

training an accurate classifier is an important goal in PPI 

prediction. This is known as active learning. 

Active learning strategies help to select optimal training 

instances to achieve superior predictive accuracy within 

a given budget that is available for labeling instances [6]. 

See Figure 1. In active learning, the algorithm starts with 

the few labeled instances that are available (‘  ’ and ‘  ’ 

in  Figure 1). Next, it identifies the unlabeled instances 

(pairs  of  proteins)  whose  labels  when  known  would 

prove most useful in learning a better classifier (‘ ’ in 

Figure 1); an oracle is queried to obtain labels of those 

instances; the labels thus obtained are added to the train-

ing data and the model is re-trained to arrive at a more 

accurate  classifier; if  time  and  budget permit, this pro-

cess is iterated. The basic assumption is that obtaining 

labels involves investment of resources, and therefore 

that the selected instances whose labels are asked should 

be optimal for retraining more accurate classifier. In PPI 

prediction, an oracle  would  typically  be  a  bench-work 

experiment, which can characterize a protein-pair. 

Common strategies  for  active  learning include density-

based selection where more representative instances are 

selected  from  denser  clusters  [7],  or uncertainty-based 

selection  where  data points are selected from maximum 
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confusion or uncertain regions of the instance space with 

respect to the current classifier [8], or ensemble-methods 

which employ multiple criteria to select data points  that 

typically outperform many other strategies [9]. 

“Wrapper” methods select those instances  which would 

lead to the highest improvement in classifier accuracy 

once they are added to the training dataset [6] by the 

computationally-intensive step of hypothesizing the label 

of each instance, retraining the classifier as if this 

hypothesis were true, and estimating accuracy gains (for 

PPI this would require a half-billion retraining steps to 

select a single instance for experimentation; hence it is 

not a tractable option). We previously applied a variety 

of active learning methods including density based, 

uncertainty based and history based active selection 

approaches for predicting PPIs [10] in which we 

observed that active learning required only 500 labeled 

instances to achieve the same or superior accuracy as 

achieved by 3,000 randomly selected labeled instances. 

A six-fold improvement in experimental efficiency with 

modest computational effort is always a desirable 

tradeoff, but can we do better?  This paper argues the 

positive.  

2. APPROACH  

Active learning assumes that there exists a single perfect 

oracle, which would always give the correct answer for 

labeling instances – e.g. an experimental procedure that 

always yields an answer and is always correct – this is 

unrealistic of experiments to determine protein-protein 

interactions. These characteristics of the oracle present a 

hindrance to optimal active learning for interactome-

scale discovery of PPIs. Would active learning work 

better with a proper “oracle” for PPI?  This is the central 

hypothesis of this paper, which we answer in the 

positive. The primary contributions of this work are (a) a 

detailed characterization of the oracle in the domain of 

PPI prediction, and (b) development of suitable active 

learning approaches to suit these oracle characteristics, 

and an empirical demonstration of their effectiveness 

over the state of the art.  

2.1. Characteristics of the PPI oracle 

The PPI oracle is not able to detect non-interacting 

proteins (one-class nature): Traditional bench-work 

experiments cannot validate “non-interaction nature” of 

protein pairs. There is no data available which gives us 

information about experimentally confirmed non-

interacting proteins. Thus, PPI oracles can only provide 

labels for protein-pairs associated with a single class, 

which is the interacting class  

The PPI oracle is only able to label a subset of all real 

interactions (reluctance): There are various 

technological constraints which limit the experiment to 

detect all possible interactions. Some experiments cannot 

be used on a certain class of proteins. For example, a 

yeast 2-hybrid (Y2H) experiment cannot be used for 

detecting interactions of a protein that is able to initiate 

transcription without its interacting partner or those that 

Legend:  

Figure 1 – Active learning concept diagram: Contrasting active learning (A-C-D-E) against normal supervised 

learning (A-B). When a few data points are selected and their labels are asked from an oracle (orange ‘+’ instances), 

the classifier learnt after adding those instances to the training data is more accurate than without acquiring those 

labels. A major focus of research in active learning is on how to select the ‘+’ instances so that maximum accuracy 

may be obtained under budget restrictions. 

A. Unlabeled data with few labels

C. Proactive selection of data whose labels 

would be most useful for classification algorithm

D. Labels of selected data obtained by yeast 

2-hybrid technology

B. Prediction is “as best as possible with given 

training data”, but not very accurate

E. Predicted interactions are more 

accurate

X

AL

AL AL

Unlabeled instance

Instance labeled as “interacting”

Instance labeled as “noninteracting”

Instance selected by proactive learning 

suggesting that it be studied by experiment

General Approach:  AB

Active Learning: ACDE
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are dependent on post-translational modifications; mass-

spectrometry methods might fail to discover transient 

interactions; most experimental techniques that are 

available today are not able to characterize interactions 

involving integral membrane proteins [11]. Thus, 

technical constraints constitute a major roadblock for 

many experimental methods, and they are only able to 

identify a subset of all possible interactions.  

 

The PPI oracle labels a subset of interactions 

incorrectly (fallibility): Human errors and operation 

issues while performing the experiment can lead to 

incorrect labeling of some protein-pairs. A two hybrid 

assay can produce some biologically irrelevant 

interactions, especially if the proteins reside in different 

tissues or different sub cellular locations  [11]. It is also 

difficult to isolate the binary interactions between 

protein-pairs when a protein complex is involved, as it is 

highly difficult to identify the target protein in the 

complex. Many high-throughput interactions are 

detected in-vivo by causing disruption of normal cellular 

function [11]. Thus non-typical interactions may be 

observed, as the existing pattern of protein interactions is 

disrupted resulting in the generation of false positives. 

2.2. Active learning with PPI oracles 

We extend general active learning methods to the 

scenario where the oracle has one class and reluctance 

properties, considering these characteristics one at a 

time. We consider the oracle to be infallible in nature; 

that is, if it does give a label, it is believed to be the 

correct label. We call this  Active Learning with 

Reluctant One Class oracle. Whereas the reluctance 

property and the accuracy of oracles  were introduced and 

characterized by Donmez et al [12], the one-class 

property is a new contribution to active learning driven 

by the requirements of PPI prediction.  

2.2.1. Active learning with one class oracle 

In classical active learning, if an oracle is resultant (no 

answer), we assume the majority class, i.e. the protein 

pair is non-interacting.. However in one class active 

learning, if the oracle fails to give the label for a data 

point, then we estimate whether a potential label can be 

associated with it by observing the oracle behavior. We 

assign the estimated label to the data point and add it to 

the training data instead of always assuming it to be non-

interacting in nature. We also estimate P(label | x), 

which is the probability that the data-point x would be 

labeled by the oracle. As the oracle provides the label for 

only the interacting class, we can use P (label | x) as a 

reasonable estimate to assign the “interacting” label to 

the instance. The unlabeled instance is assigned the 

interacting label with a probability P (label | x).   

There exists no real world datasets  from which we can 

learn the behavior of the PPI oracle to calculate P(label | 

x) for unlabeled instances. Hence, we propose three 

different heuristic methods which provide a reasonable 

estimate of P(label | x) based on the distribution of 

known labeled data that have already been added to the 

training data in the active learning process. These 

heuristic methods are described in the next section. The 

following are assumptions in determining P(label | x) 

through heuristic based methods:  

a. We assume that if the oracle gives the (interacting) 

label for a particular data-point, then it is highly 

likely to assign the same label for neighboring 

points in PP feature space. As the distance from 

known labeled instances increases, the likelihood of 

an instance being labeled by the oracle decreases.  

b. Some proteins have been studied extensively due to 

their significant role in a significant pathway, or 

their role as a drug target or due to disease-

association. For  9673  genes out of 22,500 genes 

there is at least one known interaction (Human 

Protein Reference Database: www.HPRD.org [13]); 

60% of all genes have no known experimentally 

determined interaction. Figure 2 shows number of 

interactions of proteins ordered by their rank when 

ordered descending by the number of interactions 

known. It can be seen from the figure that around 

50% of all known interactions are associated with 

only 1,250 genes or 4% of all genes. Thus most 

known interactions today are associated with a very 

few proteins. The labeled subset space is generally 

associated with those 4% of genes that are well 

studied in literature.  

2.3. Active learning with reluctant oracle 

When an oracle is asked for labels of unlabeled instances 

(U), of which N are interacting pairs in reality, the oracle 

gives labels for only n out of N interacting pairs owing 

to its reluctant nature described earlier. For example, in a 

yeast 2-hybrid set up, the “assay sensitivity” was found 

to be only 23% [14]. In order that all unlabeled 

interactions be recovered by the learning algorithm, it is 

expected that these n labels be a random subset from the 

N interactions for which the label was asked. If the 

Figure 2 – Number of known interactions of human 

genes: Graph showing percentage of known 

interactions against the total number of genes 

associated with those interactions, sorted in descending 

order of the number of interactions. 50% known 

interactions are associated with 4% of genes. 
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labeled positive examples are indeed a random subset of 

all positive examples for which labels are asked,  then 

the true conditional probability that an instance is 

interacting, given by P(y = “interacting”|x) and 

probability that the instance is labeled, given by P(label | 

x), differ only by a constant factor [15]. Thus, 

 (               |       (     |   … (1) 

If the subset of instances labeled by the oracle is 

representative of the interaction feature space, then many 

unknown interactions can be identified by the heuristic 

methods. 

3. METHODS 

3.1. Data 

We used the dataset developed by Qi. et. al [2]. This 

dataset consists of 14,608 pairs of proteins that were 

known to interact. It also consists of 432,197 non-

overlapping unlabeled instances. The protein-pairs (data 

instances) are represented by 27 features computed from 

biophysical characteristics of individual proteins. The 27 

features correspond to: Gene Ontology (GO) cellular 

component, molecular function and biological process (3 

features), co-occurrence in tissues (1 feature), gene co-

expression (16 features), sequence similarity (1 feature), 

homology based (5 features) and domain interaction (1 

feature). GO features measure the number of GO terms 

that are common in the annotations of the two proteins in 

the pair. As GO terms are categorized into three 

categories, namely the cellular component, molecular 

function and the biological process, the protein-pair 

features are computed separately for these three different 

similarity values. The tissue feature is a binary value 

indicating whether the two proteins have been expressed 

in the same tissue or not. This feature is added as it is 

observed that interacting proteins are likely to be 

expressed in the same tissue. 16 gene expression features 

were computed as correlations between gene expression 

values of the two genes in 16 different experiments. 

Sequence similarity is computed using BlastP sequence 

alignment E-value for the two proteins in the pair. 

Homologous proteins are obtained for each protein-pair 

in four different organisms namely yeast, fly, mouse and 

worm. This feature value is set to one, if the 

corresponding homologs are found to interact with each 

other in one or more of these organisms . Further details 

about the features in this dataset are described in the 

original source by Qi et. al [2].  

This dataset consisted of 14,608 interactions and 

432,197 random pairs. From the random pairs, we 

created a subset of instances from this data such that 

every pair has more than 50% feature coverage. This was 

done so as to maintain a balance of feature coverage 

between interacting and random pairs, as the interacting 

pairs had a better feature coverage than the random pairs 

[10]. This subset is used for the development and the 

evaluation of the proposed methods. This subset has 

180,800 protein-pairs in total. All the known protein 

interactions in the original set were included in this 

subset. 160,800 protein-pairs were selected randomly 

from this dataset for training and another 20,000 for 

testing. The test-data contained 5% interactions, which 

constitute 1,000 interacting protein-pairs, while the 

training data contained the remaining 13,608 

interactions. A skewed dataset distribution is used to 

mimic the realistic scenario.  

3.2. Base Classifier 

Previously, Bayesian classifiers, logistic regression, 

support vector machines, decision trees and random 

forest have been proposed as supervised learning 

classifiers for PPI prediction [2, 16, 17]. It has been 

shown that random forest is best suited for this domain 

[2]. We used a Random forest containing 20 trees built 

by choosing from 8 different random features. 

3.3. Oracle Simulation 

We simulate the oracle behavior for PPI predictions 

using the set of known interactions that was downloaded 

from the human protein reference database (HPRD). The 

simulated oracle would assign the “interacting” label to a 

data-point if the protein-pair associated with the point is 

listed in HPRD. HPRD lists about 38,000 interactions 

pooled from various experimental sources. This list 

forms about 5% of all possible human PPIs  [3]. Thus 

HPRD can be thought of as a reluctant one class oracle 

which gives the labels for only 5% of all the interacting 

class. 

3.4. Accuracy Metrics 

Precision, recall and F-score of positive class will be 

plotted as a function of the total cost in active learning. 

Precision is measured as the fraction of correctly 

predicted protein interactions among all the pairs 

predicted by the classifier to be interacting. Recall is the 

fraction of the interacting protein-pairs which the 

classifier is able to correctly identify as interacting pairs. 

F-score is the harmonic mean of precision and recall. F-

score measures the accuracy of the method by combining 

both precision and recall values. Hence it can be used as 

a measure to compare the accuracy of the methods. 

3.5. Algorithms 

We propose active learning with a one class reluctant 

oracle, which attempts to learn the behavior of the 

oracle, and uses it to estimate the positive labels that are 

associated with unlabeled points by estimating P(label 

|x). We present three different ways to estimate the 

missing class for selected data points, which can be used 

in conjunction with any underlying active learning 

method. In the following methods, clusters are created 

using k-means clustering with Euclidean distance. 

 

A. Estimate P(label | x) using number of interactions 

uncovered from each cluster (‘cluster-interactions’) 
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In this method, P(label | x) is estimated based on the 

number of labeled instances obtained from each cluster 

during the active learning iterations. The protein-pairs 

are clustered based on the existing feature-space, by 

considering all the features. If an oracle is able to 

provide the labels for many points in a cluster, it is most 

likely to do so for the other points too. That is, if the 

oracle which has a 25% recall value, is able to give the 

labels for even 15% of all protein-pairs in a cluster, then 

in reality 60% (i.e. 15*1/0.25) other unlabeled points in 

the same cluster are more likely to be interacting points. 

Based on this principle, we propose a new metric to 

estimate labels of unlabeled points in a cluster, based on 

the size of the cluster, the recall value of the oracle, and 

the total number of positive instances that have been 

uncovered from the cluster till the current iteration. This 

value increases with increase in the number of labeled 

instances from every cluster. P(label | x) is thus 

estimated adaptively, during every active learning 

iteration as follows: 

 (      |    (1/Z) *       … (2) 

where, Z is a parameter whose value is between 0 and 1 

and is chosen proportional to the recall of the oracle.  As 

interacting class is a rare category in protein-protein 

interactions, if the oracle is highly reluctant, then setting 

value of Z to larger values would prove to be beneficial. 

k  is the cluster to which point x belongs,    is the total 

number of labels obtained from the reluctant oracle, that 

is, the number of interactions that are uncovered from 

the cluster k.     is the total number of data-points 

belonging to the cluster k, whose labels are asked for by 

the system.  

B. Estimate P(label | x) using distance from known 

uncovered interactions (‘distance-interactions’) 

This method assigns P(label | x) based on the distance of 

the unlabeled data-point, from known uncovered 

interactions.  

 (      |     (    ‖    ‖     …(3) 

where    is the nearest labeled interaction from the data-

point x that has been added to the training instances 

during the course of the active-learning iterations, 
‖    ‖  is the Euclidean distance between the points    

and  ; and    stands for the maximum distance between 

any data-point x and its closest interaction instance   .  

Using this approach, the closer the points are to known 

interacting data-points, the more likely is the chance that 

they would be labeled as interactions. As distance from 

known interacting protein-pairs increases, this 

probability value reduces significantly. Z is a constant 

value between 0 and 1 which is assigned based on the 

recall value associated with the oracle.  

C. Estimate P(label | x) using  -neighborhood of 

uncovered interactions (‘ -neighborhood’) 

This method is based on the assumption that points 

closer to interacting data-points are more likely to be 

interacting in nature.  We assign a label of “interacting” 

to all those unlabeled data-points shortlisted by any 

traditional active learning algorithm which falls in the  -

neighborhood of known uncovered interactions. The  -

neighborhood NN(x) of an instance consists of all those 

points located at most at a distance of   from the data-

point. 

  (     |     ‖   ‖      …(4) 

Intuitively it could be thought of as a set of all data-

points encompassed by a sphere with radius  , drawn 

from the considered instance. For other points that do not 

fall in the  -neighborhood of known interactions, we 

assign them to be “non-interacting” in nature.   

Creation of a Weighted-Dataset 

We also experimented with creation of a weighted-

dataset. Instead of assigning the “interacting” label with 

a probability of P(label |x) to the unlabeled data-point, 

and then adding it to the training set, we can create a 

weighted-dataset, by weighing unlabeled examples with 

a probability P(label |x). That is, each unlabeled example 

is considered to be “interacting” with a weight P(label | 

x) and “non-interacting” with a weight 1-P(label | x). 

Labeled data points are considered to be “known” 

interactions with a unit weight. 

During the Active learning process, labels for select 

data-points are requested from the oracle. For all those 

points for which the label is obtained, a unit weight is 

assigned to each of them and they are added back to the 

training set. The unlabeled examples are duplicated. One 

copy is made as “interacting” with weight P(label |x) 

and the other is made as “non-interacting” with weight 

1-P(label | x). Both these copies are added to the training 

set and a classifier is trained on the same. This entire 

process is repeated in every iteration.  

We identify two separate methods namely, distance-

interactions-weighted and distance-cluster-weighted 

which estimate P(label | x) using the distance-

interactions and the distance-cluster based methods 

respectively, but create a weighted-dataset instead of 

directly estimating the missing class. 

4. RESULTS 

As a first step in evaluating the one class active learning 

methods, we determined the best possible values that 

could be associated with Z and   for all the three 

heuristics using a tenfold cross-validation technique on 

the training data. The values of Z and   were chosen in 

such a manner that those values contributed to the 

highest increase in F-score, while maintaining a high 

value of precision above a chosen threshold of 60%. The 

details of the cross-validations carried out to select Z and 

  (for each of the heuristic methods separately) are given 

in Supplementary File 1.  
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4.1. Evaluation on Test Data 

After finding suitable values of Z and   for each of the 

three heuristic methods separately, we evaluated the 

proposed one class heuristics on the held out data set and 

compared the performance against traditional active 

learning baseline and with random selection method. 

Uncertainty based active learning algorithm was used as 

the baseline, and 100 points were selected in every 

iteration. In the first iteration, 50 points are selected 

randomly and an initial classifier is built. Data is 

clustered into 50 clusters for the cluster-interactions 

method. Precision, recall and F-scores are computed for 

every iteration as shown in Figure 3. 

It is observed that all of the active learners achieve the 

same F-score with only 1,500 instances, as the random 

selector does with 18,000 instances. Also the one class 

active learning methods have a higher value of F-score 

as compared to the baseline of uncertainty based active 

learning. For the parameters selected through cross -

validation for each method, cluster-interactions method 

has the highest value of F-score, followed by the 

distance-interactions method and the  -neighborhood 

method. The  -neighborhood method has the same F-

score as that of the baseline active learner for about 

10,000 instances, after which the F-score associated with 

the baseline approach starts decreasing slightly. This 

decrease can be attributed to a biased selection of 

positive instances during the initial iterations of the 

active learning process. In the later iterations, more 

number of random unlabeled instances are picked for 

which the oracle is not able to provide the label and are 

added to the training set as negative data, which results 

in a small decrease in the F-score. However, the one 

class methods do not consider these points to be negative 

in nature. An appropriate label is assigned to such points 

using the heuristics proposed above. Some of the 

unlabeled data get labeled as positive instances due to 

which the F-score remains the same for these one class 

methods. 

The challenge is to significantly improve upon recall of 

the entire system without compromising on its precision. 

The one class methods have a slightly lower value of 

precision but have much better values of recall, which 

can be observed through their increased F-scores. In the 

domain of PPI prediction, where the positive class is a 

very rare category, an improvement in recall is more 

difficult to attain than improvement in precision 

(because a slight inaccuracy in classifier could 

potentially misclassify an order of magnitude more of 

negative instances into positive class, thereby dropping 

precision significantly). Note that the reported precision 

and recall are computed for the positive class as is 

typical in this domain. 

Figure 4 shows the results associated with the weighted-

dataset methods. These methods are compared against 

the traditional active learning baseline as well as their 

corresponding counterparts that estimate potential labels 

before adding the data-point to the training set. 

Weighted-dataset methods are similar to the other one 

class active learning methods  discussed previously. The 

interactions-distance weighted method has the same 

precision, recall and F-score trends as its one class active 

learning counterparts. The interactions-cluster weighted 

method has a very poor value of precision, and a very 

high value of recall as compared to its one class 

counterpart for the initial few iterations , and bounces 

back to , thus having a similar trend in the F-scores.  

5. DISCUSSION 

In the domain of protein-protein interaction prediction, 

or any computational biology task in general, the few 

instances of labeled data currently known are often 

insufficient to confidently characterize remaining 

unlabeled data. Conversely, data characterization using 

wet-lab experiments is expensive in terms of expert 

Figure 3 – Results of one class active learning by different approaches: Plots show results of comparison of one-

class active learning methods with the active learning baseline and random-selection of instances using F-Score, 

precision and recall values  of the positive class. It is the characteristic of this domain that the recall values are very 

low on account of positive class being a very rare category. 
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manpower, time, and resources. When choosing a 

specific data instance (e.g. molecule or protein-pair) to 

be studied by wet-lab experiments, its redundancy with 

previously annotated (labeled) data is rarely taken into 

account. The choice of which molecule is to be studied is 

mostly based on the expertise of the lab proposing to 

study it and on availability of reagents that make it 

possible to study with the said experimental methods. 

However, the trend today is moving towards high-

throughput techniques (HT) such as yeast 2-hybrid 

technology for the study of PPIs. Even with HT, it is not 

feasible to study every molecule or protein-pair. 

Computational methods are therefore required to predict 

the annotations. Given the availability of computational 

methods and HT techniques, it is desirable to have active 

learning algorithms that guide the selection of some data 

which when labeled by HT methods improves the 

accuracy and confidence of labeling the remaining data 

with computational methods.  

We proposed one class active learning heuristics in this 

paper which deal with a one class reluctant oracle for the 

domain of protein-protein interaction prediction. They 

estimate the potential label associated with shortlisted 

data-points during the active learning process for which 

the oracle does not give the label. These one class 

methods have a higher recall and F-score as compared to 

the traditional active learning counterparts. There is a 

slight loss in precision, but this value of precision is in 

itself an underestimate as there is no gold standard 

dataset for evaluating protein interactions, and false 

positives in the test set may actually turn out to be true 

undiscovered interactions. 

Although similar to the problem of learning from 

positive and unlabeled data as in other domains (e.g. 

document classification [18-20]), PPI discovery is a rare-

category problem with large instance space and very 

small set of highly related features. Traditional 

approaches to dealing with positive and unlabeled data 

have already been applied to PPI prediction, and the goal 

of this work is to discover more interactions beyond 

those that are already predicted by treating the problem 

as positive and unlabeled data. Previous methods have 

Figure 4 – Results of weighted dataset methods: Performance of weighted-dataset based one-class methods, 

compared with their counterparts who estimate the labels associated with unlabelled data -points, baseline active 

learning and random selection of instances. A, B and C show the precision, recall and the F-scores associated with 

distance-interactions weighted method, compared with distance interactions based methods, regular active learning 

and random. D, E and F show the precision, recall and the F-scores associated with cluster-interactions weighted 

method, compared with cluster interactions based methods, regular active learning and the random baseline . 

4A 4B 4C 

4D 4E 4F 
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treated learning from positive and unlabeled data as 

standard. By comparing the methods proposed here with 

regular active learning and random selection of training 

data, we show that estimating the label for some of the 

training data provides superior results.  

While proposing these heuristics, we made certain 

assumptions associated with the underlying domain. We 

assume that the underlying PPI feature space can 

characterize oracle behavior; and that the oracle should 

provide labels that make up a randomly selected subset 

of the entire interaction space to uncover all potential 

undiscovered interactions. Although these assumptions 

may not hold in certain circumstances, given that oracle 

characterization for PPI prediction is a non-trivial 

problem, we believe that the one class heuristics 

proposed in this paper are the stepping stone for solving 

this problem.  

These methods help to incorporate semi-supervised 

learning approaches to extend active learning to more 

realistic scenarios by estimating the labels of points for 

which the oracle does not give the label. These 

approaches improve the recall of the prediction system.  

By characterizing the oracle behavior, we are proposing 

to use it to exploit the strengths of any experimental 

method and present an approach for rapid development 

of the interactome. This  would provide a sound basis for 

rapid discovery of interactomes under budget 

constraints. Collaborations are underway towards  

labeling selected instances with yeast 2-hybrid methods.  
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ABSTRACT
We consider the problem of inferring a biological net-
work from given experimental data. In earlier work on
metabolic pathway inference, we studied a situation where
the molecular interactions were fairly well known, the ki-
netic parameters were completely unknown and the net-
work topology was almost known. Starting from a simi-
lar setting, using simulations, we have investigated the in-
ference of missing links in a network. We use two ap-
proaches, a deterministic one using ordinary differential
equations and one employing a statistical approach. We
find that the deterministic fit-based approach yields quite
positive results in linear as well as in a non-linear context.

INTRODUCTION
The motivation for this study rose from our previous work
[1–3]. The objective was to find those enzymes that were
responsible for the glycosylation of flavonoids in toma-
toes. The topology of the metabolic network was known
up to one edge, since it was not known whether an (un-
known) enzyme can attach two or more molecules at once
to a precursor of a flavonoid. This lead us to investigate
methods for finding a missing edge in biological networks.
A network can be represented as a graph, where the nodes
correspond to the measured components, such as metabo-
lite concentrations, and the edges imply interactions be-
tween the components. If the topology, i.e., the network
structure, is fixed, one may estimate the unknown param-
eters to fit the data. A common approach is to choose a
combination of topology and parameters that best explains
the data in the sense of maximum likelihood. These net-
work topologies need not always be inferred from scratch,
since there is often preliminary knowledge available. How-
ever, when several putative network scenarios are present,
we are faced with a model discrimination challenge: how
to exploit the measurements to infer the correct model? It
is well known that a network inference problem is iden-
tifiable (tractable) when the network has a tree-like struc-
ture [1, 4]. To expand such a tree structure to an optimal
network, adding edges one by one may well be a success-
ful methodology [5]. In this procedure it is highly rele-
vant to detect a missing edge at each stage of inference.
Although, in general, there is a wide variety of method-
ologies for biological network reconstruction described in

the literature, including Boolean networks, association-
based networks such as co-expression analysis, determin-
istic or stochastic ordinary differential equations (ODEs)
and graphical models, reliable network inference remains
elusive [6–9]. In our present study, we investigate whether
we can detect a missing edge in both a deterministic and
a statistical context. We used two types of simulated data:
linear ODEs under mass-balance constraint for kinetic net-
works and non-linear ODEs based on the model for reg-
ulatory networks in the DREAM challenge [10]. In the
following section we explain our fit-based heuristic ap-
proach. Then we discuss the alternative statistical model
approach that we employed in parallel. In subsequent sec-
tions we specify how we generated the simulation data,
show the inference results with the two methodologies and
finish with some conclusions.

DETERMINISTIC APPROACH
In an deterministic approach we have at our disposal a
certain (linear, or non-linear) model of the network, that
can be represented by a system of ODEs. If the network
topology would be fully known, we could use this model
and optimize the parameters to fit the data. However, we
consider a restricted problem, where the network topology
is almost known, except for one missing edge. A heuristic
approach is to take the known part (incomplete) network,
estimate the parameters as if the topology was correct and
then inspect the obtained fit against measurement data. If
some part of the data is relatively well reconstructed while
another part is significantly less well fit, we may suspect
that the missing edge connects variables within the latter
set. Based on this straightforward line of reasoning we
test the following ”fit-based”-scheme:

1. Fit the incomplete network to data and estimate the
parameters, using, e.g., NMinimize (Mathematica)
or fmincon(matlab) and record the residuals for each
variable;

2. Select the two variables with largest residuals as
candidate nodes that share the missing edge.

Such an approach is not likely to work when many edges
are missing or dislocated, but here we test how well it can
detect a single missing link. We applied this approach to
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linear as well as non-linear models and discuss our find-
ings in the RESULTS section.

STATISTICAL APPROACH
Among the statistical network inference methods, graphi-
cal models are currently quite popular. Graphical models
usually refer to a combination of graph theory and prob-
abilistic reasoning [4]. In terms of a network graph, the
nodes represent the same variables, (metabolite concen-
trations etc.), as in the deterministic case. However, the
edges, instead of bio-mechanical interactions, now code
for causal dependencies between the variables. Just as in
the deterministic case, one wants to find a combination
of network topology and parameters that corresponds to
maximum likelihood of observing the data. In the proba-
bilistic context this is achieved by maximizing the proba-
bility of the underlying network using Bayes’ rule:

P (G|D, θ) ∝ P (D|θ,G)P (G) , (1)

whereG is the network topology,D are the data, andθ the
parameters of the probability distributions. To compute
the probability over all networks usually implies that one
has to resort to Markov Chain Monte Carlo sampling of
networks and parameters. When the network is small, one
may apply Bayes’ rule and exploit the conditional inde-
pendencies to make the inference tractable. On the other
hand, when the conditional independencies between the
variables are known, we also know the graph ofG and can
further estimate the variablesθ in P (D|θ,G). In the liter-
ature numerous approaches have been proposed to com-
pute these conditional independencies empirically from
data [11]. However, since we here consider only the spe-
cific case of one missing link, we do not need this whole
machinery for the inference. For each variableXi, we
want to find a candidate variableXj , that is most likely
to improve the fit ofXi when an edge betweenXi and
Xj is added to the network. To compute such causal de-
pendencies of variables with time series data, we adopt
the rather simple and intuitive Granger-causality [12]. Ac-
cording to this, if a signalXj(t) ”Granger-causes” a signal
Xi(t), then past values ofXj should contain information
that helps predictXi better than the information contained
in past values ofXi alone. In practice such a pair-wise
causality can be computed by comparing the residualsRi

andR∗
i in the following two expressions, where the pa-

rametersAijk are optimized to fit the data forXi, wherei
runs over the dependent variables (regressand),j is some
independent variable (regressor) andk indicates succes-
sive time lags. The maximum time lag we take into con-
sideration isl.

Xi(t) =

l∑

k=1

AiikXi(t− k) +Ri(t)

Xi(t) =
l∑

k=1

AiikXi(t− k) +
l∑

k=1

AijkXj(t− k) +R∗
i (t)

(2)

If the variance of the residualsR∗
i (t) is smaller than that

of Ri(t), Xj is said to Granger-causeXi. We modify this
philosophy to serve our particular problem of finding a
missing edge and set up the following Algorithm 1 to dis-
criminate between edge candidates. For compact presen-
tation, we denote byLi(Xj , t) the inclusion of variable
Xj to predict variableXi.

Li(Xj , t) =

l∑

k=1

AiikXi(t−k)+

l∑

k=1

AijkXj(t−k)+R∗
i (t)

(3)
Li(Xj , t) may take varying number of arguments, for ex-
ample when expressing variableX2 as a time-lagged lin-
ear combination of itself and variablesX1 andX5:

L2(X1, X5, t) =

l∑

k=1

A22kX2(t− k) +

l∑

k=1

A21kX1(t− k)

+

l∑

k=1

A25kX5(t− k) +R∗
2(t)

(4)

Algorithm 1 Select the endpoints (m, sm) of the missing
edge

for i = 1 to #(variables)do
neighboursi = variables connected toXi

foreignersi = variables not connected toXi

for k = 1 to #(foreignersi) do
R∗

ik =∑T
t=0(Xi(t)−Li(neighboursi, foreignersi(k), t))

2

end for
si = argmin

k
R∗

ik

end for
m = argmin

i
R∗

i,si

In the inference we used a time lag of 3, but in our sim-
ulations varying the lag did not change the results signifi-
cantly. We show the outcomes of applying this algorithm
to simulated data in the RESULTS section.

SIMULATIONS
For the linear networks we simulated connected graphs,
that have5, . . . , 12 nodes and5, . . . , 15 edges. For each
such node-edge pair we generated 100 random linear ODE-
systems. We took 11 samples at equally spaced time-
intervals as noiseless data and added10% Gaussian noise
for the noisy data. All parameters in the simulation were
chosen to have the same order of magnitude. As an exam-
ple a simulated random network with 5 nodes, 5 edges,
and the corresponding concentration data are shown in
Figure. 1. For the non-linear simulations we used the 11
node regulatory network model from the ”network topol-
ogy and parameter estimation challenge” of the DREAM
project [10], where repression and activation of gene ex-
pression were modeled using Hill-type functions. For ex-
ample, the rate of change of proteinp1 concentration that
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Figure 1. An example of a simulated graph with 5 nodes
and 5 edges and the corresponding dynamics in the linear
case.

depends on the concentrations of proteinsp2 (activator)
andp3 (repressor) can be modeled as follows:

dp1(t)

dt
=

sp1 · ( p2(t)r1Kd
)r1h

(1 + ( p2(t)r1Kd
)r1h)(1 + ( p3(t)r2Kd

)r2h)

− dp1 · p1(t) ,
(5)

wherespi denotes the synthesis rate,dpi the degradation
rate of proteinpi andriKd the dissociation constant of the
reaction andrih the Hill-coefficient (of interaction). The
original model of DREAM project contained 55 unknown
parameters, but to do inference in reasonable time scale,
we fixed most of the parameter values and inferred only 11
variables, for example the protein synthesis rates, under
different experimental conditions, where one of the genes
is overexpressed. We collected data from 7 experiments,
one as reference wild type-data and the rest where genes
1, 2, 3, 5, 7, and11 were overexpressed (cf. Figure 3).

RESULTS

In case of the linear model, we did 3100 reconstructions
using the fit-based heuristics and Algorithm 1, which we
compared to results from random guessing. In case of ran-
dom guessing, the existing edges (that cannot correspond
to a missing edge) were removed from the candidate pool,
whereas in the fit-based and Granger-based approaches we
did not make use of this knowledge and focused only on
the residuals. The results show that a simple fit-based ap-
proach is most successful to detect a single missing link
(cf. Figure. 2). For the non-linear case we experimented
only with the fit-based heuristic approach, by removing
an edge that is forming a repressing feedback loop from
nodep7 to nodep1. We did not modify the original pa-
rameters too much, so as not to lose the delicate oscilla-
tory behavior. An illustration of the missing edge as well
as the results are shown in Figure. 3. In the graphics at
the bottom right, we see peaks at nodesp1 andp7 as ex-
pected. However, if the variablesp2 or p3 are, say, 5 times
higher overexpressed, this results in higher residuals for
variablesp2 andp3 in experiments 2 and 3, although they
are not part of the missing edge. This is due to the fact
that concentration changes inp1 have immediate effect on
the concentrations ofp2 and further ofp3 via activation.
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Figure 2. Results for the linear simulations. We have plot-
ted the proportions of three complementary cases: a) the
correct missing edge was found, b) at least one endpoint of
the missing edge was found, c) none of these were found.
Top: By pure guessing. Middle: Using Granger-causality.
Bottom: Using fit-based heuristics. The fit-based infer-
ence of a missing link is here the most successful ap-
proach.
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Figure 3. Results for the non-linear simulations. Top left:
Dots are data, lines give the dynamics of the system if the
parameters are fitted using correct topology. Top right:
As on left hand side, but in case parameters were fitted
with a network topology missing one edge. Bottom left:
The structure of the model network, the missing edge is
indicated with a dotted line. Bottom right: The residuals
of fitting the variables to data per experiment. Although
the results are discrete, we used interpolation for visual
continuity.

CONCLUSIONS
Despite the Granger-causality being more rigorous and
versatile than the simple fit-based inference method, the
latter still seems to better capture the missing edges (cf.
Figure 2). Since the fit-based heuristics is also based on
a linear model, this can partly explain the better perfor-
mance. To reduce such potential effect, we compared also
the results in case the data are noisy. By using both, noise-
less and noisy data and counting the cases, where the fit-
based method performed better, we obtained:

• (noiseless) fit-based, (noiseless) Granger:100% ;

• (noisy) fit-based, (noisy) Granger:100% ;

• (noisy) fit-based, (noiseless) Granger:61, 3% .

In the non-linear case, the residuals were also significantly
larger for variables that constitute the missing link. In our
experiment, a repressor of variablep1 was removed, re-
sulting in higher expression ofp1. Variablesp2 andp3
being connected top1 in cascade were then also indirectly
upregulated. Therefore, overexpression ofp2 andp3 can
result in higher residuals at nodesp2, p3 than at the nodes
p1 andp7 that correspond to the actual missing link. How-
ever, in general, based on our simulation experiments we
found that the intuitive fit-based heuristics quite often cor-
rectly points towards the missing link. The computation
time of the fit-based method grows almost linearly w.r.t.
increasing number of nodes, whereas the Granger-based
method shows exponential growth making the extension
to large scale networks impractical.
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ABSTRACT 

Background: A set of genes in a particular tissue 

might have similar expression profiles, as well as in-

volved in similar functions during different plant devel-

opmental stages. As is widely assumed, such tissue-

specific genes are regulated by a set of similar TFs, and 

their promoters contain similar regulatory patterns. 

While receiving considerable attention in animals, this 

topic has seldom been examined in plants, especially rice. 

Therefore, this study thoroughly elucidates promoter 

features of tissue-specific genes in rice by combining 

computational methods with experimental data. 

Results: Tissue-specific genes are identified using mi-

croarray data involving different stages of the develop-

ment of rice. Genes with Z-scores that exceed a thresh-

old value (Z score> 2.5) are defined as tissue (organ)-

specific genes. The total number of genes thus identified 

is 1744. In Gene Ontology (GO) enrichment analysis, 

most tissue (organ)-specific genes respond to stress and 

stimulus. Furthermore, more CpG/CpNpG islands were 

detected in non-tissue (organ)-specific promoters. The 

base composition profiles of tissue (organ)-specific pro-

moters prefer C over G in the downstream region near 

transcription start sites (TSSs), yet have no preference in 

non-tissue-specific promoters. Finally, tissue-specific 

structures in the gene promoters are determined using 

motif search methods. Several novel tissue (organ)-

specific motifs and known TFBSs are identified, includ-

ing CDC5 and BZR1.These tissue-specific motifs may 

play a prominent role in the development of rice. 

Conclusions: Based the results of this study, several 

important tissue (organ)-specific features are recognized 

in each tissue. This study first elucidates the components 

of promoters that distinguish nonspecific from tissue 

(organ)-specific genes in rice. These analysis methods 

can help us to understand the mechanism of transcription 

regulation under various developmental stages. 

1. INTRODUCTION 

The regulation of gene expression is dynamic across 

various developmental stages in plants. Some genes are 

expressed at a special time, in a specific tissue, or under 

particular conditions. Hence, identifying a set of genes 

that are expressed under a specific time point or tissue 

(organ) is important for understanding the morphology 

and physiology of a tissue or organ systems. DNA mi-

croarray high-throughput technique has been widely 

applied in the recent decade to examine transcriptional 

expression patterns on the whole-genome scale. By us-

ing this approach, numerous studies have investigated 

dynamic gene expression profiles in various develop-

mental processes in plants [1-3]. For instance, a previous 

study established a gene expression map of Arabidopsis 

thaliana development by using various developmental 

samples via the microarray high-throughput method [4], 

subsequently providing valuable information about 

which gene group is critical in which developmental 

stages or tissues. Wang et al. identified 2667 microarray 

probe sets that were expressed differentially in four 

stages of panicle development, indicating that RFL and 

LAX have an essential role for determining the inflo-

rescence architecture in rice [3]. Additionally, transcrip-

tion factors (TFs) and their corresponding cis-acting 

elements in promoters have received considerable inter-

est in gene regulation research [5]. Therefore, thorough-

ly elucidating TFs and their binding sites in promoters is 

essential to studying the regulation of transcription.  

To advance knowledge of co-expressed gene reg-

ulation in plant sciences, related studies have developed 

for investigating co-occurrence transcription factor bind-

ing sites (TFBSs) in a group of gene promoters. Plant-

PAN [6], a database- assisted system, analyzes the co-

occurrence of combinatorial TFBSs with a distance con-

straint in plant co-expressed genes. ATTED-II [7] pro-

vides co-regulated genes based on the co-expressions of 

genes that are deduced from microarray data and pre-

dicted cis-regulatory elements in their upstream se-

quence. AtPAN [8] provides an integrated system for 
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reconstructing transcriptional regulatory networks based 

on microarray co-expression data in Arabidopsis. 

Habereret al. utilized a comparative genomics approach 

to determine the conservation motifs in a group of co-

expressed gene promoters that belong to a specific bio-

chemical pathway [9].Walther et al. analyzed large-scale 

properties of promoters and found highly significant 

positive correlations between the density of cis-elements 

in the promoters and the number of conditions under 

which a gene is regulated differentially [10]. Despite the 

numerous studies to identify the co-occurrence regulato-

ry motifs in co-expressed gene promoters, the tissue-

specific structure patterns in plant promoters have sel-

dom been investigated. Moreover, related research tends 

to focus mainly on Arabidopsis, rarely examining other 

plants. As an important global food crop, rice is a model 

for genomic research on cereals. Surprisingly, the issue 

of interest herein has never been large-scale examined in 

relation to rice. Therefore, this study elucidates the tis-

sue-specific structure patterns in rice promoters.  

By combining computational methods with ex-

perimental data, this study thoroughly analyzes promoter 

features that are related to tissue (organ)-specific genes 

in rice. Tissue (organ)-specific expression genes are first 

identified using microarray data from different stages of 

development of rice. Tissue-specific structures in those 

gene promoters are then identified as well by using 

many motif search methods. Based on those results, nu-

merous unknown motifs can be found in the promoters 

of tissue (organ)-specific genes. These tissue (organ)-

specific motifs may be novel TFBSs that profoundly 

impact rice development.  

2. GENERAL INSTRUCTIONS 

Figure 1 schematically depicts the flow chart of this 

study. The microarray expression data of rice was first 

downloaded from a public database and preprocessed to 

identify tissue-specific genes. The promoter sequences 

were then extracted from the RGAP database (Rice Ge-

nome Annotation Project, 

http://rice.plantbiology.msu.edu/). Following determina-

tion of the promoter region, the known TFBSs and de 

novo conserved motifs among the same group of pro-

moters were annotated. The redundant motifs were sub-

sequently removed and, in doing so, tissue-specific 

structural patterns in the rice promoter could be defined. 

Details of the above methods are described as follows.  

 

 Figure1 System flow of this study 
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2.1. Tissue-specific datasets and GO analysis 

Raw microarray expression data were obtained from the 

NCBI Gene Expression Omnibus (GEO) database. The 

dataset of Wang et al. (GSE19024) [3], which includes 

transcriptional expression data for 39 tissues/organs 

from rice, was used. The expression values of all sam-

ples were preprocessed and normalized using the Affy-

package [11], as made available in the Bioconductor 

software suite in the R statistical analysis program. The 

normalization method was RMA. Based on the transcrip-

tome analysis of Wang et al.[3], tissues (organs) were 

grouped into ten clusters. The ten clusters of tissues (or-

gans) were germination seeds, endosperm, plumule, 

seedling, root, stem, leaf, flower, stamen, and panicle. 

For each gene, normalized expression data were con-

verted into Z-scores by using the mean and the standard 

deviation of gene’s expression values. Refer to previous 

studied [12, 13], when the Z-score exceeded the thresh-

old value of 2.5, the corresponding genes were regarded 

as “tissue (organ)-specific”, the rest were nonspecific. 

To determine whether genes differentially expressed in 

specific tissues (organs) belonged to particular Gene 

Ontology (GO) categories, the GOSlim assignment of 

rice loci was downloaded from the RGAP database [14]. 

The GOSlim terms were obtained from the GO Database 

[15]. Finally, GO term enrichment analysis of each gene 

was performed using a homemade PHP program.  

2.2. CpG islands and analysis of base composition 

Although CpG islands with tissue-specific genes in 

mammals have received considerable attention recently 

[16], plants have received lesser attention in this respect. 

CpG island searcher is a program for identifying 

CpG/CpNpG islands [5].The CpG/CpNpG islands are 

defined as those DNA regions that are longer than “win-

dow size” (200 bp or 500 bp), with a moving average 

C+C frequency of over “GC percentage (GC%)” (i.e. the 

value of GC% used in this study includes 50%, 55%, 

60%, 65%, and 70%) and a moving average 

CpG/CpNpG observed/expected (o/e) ratio over “OE 

CpG” (the value of OE CpG used in this study includes 

0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 1.0). 

CpG/CpNpG islands in rice gene promoters were identi-

fied using every combination of parameters. Additional-

ly, the base composition profiles with 10 bp window size 

were calculated for ubiquitous and tissue-specific genes 

with and without CpG/CpNpG islands.  

2.3. Identifying tissue (organ)-specific motif 

The tissue (organ)-specific motifs in tissue (organ)-

specific gene promoters were identified in a two-phase 

study. Multiple EM for Motif Elicitation (MEME) is an 

extensively used approach for finding novel ‘signals’ in 

sets of biological sequences [17]. Firstly, de novo com-

mon sequences were identified separately in ten clusters 

of tissue (organ)-specific promoters by using the MEME 

program. The minimum and maximum motif widths 

were set to 4 and 15, respectively, in the MEME pro-

gram. As an effective means of evaluating the similarity 

between two DNA motifs, the TOMTOM software pro-

gram [18] compares a query DNA motif with the motifs 

in a database of known motifs and then ranks the match-

ing motifs by p-value and q-value. The p-value is related 

to the minimum number of overlapping positions in a 

given offset. The q-value is the minimum false discovery 

rate at which  

the observed similarity is deemed significant. When-

ever p-value ≦ 0.001 and q-value ≦ 0.05 for a par-

ticular pair of DNA motifs (PWMs) in the TOMTOM 

software program, both motifs were regarded as similar 

(redundant) ones. The redundant PWMs were removed 

from each cluster before determining whether the motif 

is associated with novel or known TFBSs. All plant po-

sition weight matrices (PWMs) from TRANSFAC data-

base version 2009.9 [4] were used to populate a database 

of known TFBSs for comparison by TOMTOM. Conse-

quently, the novel and known TFBSs in tissue (organ)-

specific gene promoters can be identified. Finally, the 

motif logos were generated using the WebLogo program 

[19].  

3. RESULTS AND DISCUSSION 

3.1. Identification of tissue (organ)-specific genes 

and functional analysis 

A total number of 1744 genes were identified as tissue 

(organ)-specific genes after analysis (Table 1). A GO 

enrichment analysis was performed of GO terms in 1744 

tissue (organ)-specific genes. In the biological process, 

most tissue (organ)-specific genes respond to stress, es-

pecially in a germination seed, leaf, panicle, plumule, 

root, seedling, and stamen (Fig. 2A and Table2). Moreo-

ver, over 20% of tissue (organ)-specific genes are de-

scendants of the GO term “response to stimulus”. This 

term refers to “response to endogenous stimulus”, “re-

sponse to abiotic stimulus”, or “response to biotic stimu-

lus”. Above findings are similar to those of previous 

studies, which have demonstrated that genes according 

Table 1 The statistics of tissue-specific genes in rice. 

(Z-score>2.5) 

Organs(Tissues) No. of genes 

germination seeds 97 

endosperm 232 

plumule 17 

seedling 39 

root 122 

stem 25 

leaf 123 

flower 36 

stamen 925 

panicle 128 

Total 1744 
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to tissue-specific genes are responsive to stimuli [16]. In 

the cellular component, 22.14% of tissue (organ)-

specific genes are located in the plasma  

membrane (Fig. 2B). These results are similar to biolog-

ical process analysis, implying that those genes are es-

sential to the response of stress and stimulation in the  

Table 2 GO analysis of tissue-specific genes 

Gene Ontology \ Tissue germination seeds endosperm plumule seedling root stem leaf flower stamen panicle Total

Biological Process

signal transduction 5.56% 8.40% 0.00% 6.90% 4.76% 0.00% 15.28% 10.20% 8.39% 3.61% 8.40%

cell death 0.93% 0.00% 0.00% 1.72% 0.68% 0.00% 0.87% 0.00% 0.51% 0.00% 0.56%

cell differentiation 0.93% 0.00% 0.00% 0.00% 1.36% 4.17% 3.93% 2.04% 0.64% 1.20% 1.24%

cell cycle 0.93% 0.84% 0.00% 1.72% 0.00% 0.00% 0.00% 0.00% 0.25% 0.00% 0.31%

cell growth 0.93% 0.00% 0.00% 0.00% 2.72% 8.33% 0.87% 0.00% 1.14% 0.00% 1.11%

cell organization and biogenesis 4.63% 4.20% 0.00% 0.00% 4.08% 0.00% 0.44% 2.04% 8.26% 6.02% 5.44%

cell homeostasis 0.00% 0.00% 0.00% 0.00% 0.68% 0.00% 0.00% 0.00% 1.40% 0.00% 0.74%

transport 3.70% 5.88% 6.67% 3.45% 6.80% 12.50% 1.31% 4.08% 6.86% 3.61% 5.50%

embryonic development 0.00% 0.84% 0.00% 0.00% 0.00% 0.00% 0.44% 0.00% 0.25% 0.00% 0.25%

flower development 1.85% 0.84% 0.00% 1.72% 0.00% 0.00% 1.31% 0.00% 1.14% 2.41% 1.11%

morphogenesis 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.87% 0.00% 0.25% 1.20% 0.31%

regulation of gene expression, epigenetic 0.00% 0.84% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.41% 0.19%

growth 0.00% 0.84% 0.00% 1.72% 0.68% 0.00% 1.31% 0.00% 0.38% 0.00% 0.56%

reproduction 0.00% 0.84% 0.00% 0.00% 0.68% 4.17% 0.44% 0.00% 0.76% 2.41% 0.74%

post-pollination 0.00% 0.00% 0.00% 0.00% 0.00% 4.17% 0.87% 0.00% 0.25% 0.00% 0.31%

photosynthesis 0.00% 0.00% 0.00% 1.72% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06%

response to stress 16.67% 11.76% 26.67% 15.52% 20.41% 8.33% 17.47% 10.20% 12.96% 21.69% 14.95%

response to endogenous stimulus 12.04% 9.24% 6.67% 10.34% 16.33% 4.17% 14.85% 8.16% 7.37% 2.41% 9.51%

response to abiotic stimulus 4.63% 4.20% 6.67% 5.17% 4.76% 8.33% 3.93% 2.04% 6.35% 12.05% 5.74%

response to biotic stimulus 8.33% 4.20% 13.33% 1.72% 14.29% 4.17% 6.11% 8.16% 5.34% 4.82% 6.36%

amino acid and derivative metabolism 4.63% 4.20% 6.67% 5.17% 1.36% 8.33% 2.18% 8.16% 3.68% 0.00% 3.46%

biosynthesis 7.41% 6.72% 6.67% 13.79% 2.72% 12.50% 3.93% 16.33% 3.56% 2.41% 4.88%

carbohydrate metabolism 0.00% 3.36% 0.00% 0.00% 0.68% 0.00% 0.44% 4.08% 2.67% 1.20% 1.85%

catabolism 0.93% 1.68% 6.67% 3.45% 1.36% 0.00% 0.00% 0.00% 1.91% 2.41% 1.54%

energy pathways 0.00% 1.68% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.38% 0.00% 0.31%

lipid metabolism 5.56% 2.52% 0.00% 6.90% 2.04% 8.33% 2.62% 4.08% 1.40% 0.00% 2.29%

DNA metabolism 0.00% 2.52% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.64% 2.41% 0.62%

transcription 5.56% 14.29% 0.00% 3.45% 4.08% 0.00% 1.75% 4.08% 2.67% 20.48% 4.63%

protein biosynthesis 0.93% 2.52% 6.67% 0.00% 1.36% 0.00% 0.00% 0.00% 12.07% 4.82% 6.55%

protein modification 9.26% 4.20% 6.67% 3.45% 6.80% 0.00% 15.72% 6.12% 7.24% 2.41% 7.78%

secondary metabolism 4.63% 3.36% 6.67% 12.07% 1.36% 12.50% 3.06% 10.20% 1.27% 0.00% 2.72%

Cellular Component 

cell wall 17.86% 14.29% 40.00% 9.09% 29.17% 0.00% 16.52% 13.33% 11.68% 3.33% 13.87%

cytoskeleton 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.38% 3.33% 1.52%

cytosol 0.00% 6.12% 0.00% 0.00% 0.00% 16.67% 0.00% 6.67% 13.47% 10.00% 8.86%

endoplasmic reticulum 17.86% 12.24% 20.00% 15.15% 4.17% 16.67% 4.35% 13.33% 5.35% 13.33% 6.88%

endosome 0.00% 0.00% 0.00% 3.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.12%

Golgi apparatus 0.00% 10.20% 0.00% 3.03% 5.56% 0.00% 0.87% 6.67% 4.16% 0.00% 3.85%

mitochondrion 7.14% 12.24% 20.00% 21.21% 19.44% 0.00% 24.35% 26.67% 14.06% 20.00% 16.20%

peroxisome 3.57% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.00% 0.23%

plastid 7.14% 8.16% 0.00% 24.24% 4.17% 16.67% 5.22% 0.00% 5.35% 10.00% 6.29%

ribosome 0.00% 2.04% 20.00% 0.00% 0.00% 0.00% 0.00% 0.00% 17.03% 10.00% 10.61%

vacuole 0.00% 6.12% 0.00% 0.00% 6.94% 16.67% 0.00% 0.00% 2.97% 3.33% 2.91%

nuclear membrane 0.00% 2.04% 0.00% 0.00% 0.00% 0.00% 0.87% 6.67% 0.20% 3.33% 0.58%

nucleolus 3.57% 6.12% 0.00% 0.00% 0.00% 0.00% 0.87% 0.00% 3.37% 3.33% 2.68%

nucleoplasm 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.00% 0.12%

thylakoid 3.57% 2.04% 0.00% 15.15% 1.39% 0.00% 1.74% 0.00% 2.97% 6.67% 3.15%

plasma membrane 39.29% 18.37% 0.00% 9.09% 29.17% 33.33% 45.22% 26.67% 16.63% 13.33% 22.14%

Molecular Function

hydrolase 28.77% 17.44% 18.18% 4.00% 19.09% 11.76% 5.39% 21.88% 19.94% 12.63% 17.03%

kinase 12.33% 4.65% 0.00% 8.00% 10.00% 0.00% 22.55% 9.38% 11.33% 5.26% 11.79%

transferase 9.59% 10.47% 36.36% 32.00% 17.27% 17.65% 5.88% 18.75% 8.01% 6.32% 9.66%

enzyme regulator activity 0.00% 2.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.51% 0.00% 0.91%

carbohydrate binding 1.37% 1.16% 0.00% 0.00% 6.36% 0.00% 9.80% 0.00% 0.76% 1.05% 2.66%

lipid binding 0.00% 5.81% 0.00% 0.00% 1.82% 11.76% 0.49% 6.25% 0.30% 0.00% 1.06%

chromatin binding 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.45% 1.05% 0.30%

transcription factor activity 8.22% 20.93% 0.00% 8.00% 6.36% 5.88% 1.96% 6.25% 4.38% 22.11% 6.84%

nuclease activity 2.74% 1.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 1.05% 0.38%

RNA binding 1.37% 1.16% 9.09% 4.00% 0.00% 0.00% 0.00% 0.00% 2.87% 2.11% 1.90%

translation factor activity, nucleic acid binding 0.00% 2.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.21% 1.05% 0.84%

nucleotide binding 16.44% 5.81% 0.00% 12.00% 9.09% 17.65% 20.10% 12.50% 13.29% 17.89% 13.92%

oxygen binding 2.74% 2.33% 9.09% 8.00% 1.82% 5.88% 1.96% 3.13% 0.60% 1.05% 1.52%

protein binding 9.59% 11.63% 0.00% 8.00% 10.00% 17.65% 19.12% 9.38% 12.69% 11.58% 12.93%

motor activity 0.00% 1.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.91% 2.11% 0.68%

receptor binding 0.00% 0.00% 9.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08%

receptor activity 2.74% 0.00% 0.00% 0.00% 4.55% 0.00% 9.80% 6.25% 0.45% 1.05% 2.51%

structural molecule activity 0.00% 1.16% 9.09% 0.00% 0.00% 0.00% 0.00% 0.00% 13.29% 4.21% 7.15%

transcription regulator activity 1.37% 2.33% 0.00% 4.00% 0.00% 0.00% 0.49% 3.13% 0.76% 6.32% 1.29%

transporter activity 2.74% 8.14% 9.09% 12.00% 13.64% 11.76% 2.45% 3.13% 7.10% 3.16% 6.54%  
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first step of signal transduction in rice. In the molecular 

function, most tissue (organ)-specific genes are related 

to hydrolase, and over 30% plumule- and seedling- spe-

cific genes are involved in transferase activity (Fig. 2C). 

Interestingly, genes associated with TF activity were 

enriched in a developing panicle, reflecting the im-

portance of transcription in panicle development. Wang 

et al. also made the same suggestion [3]. 

Figure 2 Functional annotations of tissue-specific genes with significantly over-represented GO terms. 

(A) Biological Process (B) Cellular Component (C) Molecular Function 
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3.2. CpG/CpNpG islands and analysis of base 

composition 

 In the promoters of mammals, most tissue-specific 

genes lack CpG islands, and CpG islands are found 

mainly in least tissue-specific genes [16]. Based on these 

findings, this study attempts to determine whether 

CpG/CpNpG island is a critical feature for distinguish-

ing tissue-specific from non-tissue-specific gene pro-

moters in rice. Similarly, the percentage of CpG/CpNpG 

islands in non-tissue-specific gene promoters is more 

than tissue (organ)-specific one in rice when using vari-

ous parameters to identify CpG/CpNpG islands (Table 3 

and Fig. 3). However, several tissues (organs) have more 

than 50% promoters with CpG/CpNpG islands (based on 

a window size of 200 bp, OE CpG of 0.8, CG percentage 

of 60), especially for stamen, panicle, endosperm, and 

plumule with 74%, 73%, 67%, and 65%, respectively. It 

suggests that most genes in different developmental 

stages may require complicated regulation such as epi-

genetic modification in plant. Interestingly, most 

CpG/CpNpG islands are located near TSSs in both tissue 

(organ)-specific and ubiquitous genes (data not shown). 

Of particular interest in this study is whether the location 

of CpG/CpNpG islands is important to separating tissue 

(organ) and non-tissue (organ) specific promoters. Sig-

nificantly, the percentage of CpG/CpNpG islands in 

ubiquitous genes exceeds 80%, the percentage of most 

tissue (organ)-specific genes is less than 50% according 

to the statistics of -200 bp to +200 bp and +1 bp to +200 

bp regions (Fig. 4).  

Table 3 The statistics of CpG/CpNpG islands in rice promoters 

CG percentage 50 60 50 60

germination seed 74% 54% 49% 22%

endosperm 80% 67% 57% 30%

flower 72% 56% 42% 19%

leaf 68% 43% 34% 7%

panicle 85% 73% 66% 27%

plumule 88% 65% 53% 41%

root 75% 52% 38% 8%

seedling 85% 56% 41% 15%

stamen 89% 74% 64% 24%

stem 64% 44% 40% 12%

non-tissue(organ) specific 98% 88% 72% 27%

Window size: 200 bp (OE CpG=0.8) Window size: 500 bp (OE CpG=0.8)

 

 
Figure 3 The percentage of CpG/CpNpG islands in ubiquitous (non-tissue specufic) and tissue- specific 

genes.(A) ubiquitous genes (based on window size = 200 bp) (B) Tissue-specific genes (based on window size = 

200 bp) (C) ubiquitous genes (based on window size = 500 bp) (D) Tissue-specific genes (based on window size = 

500 bp) 52
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Figure 4 The number of CpG/CpNpG islands identified in different promoter regions in various tissues (or-

gans) and ubiquitous (non-tissue specific) genes 

 
Figure 5 Base-composition profiles for ubiquitous and tissue- specific genes with and without CpG/CpNpG 

islands.(A) Ubiquitous genes without CpG/CpNpG island (B) Ubiquitous genes with CpG/CpNpG island (C) Tissue-

specific genes without CpG/CpNpG island(D) Tissue-specific genes with CpG/CpNpGisland. 
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Furthermore, Schuget al. indicated that base-

composition profiles of promoters help to distinguish 

tissue-specific from non-tissue-specific promoters in 

humans and mice [16]. This study also analyzed a full 

set of rice promoters to elucidate the base composition 

of non-specific and tissue-specific gene promoters.  

Figure 5 presents base composition profiles with win-

dow size of 10 bp. Notably, ubiquitous and tissue-

specific gene promoters (with or without CpG/CpNpG 

islands) differ significantly in the base composition pro-

files in conjunction with CpG/CpNpG islands. The four 

classes of promoter considered below are ubiquitous-

CGI+, ubiquitous-CGI-, tissue-specific-CGI+, and tis-

sue-specific-CGI-. Although all four promoter classes 

have an A+T bias from -1000 bp to -100 bp, CGI+ and 

CGI- promoters significantly differ in A+T content (Fig. 

5). Additionally, despite the A+T bias reaching almost 

p(A+T) = 0.65 from far up stream to -100 bp in the CGI- 

promoter, the bias is significantly  lower in the CGI+ 

promoter, for which p(A+T) = 0.55. Conversely, the 

C+G bias increases substantially from -100 bp to +200 

bp in the CGI+ promoter but not in the CGI- promoter 

(Fig. 5B and 5D). Moreover, a preference for C over G 

(p(C) >p(G)) exists in the downstream region of the tis-

sue-specific-CGI+ promoter, while p(C) = p(G) in the 

ubiquitous-CGI+ promoter. However, the tissue-

specific-CGI- promoter exhibits no obvious C+G bias, 

and p(C) >p(G) also in the +1 to +200 region (Fig. 5C). 

Additionally, the content of C is less than other nucleo-

tides in the +1 to +200 region in ubiquitous-CGI- pro-

moter that is converse in other class of promoter (Fig. 

5A). Above differences between the base compositions 

of tissue (organ)-specific and nonspecific promoters in 

rice suggest that these promoters have different structur-

al features and regulatory mechanisms. 

3.3. Identification of tissue (organ)-specific motifs

As is well known, genes with a common biochemical 

function are associated with a set of gene promoters with 

some over-represented functional regulatory motifs [20]. 

Numerous motifs can be identified in tissue (organ)-

specific promoters in this study (data not shown). Fol-

lowing removal of the redundancies by using TOMTOM 

program, motifs with a MEME E-value lower than 0.001 

were selected as tissue (organ)-specific motifs and dis-

played in Table 4. Table 4 lists several tissue-specific 

motifs that were identified in various tissues. This table 

also displays numerous previously unknown motifs in 

the endosperm, leaf, panicle, and stamen. Since scientists 

have strangely neglected tissue (organ)-specific motifs in 

rice promoters, to our knowledge, no known rice TFBSs 

have been identified as tissue (organ)-specific motifs 

based on the straight criteria. In contrast, CDC5 and 

BZR1 in Arabidopsis were identified (Table 4). CDC5, a 

myb-related protein is critically involved in the cell cy-

cles in yeast and animals. The protein is associated with 

spliceosome, and a previous study has posited that it has 

multiple regulatory functions, especially in the develop-

mental and tissue-specific control of alternative splicing 

[21]. However, only a few attempts have so far been 

made to investigate CDC5 functions with plants [22]. 

Lin et al. indicated that although CDC5 has functions 

similar to yeast and human in Arabidopsis [22], no 

CDC5 ortholog of rice has been studied. This prelimi-

nary study attempts to determine whether CDC5 

orthologs in rice have unique roles in tissue-specific 

control during development.  Additionally, BZR1 is a 

tissue-specific expression protein in elongating cells [23]. 

Elongation cells are crucial for panicle elongation and 

development. Sunoharaet al. demonstrated that panicle 

mutations significantly influence the development of 

culms and internodes in rice [24]. Therefore, the BZR1 

motif can be regarded as a significant candidate panicle-

specific motif in rice promoters, which is an interesting 

area for future research. Additionally, CxCCxCCxCC 

and GATxGAT motifs are highly conserved in stamen-

specific promoters in rice. Both motifs are suggested to 

exam their function in stamen development, which is 

possibly applicable to male sterility research in agricul-

ture. The motifs discovered in this study may be candi-

date TFBSs and have important roles in gene regulation 

during the various stages of development of rice. We are 

also going to design experiments (wet lab) to further 

confirm whether those unknown motifs are essential for 

tissue specific expression in the future. 
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ABSTRACT

We present two segmentation methods using the nega-
tive binomial distribution to address two biological ques-
tions related to sequencing data: the assessment of the
number and localization of expressed genes based on RNA-
Seq data, and the precise and confident gene re-annotation.
Our first algorithm computes a penalized log-likelihood
estimator of the regression function with a complexity of
O(Kn log n) with theoretical bounds for its efficiency.
Our second algorithm computes in a Bayesian framework
the exact posterior probabilities of the change-point loca-
tion with quadratic complexity. We illustrate the results of
those methods on simulation studies inspired by RNA-Seq
datasets. Both methods are available as R packages on the
CRAN repository.

1. INTRODUCTION

Our motivating example is the analysis of RNA-Seq data.
The output of an RNA-Seq experiment is the number of
reads (i.e. short portions of the genome) which first po-
sition maps to each location of a genome of reference.
Supposing that we dispose of such a sequence, we expect
to observe a stationarity in the amount of reads falling in
different areas of the genome: coding sequences, intronic
regions, etc. We wish to localize those regions that are bi-
ologically significant. This problem can be seen as a mul-
tiple change-point detection setting for count datasets, and
can be written as follows: we observe a finite sequence of
size n, {yt}t∈{1,...,n} realization of independent variables
Yt which are supposed to be drawn from the negative bino-
mial distributionNB, adapted to the RNA-seq experiment
analysis [1]:

Yt ∼ NB(pt, φ), 1 ≤ t ≤ n,
where the parameters {pt} are assumed to be piece-wise
constant and so subject to an unknown number K − 1 of
abrupt changes occurring at change-point locations {τk},
and φ is a constant parameter corresponding to the disper-
sion in the sequence. Thus, there is a partition of {1, . . . , n}
into K segments within which the observations follow the
same distribution and between which observations have

different distributions, i.e. pt is constant within a segment
J with value pJ and differs from a segment to another.

We consider two biological questions. The first, (i),
is inspired from whole-genome analysis where we are in-
terested in the localization of transcribed regions on chro-
mosomes with signal length ranging from 106 to 108 data-
points. In this situation, the number of segments is typ-
ically unknown (for instance the number of genes tran-
scribed, or the number of exons of the expressed isoforms
is not known) and might be a question in itself. The sec-
ond, (ii), is inspired from transcript re-annotation where
we want to precisely and confidently localize the exon /
intron boundaries from a signal surrounding a gene with
length of the order of 104. In this scenario, we can as-
sume the number of segments to be known from previous
annotation. We propose two segmentation methods to ad-
dress these two biological questions. The first, PDPA, is
a penalized log-likelihood estimator for negative binomial
distributed datasets which satisfies an oracle inequality in
a non-asymptotic context and which algorithmic complex-
ity allows its use in our first framework (i). The second,
EBS, is a Bayesian segmentation method providing the
exact computation of posterior probabilities of change-
point location at the price of higher complexity, thus re-
stricted to our second framework (ii).

2. METHODS

In the next sections we will denote by m a partition of
[[1, n]], m = {[[1, τ1[[, [[τ1, τ2[[, . . . , [[τK−1, n]]} =
{1, τ1, . . . , τK−1, n + 1} with |m| = K segments, by J
a segment of m and MK will be the set of all possible
partitions of [[1, n]] in K segments.

2.1. Whole-genome analysis

In framework (i) we want to estimate the distribution s
of the data, s(t) = NB(pt, φ) through a segmentation m̂
such that

∀J ∈ m̂,∀t ∈ J, ŝ(t) = NB(pJ , φ). (1)

The main difficulty is the choice of the segmentation m̂,
since the parameters {pJ} can often be estimated trivially

57



The 10 th International Workshop on Computational Systems Biology, WCSB 2013

by maximum likelihood given estimates of the {τk}s. Fol-
lowing [2] and noting γ(u) the log-likelihood of distribu-
tion u, we propose to choose m̂ as

m̂ = arg min
m∈M

{γ(ŝm) + pen(m)},

for ’good’ choices of model collectionM and of penalty
function pen, i.e. such that the resulting estimator satisfies
an oracle inequality. More specifically, we can hope that
up to a constant, it performs as well in terms of Hellinger
risk as the best but unreachable estimator.

For any given K, and with empirical complexity of
O(Kn log n), the Pruned Dynamic Programming Algo-
rithm (PDPA,[3]) computes the best estimator ŝK among
the collection SK =

⋃
m∈MK

{sm | ∀J ∈ m, ∀t ∈ J,
sm(t) = G(θJ)} with respect to γ for one-parameter uni-
modal distributions G from the exponential family. The
negative binomial distribution is included in the latter on
the condition that the over-dispersion parameter φ is known.
We therefore propose to use a modified Jonhson and Kotz’s
estimator [4] for φ. Specifically, for each sliding window
of size h equal to twice the size of the longest zero band,
we compute the method of moments estimator of φ, using
the formula φ = E2(X)/(V(X)−E(X)), and retain the
median over all windows. We implemented the PDPA in
an R package [5] for distributions including the negative
binomial for which we included our estimator.

Among the so-constructed collection of estimators S =
{ŝK}1≤K≤Kmax , we have to choose the best one, i.e. choose
an optimal number of segmentsK via a good choice of the
penalty function. To this end, we show [6] that for

pen(m) = β|m|
(

1 + 4

√
1.1 + log

(
n

|m|

))2

, (2)

with β a constant to be tuned according to the data, and up
to a log n factor, we satisfy an oracle inequality.

As the penalty we propose depends on the segmenta-
tion only through its size, our final algorithm is two-steps:
first we estimate for 1 ≤ K ≤ Kmax, the location of the
change-points {τk} and the parameters {pJ} and φ using
the PDPA, then we estimate the number of segments K
using our penalty function and the slope heuristic [7] to
tune β. This procedure is automated in our R-package.
We illustrate the performances of our algorithm on simu-
lation studies in the Result Section.

2.2. Gene re-annotation

One can be interested in the confidence of the proposed es-
timator, for instance in the context of gene re-annotation
(ii). At the price of higher complexity (quadratic), [8]
proposed a Bayesian segmentation method which, among
other quantities of interest, computes the exact posterior
probabilities of the kth change-point occurring at each lo-
cation t given a number of segmentsK. It relies on opera-
tions on the triangular matrix A which generic term is, for
i < j, [A]i,j = P (Y[[i,j[[|[[i, j[[), and requires the ability to
compute [A]i,j exactly.

We implemented this algorithm in an R package, EBS,
for distributions including the negative binomial, overcom-
ing two major difficulties: the numerical precision required
to deal with extremely small probabilities due to the length
of the signals (up to 104 data-points), and the assumptions
required for the exact computation of posterior probabili-
ties (knowledge and thus estimation of the overdispersion
parameter φ using the estimator described in the previous
paragraph, and existence of a conjugate prior for the pa-
rameters to segment).

Given a segmentation m, our model can be written as
follows:

∀J ∈ m, pJ ∼ Beta(a, b)

∀J ∈ m,∀t ∈ J, Yt ∼ NB(pJ , φ)

With convenient choice of hyper-parameters (such as
Jeffrey’s prior pJ ∼ Beta(1/2, 1/2)) we can compute, for
all 1 ≤ t ≤ n, p(τk = t|Y,K) and the associated 95%
credibility intervals. We illustrate our results on simula-
tion studies presented in the next section.

3. RESULTS

3.1. Whole-genome analysis

In framework (i), we assess the quality of our method
PDPA on two simulated datasets. Using the SGD anno-
tation (http://www.yeastgenome.org/), we have
constructed a signal of length 230218 with 119 segments
corresponding to the size of the yeast positive strand of
chromosome 1 and its 59 annotated genes. In a first sce-
nario we have simulated the datasets from the negative bi-
nomial distribution. After running our overdispersion es-
timator on each strand of the 16 sequenced chromosomes
of our yeast dataset and keeping its median value, we set
φ to 0.27 and we randomly chose the values of the pa-
rameter pJ on each segment between four possibilities to
mimic a real dataset: 0.9 for non-coding regions, and re-
spectively 0.25, 0.1 and 0.05 for low, medium and highly
expressed transcripts. In a second scenario we simulated
the datasets by resampling at random and with replace-
ment from four groups of real RNA-Seq data previously
pooled into classes of expression: intronic, low, medium
and high.

PDPA selected respectively 117 and 118 segments, with
a runtime of about 25 minutes on a standard laptop. Fig-
ure 1 displays the percentage of recovered true change-
points as the number of segment increases, as well as the
choice of K̂ given by our penalty function. In both cases,
the choice corresponds to the largest possible K before
adding segments does not increase the percentage of true
positives. This indicates both the stability of the log-likelihood
criterion and the pertinence of the penalty function.

Running our algorithm on the real data-set leads to a
selection of 103 segments, most of which surrounds known
genes from the SGD annotation. Only three change-points
were classified as false positives. Figure 2 illustrates the
result.
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Figure 2. Proposed segmentation of a real data-set. Example of our proposed segmentation for the chromosome 1 of the
yeast organism. Read counts are plotted with a squared-root scale, blue lines indicate estimated change-points.

3.2. Gene re-annotation

We illustrate our second method EBS on two simulation
studies using our RNA-Seq data. First we resampled (with
replacement) each region of the signal surrounding the
yeast gene YAL035W according to the SGD annotation,
to obtain a segmentation in 5 segments (the top left figure
of Figure 3 illustrates the true data for this gene and the
posterior distribution of the change-points (in blue) ob-
tained with the EBS algorithm.) In our second scenario,
we created an artificial gene, inspired from the Drosophila
Melanogaster inr-a gene, resulting in a 14-segment signal
with irregular intensities mimicking a differentially tran-
scribed gene (the bottom left figure illustrate such a simu-
lated data-set, and the output of EBS). Each configuration
was simulated 100 times, with processing run-time aver-
aging at respectively 7 seconds and 20 minutes.

We evaluated the false positive and false negative rates
by declaring t a break-point if ∃1 ≤ k < K, p(τk =
t|Y,K) ≥ λ for a given threshold λ and by varying λ and
averaging the resulting proportions of false positives and
false negatives over simulations. A perfect ROC curve
should indicate a sharp change-point posterior probabil-
ity located at the exact expected position. In our case it
leads to the ROC-like curves as presented in the right side
of Figure 3. The latter have an almost perfect shape con-
firmed by the average credibility interval sizes and propor-
tion of times that each covers its associated true change-
point. Examples of those values are given in Table 1.

3.3. Comparison to existing methods

In a recent analysis (paper under review), we compared
our two methods with other approaches adapted to count

Gene Interval length Coverage
YAL035W 10 0.97

Inr-a 7 0.99

Table 1. Credibility intervals. Median length of the
95% credibility intervals and percentage of simulations
for which the intervals covered the true first break-point
(out of 100).

datasets: CART [9, 10], a fast heuristic algorithm and
PELT [11], an exact algorithm where the number of seg-
ments is estimated within the algorithm both implemented
for the Poisson distribution, and postCP [12], a constrained
hidden Markov model (HMM) approach for segmentation
which uses the PDPA for its parameter initialization. We
showed that PDPA outperforms other methods, especially
when the number of segments is known, both on simulated
and real-data. At the cost of higher complexity, EBS had
excellent results on ROC-like curves, allowing its use for
posterior applications such as transcript location compar-
isons.

4. CONCLUSION

We have presented two segmentation approaches using the
negative binomial distribution to address biological ques-
tions related to the analysis of sequencing data. Our first
method, PDPA, allows to assess the number and loca-
tion of transcribed regions in an RNA-Seq experiment on
lower organisms such as yeast. Our resulting estimator not
only satisfies theoretical oracle inequalities but in practice
selects a number of segments and an associated segmen-
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Figure 1. Estimation of s on long simulations. For both
simulation study (Left: simulation from negative binomial
distribution, Right: simulation by resampling real RNA-
Seq data), percentage of true change-points recovered by
the segmentation as the number of segments increases.
Purple lines indicate the number of segments chosen by
the penalty function and the corresponding percentage of
true change-points.

tation which is optimal according to the data and with a
complexity allowing its use on long signals. While these
results are likely to be compromised in higher organisms
where genes are subject to extensive alternative splicing
and exons from different genes can overlap, we can hope
that in such context, the use of existing annotation or other
algorithms like Cufflinks will overcome these difficulties.

Our second algorithm, EBS, allows to address the qual-
ity and confidence of the proposed estimator with excel-
lent results in terms of ROC-curves and coverage of credi-
bility intervals. With higher complexity, it remains usable
for the re-annotation of genes. Both algorithms are avail-
able as R packages with full documentation on the CRAN
repository.

5. AVAILABILITY OF SUPPORTING DATA

The dataset supporting the results of this article is avail-
able in the Sequence Read Archive repository, http://
www.ncbi.nlm.nih.gov/sra, with the accession num-
ber SRA048710.
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Figure 3. Posterior change-point probabilities. Left: Ex-
ample of posterior change-point location probabilities for
gene YAL035W from the yeast (Top) and Inr-a from the
Drosophila (Bottom). Right: ROC-like curves obtained
by averaging over the 100 simulations from YAL035W
(Top) and Inr-a (Bottom).
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ABSTRACT

Differentiation processes of the immune system’s cells have
been shown to be affected by several environmental fac-
tors. Yet the underlying mechanism behind the differen-
tiation processes of the T lymphocyte cells remain elu-
sive. Here we use a mathematical model based on ordi-
nary differential equations in order to investigate the in-
fluence of parameters on such biological models. We per-
form a global sensitivity analysis to identify the parame-
ters which have a major impact on the model. We find the
feasible ranges of each parameter discovering those that
influence the model most. The present findings underline
the importance of a prior sensitivity analysis in order to in-
crease the efficiency and reliability of parameter inference
of complex systems.

1. INTRODUCTION

Environmental chemicals ingested or inhaled from differ-
ent sources like food or drinking water, industrial-, auto-
mobile exhaust can have a major impact on our immune
system [1].

A particularly important group of immune cells are so
called T lymphocyte cells. Adaptive immune system is
mainly governed by T cells which play an essential func-
tion in the protection against pathogens, cancer and au-
toimmune diseases, among others [2]. A complex network
of different kind of lymphocytes underlies the regulation
of the protection in the organism and an appropriate bal-
ance in the differentiation process of T cells is decisive for
the global health in humans and animals [3].

To explain the underling mechanisms in the immune
system, disparate models have been elaborate, either us-
ing a mathematical approach [4] or combining mathemat-
ics with experiments [5]. However, the majority of these
studies are performed in mice and, due to the lack of sam-
ples, only a few are focused on humans [6].

So far, established models rely on a wide range of pa-
rameters [7]. Since the inversion of parameters of com-
plex models can not be performed reliably in presence of
only a few data-points, the amount of parameters has to
be reduced. It is then essential in this context to iden-
tify the most relevant parameters in order to reduce the
model complexity along with experimental effort required

and, therefore, produce a more efficient inversion strat-
egy. In this work, we focus our study on the investigation
of parameters’ impact aiming to reduce the model com-
plexity. The model of Busse et al. [5] is used as a bench-
mark for testing our approach. Furthermore, to overcome
the weakness of many common biological models regard-
ing the numerical method adopted to solve the governing
model equations [8], we implement an adaptive time-step
solver for ordinary differential equations (ODEs) in order
to obtain a predetermined accuracy with minimal compu-
tational power.

2. MATERIALS AND METHODS

Mathematical models in biology are often based on sys-
tems of coupled ODEs. So far, established models able to
describe differentiation processes of cells belonging to the
immune system, rely on a wide range of different parame-
ters, most of those need to be determined experimentally.
The number of these parameters is usually larger than the
data points achievable from the measurements. Conse-
quently, it is essential identifying the most relevant ones
in order to reduce the model complexity by performing a
prior global sensitivity analysis of the model of interest.

2.1. ODE system

In the most generic form, any initial-value problem of
n evolution equations with n initial conditions ui0 (i =
1, . . . , n), could be written as





du
dt

= f(t,u),

u(t0) = u0

(1)

where

u : R+ −→ Rn u(t) ∈ Du ⊆ Rn, t ∈ R+ .
t 7−→ u(t)

(2)

As test model for this work, we choose the reaction-
diffusion system proposed in Busse et al. [5] for the num-
ber of unoccupied cytokine interleukin-2 receptors (IL-
2R) R, the number of receptor complex with cytokine
interleukin-2 (IL-2) C and the number internalized IL-2R
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per cell E:





dR

dt
= v − kiRR− konRI

+koffC + krecE

dC

dt
= konRI − (kiC + koff )C

dE

dt
= kiCC − (krec + kdeg)E

(3a)

with, the initial conditions





R(0) = 0.1
C(0) = 0.5
E(0) = 0.5

(3b)

where the IL-2R production v is defined by

v = v0 + v1
Cm

Km + Cm
. (3c)

The system (3), in the work of Busse et al. [5], is used
to model both T helper (Th) cells and regulatory T (Treg)
cells. The analysis of Treg cells is omitted here since the
main focus of our work is a deep analysis of the parame-
ters involved in the system more than the behavior of these
two different groups of cells. The parameters involved
in (3) are summarized in Table 1.

Symbol Parameter
p1 : kiR Internalization rate constant of IL-2R
p2 : kon IL-2 association rate constant to IL-2R
p3 : koff IL-2 dissociation rate constant from IL-2R
p4 : krec Recycling rate constant of IL-2Rα
p5 : kic Internalization constant of IL-2/IL-2R complex
p6 : kdeg Endosomal degradation constant IL-2R
p7 : v0 IL-2 receptor dynamics
p8 : v1 Feedback induced IL-2 receptor expression rate
p9 : K Half-saturation constant
p10 : m Hill coefficient
p11 : I IL-2 concentration

Table 1. Parameters involved in the model proposed by
Busse et al. [5] (Eq. (3)).

In particular, we confine our study on the number of
unoccupied IL-2R R. In the system (3a), the term I rep-
resents a diffusion equation [5]. However, since in these
models the diffusion occur usually almost instantaneously,
it was already shown by Busse et al. [5] that it could be
considered as a constant. Therefore, we neglect the diffu-
sion equation replacing it with constant and incorporating
it in the parameters’ set.

Besides, to achieve an optimal accuracy in the solution
of system (3) with minimum computational effort, we im-
plemented a 4th-order Runge-Kutta method with adaptive
step-size control.

2.2. Feasible parameter ranges

Finding feasible ranges of the parameters involved in bio-
logical models is often demanding. Both data from exper-
iments and from literature could be not enough to fill the
lack of parameters needed to describe these systems.

In this section we introduce an approach adopted to
overcome this issue, namely, analyzing which parameters
influence the model most in order to increase the reliabil-
ity of parameter inference of complex models.

We know a priori the shape of the solution of our sys-
tem (Figure 1, 3) and search for values that lead to this
profile in a temporal interval t ∈ [0, 100]. To have a
rough estimation of the possible ranges, we first consider
guessed intervals according to the values used in the work
of Busse et al. [5]. From these intervals we randomly
generate a set of uniformly distributed parameters using
the Brent-xor4096 algorithm [9]. We then run our model
and discard all the ones that generate not feasible curves.
Namely, parameters that produce curves that do not satisfy
a number of fixed constraints previously imposed, i. e. not
reproducing the shape of the reference solution (Figure 1).
Analyzing the tick curve in Figure 1 more in detail, it is
possible to identify two main parts of the solution. In the
first, the curve slowly increases until it reaches the time
point around 50, then it hastily changes curvature and, in
the second part, it progressively stabilizes and attains a
plateau.

After this first evaluation of feasible ranges, we repeat
the same analysis changing several parameters at the same
time. In this way we can verify if modifying combina-
tions of parameters affects the model and the ranges of
feasible values differently. Hence, the estimated param-
eters ranges are independent from parameters considered
separately and take into account parameters correlation.
Therefore, the results are more reliable.

2.3. Sensitivity analysis: Elementary Effects

The Elementary Effects (EE) method, produces a quali-
tative sensitivity analysis evaluation, in particular, is able
to identify non-significant inputs or to order input com-
ponents in relation to their influence in the system under
investigation. Due to these reasons, EE method is one of
the most applied screening method in sensitivity analysis,
especially if the model examined is composed of an ex-
tensive quantity of parameters.

Since the system (3) is highly dependent on the pa-
rameters setting, we use the EE method described in this
section, to measure their influence on the model.

Any EE method is defined as:

EEj =
M(p1, . . . , pj + ∆, . . . , pN )

∆

−M(p1, . . . , pj , . . . , pN )

∆

(4)

whereEEj is the EE of the jth parameter,M is the model
dependent on the N parameters p1, . . . , pN and ∆ is the
change of the jth parameter. Given N parameters and K
single samples to evaluate the EE of a defined parameter j,
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2NK parameter sets are needed and therefore 2NK runs
of the model. However, according to the idea of Morris, it
is possible to reduce this number to (N + 1)K [10].

Originally, the mean EEj of all (N+1)K parameters
set was used to estimate the importance of parameter j.
Since this approach might lead to compensation of posi-
tive and negative EEs, Campolongo et al. [11] proposed
an alternative using:

µ∗
j =

1

K

K∑

l=1

∣∣∣EE(l)
j

∣∣∣ (5)

where K is the number of trajectories and EE(l)
j is the

EE of parameter j within the lth trajectory, and µ∗
j is the

sensitivity measure of the jth parameter.
In our work, we fixed K = 20N trajectories which

leads to a total number of 20N(N + 1) parameter sets.

3. RESULTS AND DISCUSSION

Here we analyze the impact of all the parameters in the
system (3). As a significant example, we report the results
of the influence of parameters p1 and p2 (see Table 1 for
details).

In the fixed interval [0.0, 2.0], we search for 500 fea-
sible values of p1, randomly and uniformly distributed,
as shown in Figure 1a. Then, we repeat the same pro-
cedure for p2 in the interval [0.0, 200.0] (Figure 1b). In
the first case (Figure 1a), the parameter affect the solu-
tion slightly along both the x-axis and the y-axis, in par-
ticular, with a concentration of curves above the solution
of Busse et al. [5] (represented by the thick line). Con-
versely, in the second case (Figure 1b) the shift along the
y-axis is prevalent beneath the reference curve. Looking
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Figure 1. Influence on the solution of R of the system (3)
(thick line) using 500 different values of a) p1 and b) p2.

more in detail, feasible parameters are found only in small
subsets of the allowed intervals, specifically, in [0.0, 0.7]
for p1 (Figure 2a) and in [107.2, 200.0] for p2 (Figure 2b).
Moreover, it is interesting to observe that the values used

for p1 and p2 in the work of Busse et al. [5] lie both in one
of the extreme bounds of the feasible sets we obtained.
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Figure 2. Frequency of the feasible parameters in the al-
lowed intervals changing only a) p1 and b) p2. Compari-
son between modifying p1 and p2 together (light bars) and
changing only c) p1 and d) p2.

In a second step, we now change p1 and p2 at the same
time leaving all the other parameters fixed to the values of
the work of Busse et al. [5]. In this case, the solution
is affected along both axes but mainly along the y-axis
reaching a plateau of nearly 3000 (Figure 3).
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Figure 3. Influence on the solution of R of the system (3)
(thick line) of 500 different values arising from changing
parameters p1 and p2 together.

However, it is important that the behavior of the curve
is not deducible from the previous two cases, when we
changed only one parameter at once. The result is not
representable as a combination of the two previous con-
ditions, as clearly shown by the irregularity of the thin
curves in Figure 3 and from the reached plateau that is
almost three times higher than in the previous cases.
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Moreover, replacing more parameters at the same time
affects not only the solutions, but also the range in which
is possible to find feasible parameters (Figure 2c-d). The
feasible values for p1 are found in a similar range com-
pared to the previous case (Figure 2c). Conversely, for p2
where we found a range completely different to the previ-
ous one, [44.1, 120.0] (Figure 2d).

By applying the EE method to the system (3), it is pos-
sible to estimate the importance of every single parameter
and rank them according to their influence on the model.
As shown in Figure 4, parameters p1 and p8 perform ma-
jor consequences on the system with respect to the others.
On the contrary, p7 and p9 could be considered irrelevant
in this model since their impact on the model output is
much lower compared to the others. Therefore, we sug-
gest to concentrate direct experimental measurements of
parameters on p1 and p8 while excluding p7 and p9.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11
parameters

0

1000

2000

3000

4000

5000

µ
∗

Figure 4. Elementary Effects µ∗ of parameters of sys-
tem (3).

Moreover, it is expected that p1 and p8 have an higher
impact on the system since they appear only in the equa-
tion describing R (system (3)). These two parameters
would not have the same influence if the EE method could
be performed on the other variables (C, E) of the system.

Furthermore, aiming to evince which parameters are
hidden in measurements any parameters inversion method
can be focused on optimizing the most sensitive parame-
ters, i. e. parameters with large EEs.

4. CONCLUSION

We showed how the outputs of a biological system are
strictly related to the parameters present in the model. More-
over, we pointed out the importance of a prior sensitivity
analysis, i.e. an Elementary Effect method, in order to
identify the most relevant factors on which the model rely
on and reduce the system complexity.

An improvement of this study could be the integra-
tion of IL-2 (C) and internalized IL-2R (E) in addition
to the used unoccupied IL-2R (R). This will allow for an
estimation of the overall impact of the parameters on the

model and will therefore further enhance the efficiency of
a subsequent parameter inversion methods.
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ABSTRACT
Many biochemical processes exhibit intrinsic stochastic
fluctuations. These intrinsic fluctuations can be modeled
using the chemical master equation (CME). The estima-
tion of the parameters of the CME is challenging because
the CME is a high or infinite dimensional system.

We compare two approaches currently used to esti-
mate parameters of CMEs from population snapshot data.
The first approach relies on a truncation of the CME, the
finite state projection, and uses the data directly. The sec-
ond method relies on moment equations – dynamical sys-
tems computing the moments of the CME solution – and
merely uses the moments of the data. The second method
is computationally more efficient, however, it cannot use
all information contained in the data. In this manuscript,
we assess the statistical power of the individual approaches
and study moment equations of different order. Further-
more, we refine the likelihood function for the moment
equation and introduce a novel validation method.

We performed a comparative study of the commonly
used 3-stage model of gene expression. Using maximum
likelihood estimates and a rigorous uncertainty quantifi-
cation based on profile likelihoods, we show that the fi-
nite state projection approach is statistically more power-
ful than approaches based on moment equation. Never-
theless, even in case of partial observations, the first and
second moments of the CME solution are highly informa-
tive and permit parameter identifiability. These findings,
in combination with the novel tools for validation and un-
certainty analysis, improve the insight into the problem
class.

1. INTRODUCTION

In recent years, a multitude of studies have shown that
many biochemical processes in prokaryotic and eukary-
otic cells exhibit intrinsic stochastic fluctuations [1]. These
fluctuations arise from low copy-number effects and are
particularly significant for transcription and translation [2].
It is now known that these fluctuations are in many cases
required for cellular function, e.g., for robust decision mak-
ing on the population level [1].

The stochastic dynamics of biological processes can
be described using continuous-time discrete-state Markov
chains (CTMCs). The statistics of these Markov chains
are governed by the chemical master equation (CME). In-
dividual realizations of the process can be obtained via
stochastic simulation algorithms (SSAs) [3, 4]. The
stochastic process can be studied by analyzing statistics
of many such realizations. Alternatively, the CME can be
simulated using the finite state projection (FSP) method [5],
which relies on truncation of the state space of the CME.
While SSAs and the FSP are in principle capable of re-
solving all details of the dynamics of the CME, they im-
pose a significant computational cost. This computational
cost already becomes intractable for many small-scale sys-
tems. As an alternative, the method of moments (MM)
[6, 7, 8] can be employed to capture the overall statistics
of the process, such as mean and variance of individual
species as well as covariances.

While the SSA, the FSP, and the MM all have advan-
tages and disadvantages, a joint property is that they re-
quire accurate parameter values. The models and simu-
lations are only predictive if good estimates of the reac-
tion rates are available. Several estimation methods, re-
lying on different models, were proposed (see, e.g., [9]
and references therein), however, in most studies only the
optimal parameter estimate has been considered, and the
methods have not been compared. In this manuscript, we
study the parameter estimates and confidence intervals ob-
tained using FSP and MM. We present the individual like-
lihood functions and evaluate the informativeness using
profile likelihoods. This is done for the widely used 3-
stage model of gene expression [2], which is depicted in
Figure 1.

2. METHODS

2.1. Modeling and simulation

2.1.1. Chemical master equation

The time evolution of the state X = (X1, . . . , Xns)
T ∈

Nns0 of stochastic biochemical reaction networks is mostly
described using CTMCs. The statistics of CTMCs are
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µ̇Doff = τoffµDon − τonµDoff

µ̇Don = τonµDoff − τoffµDon

µ̇r = krµDon − γrµr

µ̇p = kpµr − γpµp

Figure 1. Three-stage gene expression model. (left) Schematic of the 3-stage gene expression model shows two DNA
states (on, off), mRNAs and proteins. Transitions as well as synthesis and degradation reactions are shown as arrows.
(right) Moment equations for means and variances of the individual species. The subscripts indicate the dependency, e.g.,
µr is the mean mRNA number.

governed by the CME. For a process with nr chemical
reactions,

Rk :

ns∑

i=1

ν−ikXi →
ns∑

i=1

ν+
ikXi,

with reaction stoichiometries ν−k , ν+
k , and νk = ν+

k − ν−k ,
and reaction propensities ak(X, θ), the CME is

∂

∂t
p(x; t) =

nr∑

k=1
x≥ν+

k

ak(x− νk, θ)p(x− νk; t)−
nr∑

k=1

ak(x, θ)p(x; t).

The solution of the CME depends on the parameters θ,
which are for instance reaction rates.

The CME is defined for all reachable states x ∈ Ω ⊂
Nns0 , where ns is the number of biochemical species. The
set of reachable states Ω is in general very large, or infi-
nite, rendering a direct solution of the full CME infeasible.
Fortunately, the set of states with a significant probability
mass is often small. This is exploited by the FSP, a di-
rect method for approximating the solution of the CME [5]
with pre-specified accuracy. Therefore, a subset ΩFSP of
the set of reachable states Ω is chosen. The time evolution
of p(x; t) with x ∈ ΩFSP is described by the CME, but
influxes from states x − νk /∈ ΩFSP are removed. Proba-
bilities p(x; t) resulting from the simulation of this trun-
cated system, which can be shown to be a lower bound for

the actual probabilities of the CME, converge to the ac-
tual probabilities by growing ΩFSP until the pre-specified
accuracy is met.

A requirement for the application of the FSP is that
the number of states with a significant probability mass is
not too large. Novel algorithms can handle some million
states [10]. Beyond this, the direct numerical simulation
becomes infeasible.

2.1.2. Method of moments

In situations where the FSP is no longer applicable, the
method of moments can be employed to approximate the
solution of the CME [6]. The MM, also called moment
equation, does not reproduce the exact solution of the CME.
Instead, it computes the moments of p(x; t), i.e. mean

µi(t) =
∑

x∈Ω

xip(x; t),

variance

Cij(t) =
∑

x∈Ω

(xi − µi(t))(xj − µj(t))p(x; t),

and higher-order moments [6]. The dynamics of the mo-
ments are governed by a set of ordinary differential equa-
tions (ODEs). Given that chemical reactions are at most
bimolecular, the ODEs for the mean and the variance are
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dµi
dt

=

nr∑

k=1

νik


ak(µ, θ) +

1

2

∑

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2
Cl1l2


 ,

dCij
dt

=

nr∑

k=1


νik

∑

l

∂ak(µ, θ)

∂xl
Cil + νjk

∑

l

∂ak(µ, θ)

∂xl
Cjl + νikνjk


ak(µ, θ) +

1

2

∑

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2
Cl1l2






+

nr∑

k=1


νik

∑

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2
Cil1l2 + νjk

∑

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2
Cjl1l2


 ,

in which Cil1l2 and Cjl1l2 are third order moments ac-
cording to notation used in [6]. The governing equation
for arbitrary moment orders can be found in [6, Equa-
tion (2.46)]. If all reactions are at most mono-molecular,
the moment equation is closed, meaning that the evolution
of moments of order m does not depend on moments of
order greater than m. In this case, the moment equations
are exact. If bimolecular chemical reactions are present,
the moment equation ODEs are not closed, and the eval-
uation of a moment of order m requires the moments of
order m+ 1 [6]. Moment closure techniques must be em-
ployed [11], and the resulting moments will only be an
approximation of the true moments of the solution of the
CME.

Moment equations are in general low-dimensional com-
pared to the CME. Thus, they can generally be solved
more efficiently. However, a drawback is that a finite num-
ber of moments does not allow the reconstruction of the
underlying distribution p(x; t). Hence, information is lost.

2.2. Parameter estimation

In this work, we considered population snapshot dataDk ={(
Ȳ (s)(tk), tk

)}Sk
s=1

, k = 1, . . . , N , obtained by sam-
pling cells s = 1, . . . , Sk from the cell population and
measuring one (or more) properties of these cells, e.g.,
using flow cytometry or microscopy. For notational sim-
plicity, we assume that one observable, Ȳ = h(X), can be
measured. The observation function h describes the type
of measurement; in the most simple case h(X) = Xi.
The measurement is assumed to be noise-free as we later
want to assess the informativeness of single-cell data vs.
the moments.

Given a realization X at a certain time tk, the proba-
bility of observing Ȳ at time tk is p(y = Ȳ ;x = X). The
total probability to observe Ȳ at time tk is obtained by
taking into account all possible realizations X ∈ Ω of the
process. Given that the number of molecules is a discrete
variable, this total probability is obtained by marginaliz-
ing over the state space Ω,

p(y; tk, θ) =
∑

x∈Ω

p(y;x) p(x; tk, θ),

where p(x; tk, θ) is the solution of the CME. Bearing in
mind that we do not consider any measurement noise, y is

a deterministic function of x, y = h(x), thus

p(y|x) =

{
1 if y = h(x)
0 otherwise,

so the sum simplifies to

p(y; tk, θ) =
∑

x∈Ω
h(x)=y

p(x; tk, θ).

Following the argumentation above, the probability distri-
bution p(y; tk, θ) is the distribution from which the obser-
vations are drawn. Thus,

p(y = Ȳ (s)(tk)) = p(y; tk, θ), s = 1, . . . , Sk.

In the following, we compare two classes of likelihood
functions for these data, namely an FSP-based likelihood
function and a moment-based likelihood function with re-
spect to their statistical power. As mentioned before, we
do not consider any measurement noise in this compari-
son, but the inclusion of noise in the presented procedure
would be rather straightforward.

2.2.1. FSP-based estimation

As outlined earlier, for CTMCs with a small effective state
space, the FSP can be used to approximate the solution
of the CME for a given parameter set θ. Using this ap-
proximation of the probability distribution of the hidden
state, p(x; t, θ), and the corresponding approximation of
the probability distribution of the observable, p(y; t, θ),
the likelihood of the stochastic process,

LFSP
D (θ) = c

N∏

k=1

Sk∏

s=1

p(y = Ȳ (s)(tk); tk, θ),

can be evaluated. Basically, the probabilities are evalu-
ated and multiplied for all observed states. The constant
c depends only on the data and can be neglected for op-
timization purposes. For a detailed introduction of this
FSP-based likelihood function, we refer to [12, 13]. Given
the FSP-based likelihood function, the estimation problem
can be formulated. The FSP-based maximum likelihood
(ML) estimation problem is:

maximize
θ

logLFSP
D (θ)

subject to ΣFSP(θ),
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in which ΣFSP(θ) denotes the finite-dimensional ODE
model resulting from the FSP of the CME on the sub-
set ΩFSP. To reduce numerical problems, the problem is
formulated using the log-likelihood function logLFSP

D (θ).
Furthermore, we optimize the logarithm of the parameters
ξ = log10(θ) to ensure positivity and improve the perfor-
mance of the optimization routines. The optimal solution
of the FSP-based ML estimation problem is the parame-
ter vector for which the likelihood of observing the single
cell data is maximized. This estimator uses all available
information.

2.2.2. Moment-based estimation

For many processes the approximation of the CME so-
lution using the FSP is not feasible because the number
of states with non-negligible probability is too large. In
such cases, the moment equation can be employed to ap-
proximate the statistics of the CME solution. To employ
moment equations for parameter estimation, the statistics
of the snapshots are computed, e.g., mean and variance,

µ̄y(tk) =
1

Sk

Sk∑

s=1

Ȳ (s)(tk),

C̄yy(tk) =
1

Sk

Sk∑

s=1

(
Ȳ (s)(tk)− µ̄y(tk)

)2

.

These measured moments are compared to moments pre-
dicted by the model and the observation function h(x).
Since the sample sizes Sk are often quite large – for flow
cytometry often in the order of 104 – it follows from the
central limit theorem that the empirical moments, e.g.,
µ̄y(tk) and C̄yy(tk), are almost normally distributed
around the true moments [14]. Hence, a normal error
model is assumed,

LMM
D,µy (θ) =

N∏

k=1

N
(
µy(tk, θ)|µ̄y(tk), σ2

µ̄y (tk)
)
,

LMM
D,Cyy (θ) =

N∏

k=1

N
(
Cyy(tk, θ)|C̄yy(tk), σ2

C̄yy
(tk)

)
,

where N (·|µ, σ2) is the probability density of the normal
distribution. Such a likelihood function can be derived for
every moment predicted by the model, e.g., also the third
and fourth order central moments. Clearly, the considera-
tion of additional, non-redundant moments provides addi-
tional information about the model parameters as the in-
dividual likelihood functions are multiplied, e.g., if mean
and variance are employed then a reasonable likelihood
function is

LMM
D (θ) = LMM

D,µy (θ) · LMM
D,Cyy (θ).

Unfortunately, also the computational complexity of sim-
ulating the moment equations increases with each addi-
tional moment considered in the model.

The likelihoods LMM
D,µy (θ), LMM

D,Cyy (θ) and those for
the higher-order moments require information about the

error variance of the respective empirical estimator, e.g.,
σ2
µ̄y for µ̄y(tk) and σ2

C̄yy
for C̄yy(tk). The variance of

the estimators for the first and second order moments can
be found in [14]. For third and higher-order moments the
calculation of these estimators become increasingly com-
plex, and we did not find respective results in the liter-
ature. To circumvent the analytical derivation, we pro-
pose to estimate the variance of the empirical estimators
using non-parametric bootstrapping [15]. This approach
employs a two-step procedure. At first, a sample of size
Sk is drawn from {Ȳ (s)(tk)}Sks=1 (all Ȳ (s)(tk) have prob-
ability 1

Sk
) and the moments of this artificial sample are

evaluated. This step is repeated a large number of times,
in general more than one thousand times, yielding a large
sample for each moment of interest. Therefore, the vari-
ance of each moment can easily be computed from the
corresponding sample. This sample variance is a reliable
measure for the uncertainty, if Sk � 1. It does not require
any distribution assumption for p(y; tk, θ) and is easily ap-
plicable to any higher-order moments.

Given the likelihood function LMM
D (θ), which is the

product of the likelihood functions for the moments of in-
terest, the moment-based ML estimation problem,

maximize
θ∈Rnθ+

logLMM
D (θ)

subject to ΣMM(θ),

can be formulated. ΣMM(θ) is the model used to simulate
the moment equations for the moments of interest.

2.2.3. Identifiability and uncertainty analysis

As the measurement data are limited and potentially noise
corrupted, the parameters can in general not be estimated
precisely. To assess the remaining parameter uncertainty
and the practical identifiability, we use profile likelihoods
[16]. Given the likelihood function LD(θ), the profile
likelihood of parameter θi is

PL(θi) = max
θj 6=i
LD(θ).

This profile likelihood PL(θi) is the maximal likelihood
for a given value of θi. Using the profile likelihood, the
likelihood ratioR(θi) = PL(θi)/LD(θ̂) can be evaluated,
in which θ̂ is the ML estimate. The likelihood ratio R is
one at the globally optimal point θ̂i and approaches zero
for large |θi − θ̂i| if the parameter is identifiable. The
area under PL(θi) provides a reasonable measure for the
uncertainty of parameter θi. For further details, we refer
to [16, 17].

In the following, we employ profile likelihoods to as-
sess the information content of the moments of the data
in comparison with that of the full distribution of data.
More information will result in many identifiable parame-
ters and small parameter uncertainties.
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(a) Four stochastic realizations of the 3-stage model of gene expres-
sion.
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(b) Population snapshot data used for parameter estimation.

Figure 2. Dynamics of the 3-stage model of gene expres-
sion. (a) Time-dependent protein number in four repre-
sentative cells together with the population mean. (b) Pop-
ulation snapshot data obtained by sampling single cell tra-
jectories. The size of the markers in (b) is proportional to
the number of observed cells with the corresponding pro-
tein number. Due to the long tail of the distribution, the
mode of the data seen in (b) differs significantly from the
mean of the data depicted in (a).

3. RESULTS AND DISCUSSION

3.1. Parameter estimation for the 3-stage model of gene
expression

In this section, we compare the performance of previously
mentioned estimation methods, namely, FSP-based and
MM-based parameter estimates, using the common 3-stage
model of gene expression [2]. A schematic of the pro-
cess and the corresponding moment equations for mean

and variance are shown in Figure 1. The model has six
parameters: the transition rate of DNA into the on-state
(τon), the transition rate of DNA into the off-state (τoff),
the transcription rate in the on-state (kr), the rate of mRNA
degradation (γr), the translation rate (kp), and the rate of
protein degradation (γp). In the following, we study the
problem of estimating these rates from protein measure-
ments. Therefore, we generate artificial data

Dk =
{(
Ȳ (s)(tk), tk

)}105

s=1
, k = 1, . . . , 10,

with tk = k and Ȳ being the number of proteins. For the
generation of the artificial data, the parameter vector

θtrue = (τon, τoff, kr, γr, kp, γp)T

= (0.05, 0.05, 5, 1, 4, 1)T

is used. We refer to this parameter vector θtrue as the true
parameter vector in the following. Also, no measurement
noise is considered in the generation of the data. In the
initial state, mRNA and protein numbers follow a Pois-
son distribution with mean 4 and 10, respectively. The
probability to be in the DNA on-state is 0.7. Figure 2 de-
picts sample paths of the model (Figure 2(a)) as well as the
snapshot data (Figure 2(b)) used for parameter estimation.
Using these data we estimate θ = (τon, τoff, kr, γr, kp, γp)T.

For FSP-based and moment-based likelihood functions
the maximum likelihood estimates are computed and the
parameter uncertainty is evaluated. For the
moment-based likelihood function we employed differ-
ent moment orders. The uncertainty of the moments has
been determined using the non-parametric bootstrapping
approach introduced before.

Figure 3 depicts the model simulation for the ML es-
timates for the different likelihood functions along with
the data. It is clear that for all ML estimates we observe
a good agreement with the data used for the estimation.
To validate the ML estimates, we employed the higher-
order moments of the data, which have not been used for
the parameter estimation. We find that all ML estimates,
which were obtained using at least the mean and the vari-
ance, successfully predict the higher-order moments not
used to obtain the ML estimates. Only the ML estimate
computed merely from the mean of the data fails. Thus,
the information contained in the mean is insufficient. This
is confirmed by the profile likelihoods shown in Figure 4,
which show that all likelihood functions establish identi-
fiability, except the moment-based likelihood function of
order 1. A careful comparison of the profile likelihoods
shows that the uncertainty in the estimation of the param-
eters decreases as more information (more moments) are
used. Since the FSP-based likelihood function makes use
of all the information, the resulting parameter uncertain-
ties are minimal. If the moment order is increased, the
confidence intervals for moment-based likelihood func-
tion also become more narrow, however even for moment
order 4, the result of the FSP remains superior. Note that
for all likelihood functions, the true parameters are con-
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Figure 3. Model-data comparison for ML estimates obtained using different likelihood functions. ML estimation has
been performed using moment-based likelihood functions of different orders (order 1: mean; order 2: mean and variance;
order 3: mean, variance and skewness; and order 4: mean, variance, skewness and kurtosis) and the FSP-based likelihood
function. Gray error bars show the mean and 4-σ intervals ([µ−4σ, µ+4σ]) of the measurement data. For the different ML
estimates the fit is illustrated by showing the model output (blue lines, —) and the measurement data (grey error bars).
All models describe the respective data well. To assess the predictive power of the model, the ML estimates are used
to predict the higher-order moments (magenta lines, —) which have not been employed for the parameter estimation.
The ML estimate computed using moment-based estimation of order 1 fails to provide good prediction, while already
information about mean and variance (order 2) is sufficient to obtain a predictive model.

tained in the 95% confidence intervals constructed from
the profile likelihoods (not shown).

3.2. Discussion

The computational complexity of the simulation of CTMCs
renders the estimation of their parameters challenging. Dif-
ferent methods have been proposed to circumvent this com-
plexity, among other the moment equations [18, 9, 14]. In
this work, we evaluate the information contained in the
moments of measurement data with respect to parameter
estimation (by employing moment-based likelihood func-
tion) and compare it with the complete information con-
tained in population snapshot data (by employing FSP-
based likelihood function). The practical identifiability
and the uncertainty of the parameter estimates are assessed
using profile likelihoods. To the best of our knowledge,
this is the first profile likelihood-based uncertainty anal-
ysis for stochastic processes, probably because the eval-

uation of the likelihood function is computationally often
infeasible. This is not the case if a moment-based estima-
tion is employed.

As a case study, we consider the widely used 3-stage
model of gene expression [2]. For this model, we show
that measurements of the mean expression do not in gen-
eral ensure identifiability, but rather that measurements of
the variance are required. This is consistent with results
by Munsky et al. [18] for the two-stage model of gene
expression. Information about third and fourth order mo-
ments can decrease the uncertainty further, however this
reduction is often insignificant. The full information con-
tained in the data, which is exploited by the FSP-based
estimation, remains out of reach for the MM-based esti-
mation approach.

Although the FSP-based likelihood function is statis-
tically more powerful, parameter estimation based on the
moment equation is the method of choice for processes,
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Figure 4. Parameter uncertainty for different likelihood functions. The parameter uncertainty and parameter iden-
tifiability has been evaluated for moment-based likelihood functions of different orders (order 1: mean; order 2: mean
and variance; order 3: mean, variance and skewness; and order 4: mean, variance, skewness and kurtosis) and the FSP-
based likelihood function. The profile likelihoods (blue lines, —) indicate that the measurements of the mean do not
carry enough information to identify the parameters. Information about mean and variance ensures identifiability, and
the uncertainty is slightly reduced if additional moments are used. The FSP-based likelihood function, which exploits all
information contained in the data, yields the smallest uncertainties. All confidence intervals (not shown), derived from
likelihood profiles, contain the true parameter values (red lines, —), which indicates consistency.

in particular, if the FSP is infeasible. Furthermore, pa-
rameter estimation using the moment equation is more ef-
ficient. The parameter estimation using the moment equa-
tion of order 2 is roughly 30 times faster than the pa-
rameter estimation using the FSP. However, it remains to
be studied how moment closures, which are required for
systems including bimolecular reactions, influence the pa-
rameter estimation. If a bias is introduced, as we expect,
it should be analyzed how a refinement of the moment
equation, e.g., the conditional moment equation [19], can
be used to improve the results.

Beyond the profile likelihood-based evaluation of the
information encoded in the moments, we introduced a non-
parametric bootstrapping approach to evaluate the uncer-
tainty of the empirical estimates of the moments. This ap-
proach allows for the construction of likelihood function
without additional distribution assumptions. Furthermore,
we illustrated how the higher-order moments, which have
not been used for parameter estimation, can be used for
model validation. This approach is attractive, as models
can basically be fitted and validated on the same dataset.
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ABSTRACT 

DNA barcoding based on mitochondrial gene analysis is 

a modern method for species identification. We tested 

three variations of a novel method for species classifica-

tion into families and orders based on the nucleotide 

density of the mtDNA barcode. We verified the methods 

on datasets of bird’s barcode sequences. The reference 

database of species families was created from South 

American bird species. North American, European, and 

Asian birds of the same families but mostly different 

species were classified effectively nearly 88.13 percent 

into families and 99.51 percent into orders in best case 

for the third variation of the method. 

 

1. INTRODUCTION 

There is a great need for species identification and taxo-

nomic classification tools. The number of species cur-

rently living on Earth is based on the opinion of taxo-

nomic experts and is estimated as 3–100 million prokar-

yotes and eukaryotes (4 percent of them described) [1]. 

Traditional morphological taxonomy methods are unable 

to process such a huge number and diversity of species, 

particularly prokaryotes. Species identification and clas-

sification is a task for which molecular taxonomy based 

on the investigation of DNA sequences is more conven-

ient. The molecular taxonomy of eukaryotes studies nu-

clear DNA and mitochondrial or plastid DNA.  

The mitochondrial genome is a popular marker of 

molecular diversity in a variety of scientific fields, in-

cluding population genetics, phylogenetics, phylogeog-

raphy, and molecular ecology [2, 3]. An easy extraction 

from the cell, no introns, no insertions and deletions, and 

short intergenetic regions are great advantages of 

mtDNA. Its usage in determining molecular diversity is 

based on three assumptions, such as clonality [4], neu-

trality of mutations or slightly deleterious mutations [5], 

and constant evolutionary rate [6] that are currently in 

dispute [7]. 

Despite the disputation, mitochondrial DNA is still 

frequently used for many types of studies. In recent 

years, Paul Hebert proposed DNA barcoding as a meth-

od for species identification through mtDNA [8]. Identi-

fication based on mtDNA sequences of contemporary 

species suffers less from the limited validity of clonality, 

neutrality, and constant evolutionary rate, but it still has 

its disadvantages [9, 10]. DNA barcoding identifies spe-

cies through genome analysis, allowing the analysis of 

even unknown tissues samples, microscopic species, 

closely related species, and morphologically cryptic spe-

cies. DNA barcoding usually uses 648 base-pair region 

of cytochrome c oxidase subunit 1 gene (cox1). A Bar-

code of Life Data Systems (BOLD) database has been 

launched and provides free access to data and some 

analysis tools. BOLD database currently comprises more 

than 171,000 of species barcode records and almost 2 

million of specimen’s records. 

There are many interesting papers focused on species 

classification based on DNA barcoding and other genetic 

markers like [11] which compares phylogenetic and sta-

tistical classification methods or [12] evaluating many 

classification programs. Phylogenetic tree construction 

and homology sequence alignment is used for identifica-

tion of query sequence in BOLD database.  

We were interested if the DNA barcode is character-

istic not only for species but also for higher taxa like as 

families and orders. We used nucleotide density vectors 

(ND) of DNA barcodes as references for classification 

into families based on comparison of a sample sequence 

with reference sequences. 

 

2. METHODS 

2.1. Data 

Our survey comprises these DNA barcoding projects: 

Birds of Argentina – Phase I (BARG), DNA Barcoding 

Korean Birds (KBBI), Birds of North America 

(TZBNA), Birds of North America – Canadian geese 

(BNACA), Birds of North America – Canadian passer-

ines (BNABS), Birds of North America – General se-

quences (BNAUS), Birds of the eastern Palearctic 

(BEPAL), Birds of Scandinavia – Swedish birds 

(SWEBI), and Birds of Scandinavia – Norwegian birds 

(NORBI). 

All sequences were downloaded as FASTA files 

from BOLD database. Only sequences longer than 600 

base pairs (bp) were included in the datasets. Significant-

ly shorter sequences than usually 648 bp long barcodes 

75



The 10 th International Workshop on Computational Systems Biology, WCSB 2013

could negatively influence the calculation of the refer-

ences. The BARG project was selected for creating ref-

erence databases of nucleotide densities. The other pro-

jects were used only for classification analysis. 

Sequences of all projects were at first sorted accord-

ing recent scientific classification. The scientific classifi-

cation based on morphological and behavioral resem-

blance of species has limitations, and the classification 

of some species is still disputed. This classification may 

differ from classification based on the recent molecular 

phylogeny. However, the use of the scientific classifica-

tion to create references misrepresents results only in a 

few cases. 

2.2. Nucleotide density 

Nucleotide density (ND) is a simple and efficient numer-

ical representation of a symbolic DNA sequence. It ex-

presses an average occurrence of nucleotides in a defined 

region of the sequence. When calculating the nucleotide 

densities, binary indicator vectors uA[n], uC[n], uG[n], 

and uT[n] are created from the symbolic sequence as first 

step. The binary indicator vectors contain the value 1 

when the corresponding nucleotide exists at position n in 

the sequence or the value 0 when it does not exist. To 

eliminate the effect of the beginning and the ending of 

the sequence, W/2 number of zeros is added to the sides 

of the binary indicator vectors before ND calculation. W 

is a size of a moving window where the calculation is 

performed. Then, the nucleotide densities are calculated 

for each type of nucleotide according to: 
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where N is the length of the sequence and X is one of the 

four nucleotides. The size of the moving window W has 

to be odd number because the position n is in the center 

of the moving window. The size of the moving window 

has to be set according to the desired difference resolu-

tion and sequence length.  

2.3. Reference databases of bird’s families 

The reference databases were created from the DNA 

barcodes of the BARG project. There are 1588 sequenc-

es in the file. A dataset for the reference database crea-

tion contained only bird’s family sequences in which at 

least three different species were included in the BARG 

project. All specimens of a species were included into 

the dataset. The completed dataset contained 1450 spec-

imens of 442 species which belong to 38 families of 18 

orders. 

Reference databases of NDs were created with three 

different variations of method. As the nucleotide densi-

ties are calculated in moving window, its size can affect 

the results. There were created reference databases for 

different sizes of moving window from 5 to 29 nucleo-

tides (odd sizes only) with each method variation. 

The first variation (VRC) used nucleotide densities of 

consensus sequence as reference which was obtained 

from globally aligned barcode sequences of a bird’s fam-

ily. The second variation (VRM) used median values of 

separately calculated and correlated NDs of each se-

quence belonging to a particular bird’s family. The third 

variation (VRA) used average values of separately calcu-

lated and correlated NDs. 

2.4. Method of classification 

All sequences from a dataset for classification analysis 

were compared with the references from databases of 

each method variation and moving window size. For 

comparison with the VRC references, the analyzed se-

quences were independently aligned with reference con-

sensus sequences, then the NDs were calculated, and fi-

nally the Euclidean distances between the NDs of the 

analyzed sequences and the consensus references were 

calculated. The results of comparison with the VRM and 

the VRA references differ. Analyzed sequences were not 

aligned with consensus, but their nucleotide densities 

were calculated. Then, correlation function (signal pro-

cessing method) was used to find best mutual position of 

the densities. Finally, the Euclidean distances between 

the NDs were calculated.  

For all methods, the analyzed sequences were classi-

fied into families according to minimal Euclidean dis-

tance values. 

3. RESULTS 

3.1. Verification of method 

All reference databases were verified by classification of 

sequences from the BARG project. These sequences 

were used for creating the databases so high effective-

ness of their classification is expected if the used method 

variations for creating the references are suitable. The 

sequences were classified into the reference families. Ef-

ficiencies of the classification to the families were calcu-

lated as the ratio of number of sequences to number of 

correctly classified sequences. If there is more than one 

family of particular order among the references, the effi-

ciency for the order classification can be also calculated. 

If there is only one family the efficiency values for order 

and family are equal. 

Results of verification differ for each of the method 

variation. The worst results belong to the VRC and the 

best results were obtained from the VRA. The families 

with the poorest VRC classification results were signifi-

cantly better classified with the VRM and the VRA ref-

erences. The left side of the Figure 1 shows graphical 

representation of the classification efficiencies separately 

for each family. The Figure 2a shows weighted averages 

of classification efficiencies for all families and orders 

dependent on moving window size.  

The major of the BARG sequences belongs to the 

Passeriformes order. There are 17 families of 945 se-

quences in total. The Passeriformes order is very broad 

with many closely related families. There are also spe-

cies with disputed family classification. The order classi-

fication is almost perfect for all methods. The family 

classification was for the VRC method often incorrect.  
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Figure 1. The graphical representation of classification efficiency into bird’s families for verification (left) and 

classification analysis (right) for the VRC, VRM, and VRA method variations.  
The left and right numbers are numbers of sequences, top numbers are sizes of moving window, abbreviations in the middle represent family 

names: Accipitridae, Falconidae, Anatidae, Caprimulgidae, Ardeidae, Columbidae, Cerylidae, Cuculidae, Rallidae, Charadriidae, 

Scolopacidae, Sternidae, Thinocoridae, Cardinalidae, Emberizidae, Formicariidae, Fringillidae, Furnariidae, Hirundinidae, Icteridae, 
Mimidae, Motacillidae, Parulidae, Pipridae, Thamnophilidae, Thraupidae, Tityridae, Troglodytidae, Turdidae, Tyrannidae, 

Phoenicopteridae, Picidae, Ramphastidae, Podicipedidae, Psittacidae, Strigidae, Tinamidae, Trochilidae. 

Contrary for the VRA method, the family and the order 

classification efficiencies differ less than 2 %. 

Families Cardinalidae, Emberizidae, Fringillidae, 

and Thraupidae are members of Passeroidea superfami-

ly subclade nine-primaried oscines. For the VRC, se-

quences of the first three named families were in most 

cases classified as Thraupidae family. The Thraupidae 

sequences were classified as Cardinalidae or Emberizi-

dae. The other two method variations were much more 

successful. There are other members of nine-primaried 

oscines, Icteridae and Parulidae which were almost per-

fectly classified with all method variations. 

The classification to Strigidae family was in the case 

of the consensus references very poor; median and aver-

age density vectors had significantly better results. Con-

trary, the classification efficiency for Tinamidae family 

is low for all method variations. 

3.2. Classification analysis 

A classification analysis was conducted for all of the 

DNA barcoding projects except BARG. In total, 3244 

sequences were classified into 30 families. Some fami-

lies from the BARG project were not present in the other 

projects. The right part of the Figure 1 shows graphical 

representation of the classification efficiencies for each 

family and size of moving window. The efficiencies are 

lower than for the BARG sequences because most of the 

classified sequences belong to different species from dif-

ferent continents than those used for creating the refer-

ences. As in the case of verification, the VRA and the 

VRM references are more effective than the VRC refer-

ences. 

The overall results from the Figure 2b confirm better 

effectiveness of the VRA references for bird classifica-

tion into orders; the values are above 98 % for all mov-

ing window sizes. The efficiencies for family classifica-

tion are in average 10–15 % lower than efficiencies for 

orders. The results for the VRM are slightly lower than 

for the VRA and the VRC showed strong dependence on 

moving window size.  

Sequences of Passeriformes order, especially se-

quences of Passeroidea superfamily, were poorly classi-

fied into right family but were classified into closely re-

lated families like in verification. Classification into 

Passeriformes order was in range of weighted averages 

99.71 to 99.93 % for all moving window sizes of the 

VRA. However, the results for the VRA and VRM are 

not significantly better than the results of the VRC like 

in cases of other orders. 

4. CONCLUSION 

We tested usability of DNA barcodes represented as nu-

cleotide densities for taxonomical classification into 

bird’s orders and families. Our results show that the nu-

cleotide density references created from the consensus 

sequences for orders and families do not work. The best 

results were obtained for family references created as 

average nucleotide densities. The results also show that 

the size of moving window for ND calculation is not  
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Figure 2. The weighted averages of classification efficiency for all families and orders (a) verification on BARG 

project, (b) classification of all other projects. 

crucial parameter for the VRM and VRA contrary to the 

VRC. 

The obtained results were influenced by accepted 

morphological taxonomy. The bird’s species were sorted 

according to morphological taxonomy but their molecu-

lar relationships of mtDNA may differ. The morphologi-

cal taxonomy of several species contained in the dataset 

is still disputed. In particular, the borders between some 

families of Passeriformes order are fuzzy. More than 25 

% of the species in the datasets belongs to these families. 

The reason of low values of family classification effi-

ciencies for Passeroidea birds is that this superfamily 

group has the lowest values of the Euclidean distances 

between their reference NDs. The average value of the 

Euclidean distances between references without distanc-

es between Passeriformes references is 0.0893±0.0122. 

The average distances between Passeriformes references 

except Passeroidea is 0.0914±0.0148. And the distances 

only between Passeroidea is 0.0571±0.0128. 

As the proposed method counts Euclidean distances 

between query sequence and reference sequences we can 

estimate classification confidence. For example, if the 

smallest distances belong to not closely related families 

then the classification is less valid. 

Although the family reference databases were created 

from sequences of South American species, they can al-

so be used with high effectiveness for species originated 

in other continents. Furthermore, shorter sequences of 

600 to 650 bp were not significantly worse classified. 

We also conducted a trial identification of species 

based on the average nucleotide density references. DNA 

barcoding project ROM-Bats of Guyana 1 (BCBNC) 

was chosen for calculating references. This project con-

tains 819 specimens of 94 species of barcodes longer 

than 600 bp. The references were created only for spe-

cies with minimally 3 specimens. For identification 

analysis, DNA barcoding project ROM-Bats of Guyana 

2 (BCDR) was chosen. The project contains 3779 spec-

imens of barcodes longer than 600 bp. 3594 specimens 

correspond to the reference species. Our method correct-

ly identified 100.0 % of specimens to corresponding 

species. The remaining 185 specimens are without corre-

sponding species references. 137 of them were classified 

to corresponding genus reference, 13 had genus refer-

ence but were classified into another genus of the same 

family, 18 did not have genus reference and were classi-

fied into correct family, and the last 17 specimens did 

not have even family reference. 

Recently published work [13] used fuzzy-set-theory 

approach for species identification based on barcodes. 

The method was also tested on BCBNC project data, the 

achieved success rate was 98.2 %. However, the group 

used the same data to create reference set and testing set 

in contrary to our standard verification.  

Our novel approach to identification and classifica-

tion based on average nucleotide density references and 

minimal Euclidean distance between the references and 

analyzed sequence is promising based on presented clas-

sification rate. The method is computationally simple 

and suitable for fast parallel processing when comparing 

unknown query sequence with the references. The use of 

squared Euclidean distance will be also tested.  

One of the limiting parameters of all classification or 

identification comparative methods is validity of taxo-

nomical classification of data in the databases like 

BOLD or GenBank. Can we be sure that each barcoded 

specimen was unambiguously identified by experienced 

taxonomist? And a question above all: Does the barcod-

ing sequence COX1 alone carry enough information for 

reliable species identification and phylogeny analysis? 

[14] 

From the other hand, the nucleotide density vectors 

reveal characteristic patterns in sequence. Visual analy-

sis of the barcode’s NDs revealed highly conserved re-

gions. We plan to compare conserved regions of homo-

logues sequences with corresponding protein active sites. 

Furthermore, the correlation of nucleotide density vec-

tors can serve as quick alignment method. 
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ABSTRACT

Facultative anaerobic Escherichia coli utilize glucose by
mixed acid fermentation in the absence of oxygen (O2).
Comprehensive models of E. coli have been constructed
to predict cellular metabolism. Here, the consistence of
predictions with existing metabolic model iAF1260 and
experimental data of anaerobic metabolism of E. coli is
examined.

Experimental data included anaerobic batch experi-
ments with wild type and 30 single gene deletion mu-
tants. Flux balance analysis was applied to iAF1260 to
predict the end product distribution and biomass for-
mation of wild type and mutants. Based on the compari-
son of model simulations and experimental data, we
suggest several modifications to the model.

In anaerobic conditions with glucose as substrate, the
modified model predicts biomass production that is con-
sistent with the experimental data. The results support
the use of modified model for engineering applications
of anaerobic metabolism of E. coli.

1. INTRODUCTION

E. coli is used as model organism for studying many bio-
logical processes.  It has useful properties such as rapid
growth rate, simple nutritional requirements, well-
established genetic tools and a completely sequenced
genome. In addition, comprehensive metabolic models
have been developed to analyze the metabolism of E.
coli [1].

E. coli is a facultative anaerobe. In anaerobic
conditions it ferments glucose (glc) through mixed acid
fermentation, excreting mainly ethanol, acetate, lactate,
succinate, carbon dioxide (CO2) and hydrogen (H2). The
division of the end products is dependent on the given
substrate, growth phase and environmental conditions,
such as pH [2]. For instance, the optimal NADH/NAD+

balance and ATP production is maintained by the distri-
bution of fluxes for distinct pathways.

Flux balance analysis (FBA) is a mathematical
approach for analyzing the flow of metabolites through a
metabolic network [3]. The suitability of existing meta-
bolic reconstruction for the prediction of anaerobic me-
tabolism has been shown, but the essentiality of the
genes in the aerobic conditions has been under more ex-
haustive study than in anaerobic ones [4, 5].

Here we examine the simulation results of anaer-
obic growth of wild type E. coli and its single-gene dele-
tion  mutants  when  glucose  is  given  as  substrate.  The
predictions by model are compared to our previously
publish experimental data [6, 7] and modifications im-
proving the prediction accuracy are suggested.

2. MATERIALS AND METHODS

The results of two separate batch experiments were used
to examine and modify the metabolic model. The modi-
fications had two aims: first, to modify model to have
similar response to single gene knock out as experimen-
tally noticed and, second, to improve the prediction of
the end product formation of mixed acid fermentation.

The laboratory experiments are described previ-
ously in detail [6, 7] and summarized here.

2.1. Batch experiments with E. coli

The first batch experiment had two parallel cultivations
of E. coli K-12 MG1655 [6]. The cells were cultivated
anaerobically in 2100 ml vessels with 250 ml of liquid
media. The media had 3 g/l glucose as substrate (full
composition is described in [6]). Cultivations were main-
tained at 37°C for 25.5 hours and samples were taken at
1.5 h interval. From liquid samples acetate, lactate, etha-
nol, glucose, and biomass (optical density at 600 nm,
OD600) were analyzed. H2 and  CO2 concentrations were
measured from gas samples.

For the comparison of the experimental and simulat-
ed data, following estimations were made

1. Value 1 at OD600 = 0.3 g/l dry cell weight (gDW)
[8]
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2. Rates of byproduct secretion, biomass production
and glucose consumption during two separate time
frames, exponential growth phase (3-8h) and sta-
tionary growth phase (12-25.5h) were calculated
(Figure 1).

In the second batch experiments E. coli K-12
BW25113 and its individual gene knockouts were tested
[7]. Here we use the results of 30 individual knock outs
[5] that are related either to glycolysis or mixed acid
fermentation. Deleted genes are listed in Table 1 and
shown in Figure 3. Two replicates of wild type and mu-
tants were cultivated and the average results are shown
in Table 1. Fermentations were conducted in M9-CA
medium (M9 + 1% (w:v) casamino acids) with 3g/l glu-
cose in 27.5 ml anaerobic tubes with 10 ml of liquid me-
dia. Cells were maintained over two nights at 37°C with
120 rpm rotation, and then the concentrations of H2 and
CO2 in the head space were analyzed. Biomass was ana-
lyzed by measuring OD600. From six samples the acetate,
lactate, ethanol and glucose concentrations were ana-
lyzed as in [9], but in room temperature (Figure 2).

2.2. Computational analysis

Cobra toolbox 2.0.5 was used with Matlab R2011b for
quantitative prediction of cellular behavior using a con-
straint-based approach and to visualize the results [10,
11].

2.2.1. Metabolic model

We used the previously constructed genome-scale meta-
bolic network model of E. coli, iAF1260, consisting of
1260 genes and containing 1039 metabolites and 2077
reactions [1].  The minimal media composition was used
as given in the model with glucose as carbon source.
Following modifications were made to the model
Ec_iAF1260_flux1 (see corresponding alphabets in Fig-
ure  3).  Reasoning  for  the  modifications  is  explained  in
Section 3.

A) The  lower  bound  of  reactions  R_EX_o2(e)   was
set to zero

B) The upper bound of reaction R_FHL changed
from zero to unrestricted (=99999)

C) The lower bound of R_EX_co2(e) was set to zero
D) The upper bound of R_LDH_D was set to -1 and

gene b2133 (dld) was removed from this reaction
E) Reaction R_ACKr was changed to irreversible and

genes b3115 (tdcD) and b1849 (purT) were re-
moved from this reaction.

F) Gene EutD (b2458) was removed from reaction
R_PTAr.

G) Gene mhpF (b0315) was removed form reaction
R_ACALD

H) Reaction R_THRA2i was removed
I) Reaction R_ F6PA was removed.
J) Reactions R_G3PD6 and R_G3PD7 were changed

to reversible and lower bounds were set to -1.

K) Reaction R_ME1 was changed to reversible and
the lower bound was set to -10.

L) Reaction R_ICDHyr was changed irreversible.
M) Reaction R_AKGDH was removed.

2.2.2. Flux balance analysis

Flux balance analysis (FBA) is a widely used for study-
ing genome scale metabolic networks and simulation of
the metabolic capabilities of an organism [12, 3]. The
aim is to find a flux distribution v, consisting of the reac-
tion rates of all the n reactions, under the following con-
strain:

steady-state: = = ,       (1)

where x is the vector of metabolite concentrations and S
is the stoichiometric matrix. In addition, reaction direc-
tionality constrains, medium constraints, and physiologi-
cal constraints are set

,       (2)

where  and  are vectors containing the lower bound
and upper bound for reaction rates in each flux.

The reactions are divided into internal reactions
and exchange reactions.  Exchange reactions are used for
defining the growth medium.  Since usually the system is
under-determined, an optimization criterion is set on the
fluxes in order to get a solution for . This is stated as

min (3)

where  is a vector determining the objective function as
a linear combination of reaction rates. This optimization
problem can be solved by linear programming.

The usual assumption in FBA is that the organism
tries to maximize its biomass production. That was used
as an optimization criterion in this study, too. To visual-
ize the results of FBA, byproduct secretion envelopes
(BSE) were calculated for each deletion.

3. RESULTS AND DISCUSSION

The results of the metabolite analysis of the first batch
experiment are shown in the Figure 1. The reaction rates
derived from these plots are presented along with the
BSEs in Figure 3.

Measured endpoint values of the second batch
experiment are shown in Table 1 (column C). Addition-
ally, results gained with modified (column B) and un-
modified (column A) model are listed. Byproduct secre-
tion by five mutants and wild type was measured and
compared with predicted data to ensure total depletion of
glucose (Figure 2). Additionally, the exact glucose con-
tent of media was measured and calculations of the pro-
duction per mol of glucose were based on this value. The
comparison of the two batch experiment types reveals
that in the smaller scale batch cultivation with wild type
E. coli the ratio of lactate production is higher compared
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to other metabolites than within larger batch cultivation.
Nevertheless, all the cultures produce lactate. In the gene
deletion experiments, all tested mutants were able to
grow in the minimal media (Table 1).

The metabolic model of E. coli was altered based
on batch experiments. The main criteria for the modifi-
cations were:

1. Maintaining the measured values of the first batch
experiment with in the BSEs

2. Enhancing the consistency of the simulation re-
sults and experimental data of E. coli mutants.
Mainly mutations causing major difference in pre-
dicted and experimental biomass production were
inspected.

In the following, the motivations and the effects of
changes made to the model will be described. The two

first modifications, A and B, were applied in every simu-
lation.
A) The uptake of oxygen was closed to make the metab-

olism anaerobic.
B) In the original model the reaction producing H2 and

CO2 from formate was closed to prevent the aerobic
production of H2. Here this pathway was opened to
allow the H2 production.

C) The uptake of CO2 was  set  to  zero,  since E. coli is
not assumed to assimilate CO2 [13].

D)  The model was forced to produce at least 0.125 mol
of lactate per mol of glucose. The unmodified model
does not produce lactate during the maximum
growth. This is due to reactions of the mixed acid
fermentation, where the production of lactate from
pyruvate (pyr) produces only one NAD+ whereas,
e.g. the production of ethanol from pyruvate produc-

Biomass H2 production
Deletion (gDW/mol glucose)  (mol/mol glucose)
bname name A B C A B C

WT WT 21.1 24.7 27.4 1.77 1.57 1.58
b2415 ptsH 18.7 22.1 19.4 1.79 1.60 1.64
b2416 ptsI 18.7 22.1 1.0 1.79 1.60 0.00
b2943 galP 21.1 24.7 18.0 1.77 1.57 1.52
b4025 pgi 18.7 22.1 0.3 1.79 1.60 0.00
b3919 tpiA 12.3 14.2 22.3 1.86 1.70 1.43
b2463 maeB 21.1 24.1 27.5 1.77 1.62 1.71
b0116 lpd 21.1 24.7 27.5 1.77 1.57 1.61
b0115 aceF 21.1 24.7 20.5 1.77 1.57 1.55
b0114 aceE 21.1 24.7 20.2 1.77 1.57 1.55
b2976 glcB 21.1 24.7 27.2 1.77 1.57 1.56
b4069 acs 21.1 24.7 25.9 1.77 1.57 1.51
b1380 ldhA 21.1 25.6 17.7 1.77 1.68 1.46
b1478 adhP 21.1 24.7 22.6 1.77 1.57 1.45
b2224 atoB 21.1 24.7 21.9 1.77 1.57 1.41
b0871 poxB 21.1 24.7 20.7 1.77 1.57 1.40
b3956 ppc 0.0 24.7 21.1 2.55 1.57 1.34
b2296 ackA 21.1 18.3 20.6 1.77 0.10 0.12
b1702 ppsA 21.1 24.7 7.9 1.77 1.57 0.08
b2297 pta 21.1 18.3 15.9 1.77 0.10 0.00
b1241 adhE 21.1 22.9 13.7 1.77 0.92 0.15
b3403 pck 21.1 24.7 21.9 1.77 1.57 1.54
b0118 acnB 21.1 24.7 18.8 1.77 1.57 1.71
b3236 mdh 21.0 23.9 22.0 1.77 1.62 1.71
b4153 frdB 0.0 24.7 23.7 0.00 1.57 1.81
b4152 frdC 0.0 24.7 20.8 0.00 1.57 1.71
b4154 frdA 0.0 24.7 17.0 0.00 1.57 1.65
b4151 frdD 0.0 24.7 19.5 0.00 1.57 1.70
b4122 fumB 21.1 24.7 18.9 1.77 1.57 1.63
b1611 fumC 21.1 24.7 19.6 1.77 1.57 1.60
b1612 fumA 21.1 24.7 23.1 1.77 1.57 1.59

Table 1. The predicted and experimental reasults of
biomass  and  H2 production per mol of glucose. The
colums are A) predicted results with original model.
B) predicted results with modified model and C)
experimental results

Figure 1. Total byproduct secretion, biomass produc-
tion and glucose consumption during the first batch
experiment. More detailed figures in [6].

Figure 2. Byproduct secretion results of wild type
E. coli and five mutants. The results are divided
with the amount of glucose consumed (mol/mol
glucose),  thus  the  amount  of  glucose  in  the  zero
tube (media) scales to 1.
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Figure 3. Above, metabolic pathway of glycolysis and mixed acid fermentation, conducted based on meta-
bolic model and flux distributions with FBA. Circled letters refer to the modifications describer within the
text. Below, byproduct secretion envelopes (BSE) predicted with the modified model. BSEs present the
space of possible solutions to byproduct secretion with given biomass. In this case, all the BSEs limit to a
single value when the biomass is maximized. The experimental results are obtained from the data shown in
the Figure 1. (PPP = pentose phosphate pathway, ED = Entner–Doudoroff pathway, fdp = fructose-1,6-
bisphosphate, g6p = -D-glucose 6-phosphate, fum = fumarate, cit = citrate)
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es two NAD+s and acetaldehyde (acald). For this rea-
son, simulations imply that E. coli is able to produce
more biomass if it does not produce lactate. Howev-
er, in the batch experiments, all the measured sam-
ples contained lactate (Figure 2) therefore the forced
production of lactate was added to the model. It  has
been shown that the activity of lactate dehydrogenase
(LDH) is increased 10-fold at low pH [14]. It is
known that variation in pH causes changes in the end
product distribution, which cannot be described by
stoichiometric model [2]. In batch experiments the
pH is not controlled, thus it decreases over the exper-
iment as shown in [6].

In the model, the production of D-lactate from
pyruvate was catalyzed by two enzymes: LdhA and
Dld. Dld was removed, since it is mainly required for
aerobic growth on lactate [13]. This removal caused
the simulated ldhA mutant to have decrease in lactate
production and increase in H2 production based on
glucose consumed. These effects have been detected
in previous studies [15]. In addition, along with re-
moval of forced lactate production (ldhA), the pre-
dicted maximum biomass is increased (Figure 3).

E) The reaction ACKr is reversible production of
acetylphosphate (actp) from acetate. The reaction
was changed to irreversible such that the production
of acetylphosphate from acetate was blocked. It is

thought that if E. coli has glucose to consume, it first
consumes all the glucose before switching to acetate
metabolism [16]. In the model, the modified reaction
can be independently catalyzed by TdcD (b3115),
AckA (b2296) or PurT (b1849). The genes tdcD and
purT were removed, causing the prediction of the de-
letion of ackA to have decrease in the H2 production
as seen in the experiments. Overexpression of tdcD
has been found to partially repair the growth effect of
the deletion of ackA [17], but the gene is mainly in-
volved in propanoate metabolism. The acetate pro-
duction catalyzed by purT is a side reaction in the pu-
rine pathway, thus not affecting directly to mixed ac-
id fermentation. In E. coli the acetylphosphate for-
mation via the products of pta and ackA is assumed
to be the only source of this key metabolite, which is
involved in many cellular processes [18].

F) In order to improve the prediction accuracy in the
case of pta deletion, eutD (b2458) was removed from
the reversible reaction forming acetylphosphate from
acetyl-coA (accoa). Previously it has been shown,
that the overexpression of eutD gene can compensate
for the double deletion of acs and pta when grown
aerobically on acetate [16, 19], but here glucose is
used as substrate. Additionally, the experimental
gene deletion data support the removal of eutD from
this reaction (Table 1).

Figure 4. Byproduct secretion envelopes based FBA of unmodified metabolic model.
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G) According to the model, the reversible reaction pro-
ducing acetaldehyde (acald) from acetyl-coA (accoa)
can be independently catalyzed by either MhpF or
AdhE. MhpF was removed from this reaction, since
it was experimentally observed that the deletion of
adhE influences the growth and biomass production
(Table 1). It has been proposed that mhpF might
catalyze this reaction, but its properties have not been
biochemically characterized [20].

H) The removed reaction THRA2i is irreversible trans-
formation of L-allo-threonine to glycine and acetal-
dehyde, catalyzed alternatively by GlyA or LtaE.
FBA suggest that this reaction enables an alternative
pathway for the production of acetaldehyde under the
adhE gene  deletion.  When  this  pathway  was  re-
moved, some decrease in the H2 and biomass produc-
tion occurred in the predictions with the deletion of
adhE, which was also experimentally detected.

I) The removal of the reaction degrading fructose-6-
phosphate (f6p) to glycerone (dha) and glyseralde-
hyde-3-phosphate (g3p) from the model did not
change the end products of the fermentation. Howev-
er, it directed the fluxes through generally accepted
routs of the glycolysis. The two genes designated in
the model for this reaction, fsaA and fsaB, are found
from E. coli, but their physiological role in cell is not
yet clear [21]. In the model, reactions DHAPT and
F6PA together form an alternative route for glucose
degradation, designated with I in Figure 3. In litera-
ture, this route is not assumed to be in use, but FBA
often direct the fluxes through this pathway. It has no
effect to the predicted biomass production.

J) The deletions of fumarate reductase (frdA, frdB, frdC
and frdD) were experimentally non-lethal (Table 1).
However, the predicted effect is lethal in the original
model. In order to correct this, reactions G3PD6 and
G3PD7 were changed reversible with restricted
flows. The reactions included the conversion of glyc-
erol-3-phosphate (g3p) to dihydroxyacetone (dhap)
which is catalyzed by anaerobic glycerol-3-
phosphate-dehydrogenase and related to phospholip-
id metabolism.  These reactions are reversible in the
EcoCyc database [22]. The modification was imple-
mented in order to compensate the predicted produc-
tion blockage of menaquinol-8 (mql8) and deme-
thylmenaquinol-8 (2dmmql8), caused by deletion of
fumarate reductase. With these changes the fumarate
reductase mutant was predicted have the same maxi-
mum biomass production rate as the wild type.

K) The original model predicted the deletion of ppc to
be  lethal,  but  this  was  not  the  case  with  the  experi-
mental  data  (Table  1).  To  enable  the  growth  of  the
ppc mutant, the production of pyruvate from malate
(mal) catalyzed by MaeA, was changed to reversible.
Malic enzymes can catalyze the reaction also for
physiologically non-favored direction [23].

L) The reversible production of 2-oxoglutarate (akg)
from isocitrate (icit), catalyzed by isocitrate dehydro-
genase, was changed to be an irreversible reaction
working to the physiologically favored direction [22].

This was done to prevent the glutamate utilization via
this reaction, which occurred in our preliminary cal-
culations (rich media composition including gluta-
mate). Here, glucose as the sole carbon source, this
change has no effect.

M) To ensure that the citric acid cycle is not used, the
pathway from akg to succinyl-coA was removed.
These reactions are assumed to be repressed in an-
aerobic conditions [24].

Before model modification, 17 of the 30 mutants were
predicted to have identical metabolite production as wild
type, 5 not to grow and 8 to have changes in the metabo-
lite production (Figure 4). After the modifications 17 of
the mutants were identical with wild type and 13 mutants
were predicted to have effect to the metabolite produc-
tion. All mutants were predicted to grow in the minimal
media. The model modifications were able to correct all
but one of the major mispredictions of the original mod-
el. The mutant with deletion of ppsA,  which gene prod-
uct takes part to a reaction where pyruvate is used to
form phosphoenolpyruvate (pep), is still predicted to be
identical with wild type, even though in experiments the
deletion had severe effect on the growth.

The experimental data fits within the predicted
byproduct secretion envelopes. This supports the validity
of the modified model for the simulation of anaerobic
metabolism of E. coli.

The modified stoichiometric model includes a
large set of reactions and genes. The modifications here
include removals of reactions and genes, and changes in
the directions of reactions. Neither reactions nor genes
were added. The underlying comprehensive model in-
cludes all known reactions, and those can be modified
based on own data and experimental conditions to give
more accurate estimations for a specific requirements.

4. CONCLUSIONS

Experimental data related to mixed acid fermentation
was compared with model predictions. A previously pre-
sented metabolic model was refined in order to unify the
simulated and experimental results. Here, the suggested
modifications were described and the simulation results
of the original and modified model were presented.
Modifications were shown to improve the prediction of
the essentiality of the studied genes. The essentiality
predictions and experimental results were shown to be
coherent, thus the model can be used for the engineering
applications of anaerobic metabolism of E. coli.
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ABSTRACT

In this work we propose a regularization strategy for the
inverse parameter identification problem for the Drosophila
gap gene circuit model in the framework of Bayesian in-
version. In contrast to classical deterministic methods the
proposed scheme aims not only to find approximate pa-
rameter values but also to estimate their reliability.

1. INTRODUCTION

Many biological processes may be modeled by gene regu-
latory networks involving systems of ordinary differential
equations (ODEs) which typically depend on a number of
parameters. A major obstacle in the mathematical mod-
eling of gap gene circuits is the fact that these parameters
can not be directly assessed by measurement and hence
have to be indirectly inferred from experimental data. For
the Drosophila gap gene system this data usually consists
of protein concentrations measured with a certain limited
accuracy for a finite set of observation times.

Such inverse parameter identification problems are typ-
ically ill-posed due to the fact that the available experi-
mental data may not suffice to uniquely determine the pa-
rameters. Furthermore, even if there is a unique solution,
it may not depend continuously on the data. That is, small
measurement errors will lead to large error propagation
from the data to the solution and hence way-off parameter
estimates. This effect becomes more dominant with in-
creasing number of unknown parameters and for problems
with many parameters it is hence necessary to apply some
form of regularization. There is a vast mathematical liter-
ature on the regularization of inverse and ill-posed prob-
lems, for the mathematical theory of deterministic regu-
larization methods see e.g. Engl, Hanke and Neubauer [1]
and for statistical inverse problems in the Bayesian frame-
work see e.g. Kaipio and Somersalo [2] and the references
therein.

This work is inspired by the paper [3] by Ashyraliev,
Jaeger and Blom, who thoroughly analyze the quality of
parameter estimates for the Drosophila gap gene system
obtained by employing the Levenberg-Marquardt method
and come to the conclusion that none of the parameters of
the full model for the Drosophila gap gene system can be
determined individually with reasonable accuracy due to
extreme correlations between parameters.

Parameter correlation is, however, common in inverse
and ill-posed problems, where it results in non-uniqueness
of the estimated parameter values. We address this issue
by proposing a three-stage numerical method in the frame-
work of Bayesian inversion, combining a priori sensitiv-
ity analysis, a sparsity promoting maximum a posteriori
(MAP) estimate and subsequent uncertainty quantification
using Markov chain Monte Carlo (MCMC) sampling of
the posterior density. The basic idea behind this strategy is
as follows: The first stage of the algorithm aims at finding
a set of indices corresponding to parameters which may be
not reliably identifiable from the available data. The sec-
ond stage then selects among several solutions compatible
with the measured data one where the maximum number
of parameters from the index set are equal to zero. This
yields a reduced gap gene circuit model, nevertheless ca-
pable of reproducing the experimental data. Sparsity pro-
moting regularization has been proposed and successfully
used in practice by Kuegler et al. [4], who study parameter
estimation in chemical reaction systems. See also the sur-
vey article [5] by Engl et al. for other biological applica-
tions of regularization strategies with sub-linear lp penalty
term. Finally the third stage of the proposed algorithm is
designed to asses the reliability of the estimated parameter
values. We use MCMC sampling techniques in order to
quantify the inherent uncertainty, reflecting both, model-
ing and measurement errors.

2. THE DROSOPHILA GAP GENE NETWORK

In this work we focus on the gap gene system, important
in the anterior-posterior (A-P) specification of the vinegar
fly Drosophila melanogaster, which has been extensively
studied, e.g. by Nuesslein-Vollhard, Igham, Akam and
collaborators, see [6, 7, 8, 9]. Here, the gap gene sys-
tem represents one regulatory tier within a hierarchy of
mutually regulating genes with the function of forming a
molecular pre-pattern of the embryo. Maternal coordinate
genes bicoid (bcd), hunchback (hb) and caudal (cad) con-
trol expression of the gap genes giant (gt), hb, Kruppel
(Kr) and knirps (kni), such that these are expressed in one
or more broad overlapping domains along the embryos
A-P axis. All gap genes constitute transcription factors.
The mathematical modeling of the Drosophila gap gene
system was initiated by Reinitz, Jaeger and collaborators
[10, 11, 12, 3]. These authors make the modeling assump-

1
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tion that in the early stages of development, the nuclei of
Drosophila are arranged in a row, along the A-P axis of the
cell. The model they derive describes the changes in the
concentrations of the gap gene proteins in every nucleus
over time using a corresponding one dimensional model.

The system of ODEs that constitute the model include
transcriptional cross-regulation of genes as well as protein
production, decay and diffusion, and is given e.g. in [11,
3] as:

dyai
dt

= RaΦ
(∑N

b=1W
b
ay

b
i +may

Bcd
i + ha

)
−λayai +Da(yai+1 − 2yai + yai−1), (1)

where yai (t) represents concentration of the product of the
gene a = 1, . . . , N in the nucleus i = 1, . . . ,M at time
t. Ra are the promoter strengths of the gene a (rate of
protein synthesis of a from mRNA). The function Φ is the
regulation expression function, and is assumed to have the
form

Φ(x) =
1

2

(
x√

x2 + 1
+ 1

)
. (2)

W b
a represents the regulation of gene a by gene b. yBcd

i

denotes the concentration of Bcd protein in nucleus i and
ma the regulation of Bcd on gene a. Moreover ha, λa,
and Da represent the promoter threshold, the decay rate
and the diffusion coefficient respectively.

3. FORWARD PROBLEM

The so-called forward problem for (1) is well-posed in the
sense of Hadamard, i.e. for all admissible data there ex-
ists a unique solution that depends continuously on the
data. The system (1) consists of n = N ·M equations and
is governed by a set of m = N2 + 5N parameters, i.e.
R ∈ RN , W ∈ RN×N , m ∈ RN , h ∈ RN , λ ∈ RN ,
D ∈ RN . Given these parameters along with, the con-
stant in time yBcd ∈ RM , the initial conditions y0 ∈ Rn
of y at a time t = 0, and assuming homogeneous Neu-
mann boundary conditions, we can compute a numerical
approximation of the product concentrations y predicted
by the system (1). For the sake of readability we “vec-
torize” the full set of parameters as x ∈ Rm with x =
[R,W̃,m,h, λ,D]T , where W̃ denotes a vector in RN ·N
containing the entries of W. We define the discrete for-
ward operator Fh(·, t) that maps the vector x ∈ Rm onto
the numerical approximation yh(t) = [y1h(t), . . . , ynh(t)]T ∈
(R+

0 )n of the solution of the system of ODEs (1), where
h denotes the smallest timestep used in the numerical dis-
cretization scheme. For the numerical computation of yh
we use the BDF method with Newton iteration from the
SUNDIALS CVODES suite.

Finally, assuming independent, additive noise, the mea-
sured data corresponding to the unknown parameter vec-
tor x ∈ Rm is of the form

ym(t) = Fh(x, t) + e, (3)

where the error term e includes all kinds of errors in-
volved, i.e. modeling as well as measurement errors.

4. INVERSE PROBLEM

4.1. Bayesian framework

In the Bayesian framework all quantities are modeled as
random variables which reflects the uncertainty inherent
not only in experimentally measured data but also in math-
ematical models and their computational implementation.
We indicate this by using capital letters for random vari-
ables and lower case letters for their particular realiza-
tions. The forward model (3) is thus written in the form

Y(t) = Fh(X, t) + E. (4)

For simplicity we assume here E ∼ N (0, σ2In), σ >
0, where In is the n-dimensional identity matrix. Now
let Y := [Y(t1)T , ...,Y(tNm)T ]T contain measurements
at a finite set of observation times. Then the conditional
probability density π(y|x) is

1

(2πσ2)
n
2

exp

− 1

2σ2

Nm∑
j=1

||y(tj)− Fh(x, tj)||22

 .

(5)
Assuming that the measurement data ym is given, Bayes’
theorem yields the posterior distribution of X, conditioned
on the measured data

π(x|ym) =
π(y|x)πpr(x)

π(ym)
, (6)

where πpr is the prior density encoding all available a pri-
ori information about the unknown parameter vector x.
From this posterior distribution of the unknown, it is com-
mon to calculate various point estimates, the most promi-
nent ones being the maximum a posteriori (MAP) esti-
mate, given by the highest mode of the posterior

xMAP := argmax
x∈Rm

{π(x|ym)} (7)

and the conditional mean (CM) estimate, i.e. the expecta-
tion of the posterior distribution

xCM := E[x|ym] =

∫
Rm

xπ(x|ym)dx. (8)

The computation of xMAP leads to an optimization prob-
lem, whereas computing xCM is a high dimensional inte-
gration problem.

4.2. Stage 1: A priori sensitivity analysis

In this work we always assume that we already have some
initial guess x0 together with a priori lower and upper
bounds for the unknown parameters obtained for instance
by a global search algorithm, cf. [3]. In the first stage
we compute the sensitivities with respect to the full set of
unknown parameters at the initial guess x0. A parameter
is called non-identifiable if for given measurement data
the objective functional of interest is not sensitive to vari-
ations in that parameter, i.e. if the absolute value of the
sensitivity is below a certain threshold. If some parameter

2
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xk turns out to be non-identifiable, its index k is added
to an index set I0. For the numerical implementation of
the first stage we use the SUNDIALS CVODES adjoint
solver included in the SMBL ODE Solver library, see Lu
et al. [13]. For a description of adjoint sensitivity analy-
sis in the case of discrete measurement data we refer the
reader to the same reference.

4.3. Stage 2: Sparsity promoting MAP estimate

Let us consider the full set of m unknowns with second
stage prior given by the Gibbs distribution

πpr,2(x) ∝ exp(−α||x||pp), (9)

where α > 0 is a regularization parameter and

||v||p :=

(∑
k∈I0

|vk|p
)1/p

, p ∈ (0, 2]. (10)

The MAP estimate is thus given by

argmin
x∈Rm

{
Nm∑
j=1

||ym(tj)−Fh(x, tj)||22+2σ2α||x||pp}. (11)

The choice p = 2 yields the classical Tikhonov regulariza-
tion, cf. [1], however with regard to the aforementioned
non-uniqueness and correlation issues, we are here mainly
interested in sparse solutions, that is parameter vectors x
with xk = 0 for as many k ∈ I0 as possible. It is thus
natural to consider more general regularization strategies
with some p ∈ (0, 2), which is motivated by the obser-
vation that for decreasing value of p the sparsity enforce-
ment becomes stronger. Notice moreover that despite the
fact that for p < 1 the penalty functional is no longer
convex, it has been shown by Grasmaier [14] that also
for these values of p the estimate (11) yields a regulariza-
tion strategy. As described in the reference [4], we solve
the optimization problem numerically by a gradient-based
method, introducing a small relaxation parameter in order
to assure differentiability of the penalty functional at zero.
To be precise, instead of (10) we use

||v||p,ε := (
∑
k∈I0

(|vk|2 + ε)p/2)1/p (12)

combined with the hierarchical optimization strategy pro-
posed in the same reference. The local search is imple-
mented using the MATLAB routine fmincon, i.e. a se-
quential quadratic programming algorithm. In practice we
also impose a priori lower and upper bounds for the un-
known parameters in order to restrict the support of the
posterior.

4.4. Stage 3: MCMC posterior exploration

From the first stage of the algorithm we have, based on
the initial guess x0, identified the set I0 of indices cor-
responding to unknown parameters that supposedly have
small or no influence for reproducing the measured data.
After elimination of a subset of these parameters via the

sparsity promoting regularization in the second stage we
denote the vector containing the remaining parameters z ∈
Rs, s ≤ m. In the third stage we sample the posterior
distribution of Z. As third stage prior πpr,3 we choose a
Gaussian distribution whose mean is the estimate obtained
in the second stage and whose variance is chosen accord-
ing to our (subjective) confidence in this estimate. Fur-
thermore, we restrict the support of the posterior density
by imposing the a priori lower and upper bounds for the
remaining unknown parameters. For this reduced model
the conditional mean estimate zCM of z as well as con-
fidence interval estimates for the parameter estimates are
computed. That is, we give approximate answers to the
questions “Given the measured data and the third stage
prior information, what is the most probable value of Z?”
and “In what interval are the values of Z with P% prob-
ability, given the second stage prior and the measured
data?”, respectively.

As the reduced model is still high-dimensional, nu-
merical integration has to be carried out using a Monte
Carlo method. Given a sequence of independent draws
z1, . . . , zK ∈ Rs, all distributed according to the third
stage posterior π3(z|ym), it follows from the law of large
numbers that

1

K

K∑
k=1

zk → zCM (13)

as K → ∞. In practice, due to the fact that the poste-
rior density is only known up to the normalizing constant
in the denominator, it is impossible to generate indepen-
dent samples. However, the above convergence remains
valid if the samples are drawn from an ergodic chain hav-
ing the posterior as its equilibrium distribution. Moreover
since one can expect strongly correlated parameter combi-
nations, it is worthwhile to consider some highly efficient
adaptive MCMC sampler rather than standard Gibbs or
Metropolis Hastings. In this study we use the delayed re-
jection adaptive (DRAM) variant of the latter, introduced
by Haario et al. [15].

5. NUMERICAL EXPERIMENT

The biological setting to which our numerical experiment
corresponds, spans the time period of the cleavage cycle
131; from the end of the 12th mitotic division (t = 0.0
min) to the beginning of the 13th (t = 16.0 min). For our
numerical experiment we chooseNm = 4 and observation
times t1 = 1, t2 = 5, t3 = 9, t4 = 13.

In order to test our numerical scheme, we compute
synthetic measurement data using our forward solver with
parameters Ra = 0.18, ma = 0.15, ha = 0.1, λa = 0.08,
Da = 0.1, a = 1 . . . , n, W 1

1 = W 5
1 = W 2

2 = W 1
3 =

W 3
5 = W 6

6 = 1.0 and W 3
1 = W 1

2 = W 6
3 = W 4

4 = 0.5.
The remaining entries of W are set to 0, representing the
regulation parameters with no interaction. As initial con-
ditions for the concentrations we prescribe a sinosoidal
function for genes 1, 3 and 5 and a cosinusoidal function
for gene 6. Initial concentrations for genes 2 and 4 are

1Periods between two consequent mitotic divisions

3
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parameter initial lower upper
Ra 0.15 0 0.25
ma 0.15 0 0.25
ha 0.1 0 0.15
λa 0.05 0 0.1
Da 0.1 0 0.15

W b
a 0.5 0

{
1.25

0.5

Table 1. Initial value and a priori lower and upper bounds
for a = 1, ..., 6, where for the regulation parameters the
second row lists those indices such that W b

a has no inter-
action.

assumed to be equal to zero. Finally Gaussian noise with
mean zero and standard deviation 1% of the maximum
norm of the computed measurement vector is added. The
initial values and a priori lower and upper bounds for the
unknown parameters are given in Table 1.

For the sparsity promoting regularization we choose
α = 0.1, p = 0.5 and ε = 10−3. In the third stage of
the algorithm, we compute K = 20000 samples after a
burn-in phase of 1000 samples.

In our numerical experiment we have observed, that,
given sufficiently good prior knowledge, the sparsity pro-
moting MAP estimate combined with a priori sensitivity
analysis yields a good way to eliminate non-identifiable
parameters. The normalized sensitivities computed in the
first stage are plotted in figure 1. As it turns out the pa-
rameters Ra show a high sensitivity with respect to the
given measurement data. On the other hand, the sensitiv-
ity of the diffusion coefficients is below the user-defined
threshold. Notice moreover that the sensitivity of several
regulation parameters is also below the threshold. In fact
the normalized sensitivity for all of the regulation param-
eters is below 0.5, indicating that the objective functional
is only moderately sensitive to variations in these param-
eters.

Figure 2 shows the result of the optimization carried
out in the second stage. Again a user-defined threshold is
employed in order to decide which unknowns should be
dropped from the model. In the example presented here
the dimension and at the same time the ill-posedness of the
problem could be reduced significantly as 33 parameters
were eliminated. In particular the resulting reduced gap
gene model does not contain any diffusion terms. Notice
that such diffusion-less approximations have been proposed
in the biological literature previously. However, when it
comes to other parameters, such as regulation parameters,
it requires some biological expertise to decide whether a
reduced model is justifiable. If it turns out it is not, the a
priori bounds should be adjusted accordingly.

Figure 3 shows the conditional mean estimate for the
posterior of the reduced system. Confidence intervals and
the whiskers yield some additional information about the
reliability of the estimate. As one would expect from the
first stage sensitivity analysis the parameters Rα in the re-

10 20 30 40 50 60
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0.8
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Figure 1. First stage: Sensitivities of the unknown param-
eters with respect to the given measurement data at the ini-
tial guess x0. The horizontal line shows the user-defined
threshold.
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Figure 2. Second stage: MAP estimate for the full set
of unknowns with the initial guess and lower and upper
bounds from table 1.

duced model can be inferred from the measured data in
quite a stable manner, while the uncertainty for the esti-
mates of the regulation parameters is significantly larger.
Although we can not go into detail here due to space re-
strictions, it should be emphasized that the chains pro-
duced via MCMC sampling include plenty of additional
information such as cross-correlations, etc..

Finally figure 4 depicts the posterior plot for the con-
centration of gene 3 showing that the reduced model can
indeed produce accurate predictions.

6. CONCLUSIONS

Within the framework of Bayesian inversion it is possi-
ble, given sufficiently good prior knowledge, to eliminate
non-identifiable parameters from the full gap gene circuit
model and to obtain parameter estimates for the resulting
reduced model in a stable manner. It should be empha-
sized that all available prior information can be included
into the proposed scheme in a rather explicit way. Adap-

4

90



The 10 th International Workshop on Computational Systems Biology, WCSB 2013

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Figure 3. Third stage: Posterior mean for the reduced sys-
tem with 95% confidence intervals. The whiskers extend
to the most extreme datapoints.
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Figure 4. The solid line gives the posterior mean of the
concentration of gene 3 at time t = 16.0. The dashed line
corresponds to the ‘true’ concentration. Gray areas corre-
spond to 90% and 95% posterior uncertainty, respectively.

tive MCMC sampling of the posterior distribution of the
reduced model is an efficient way to assess the uncertainty
inherent in experimental measurements as well as in the
mathematical models and their computational implemen-
tation. For synthetic data it was shown that the reduced
gap gene model can produce reasonable predictions for
the experimentally measured concentrations.

We hope that the proposed scheme can be a valuable
addition to established techniques, thus possible future work
arising from this study would be a test with real data, us-
ing prior knowledge produced e.g. by the approach in [3].
In a similar directions we consider more general problems
and models including several cleavage cycles, and delay
parameters for the mitosis e.g. as described in [16, 17].
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ABSTRACT

In this work, we present a probabilistic model of partially
annealed network dynamics in the case of Boolean net-
works with numerous identical feed-forward loop motifs.
The results obtained with our model are compared to iter-
ated Derrida maps and data from simulations done on par-
tially annealed Boolean networks. This comparison shows
that in most cases our solution surpasses the accuracy of
the Derrida map when estimating perturbation propaga-
tion. However, our model is based on the simplification
that the bias of the network is not changed on average by
the perturbations. Hence, there are cases in which more
complex models are needed.

1. INTRODUCTION

Complex networks can be found practically everywhere
around us: in cells, social interactions, climate, electricity
distribution and the Internet. The study of complex net-
works, being a very widely applicable field of research,
has gained a lot of interest in the last couple of decades.
This has given rise to many approaches of modeling these
networks, e.g., differential equations, Boolean networks
and Petri nets [1].

Boolean networks can be useful when studying net-
work level dynamical properties in large networks. Bool-
ean network is a set consisting of nodes 1...N , the states
of the nodes x ∈ BN and the update rules for the nodes
f : BN → BN . The states are updated at discrete time
steps according to the update rules, that is, x(t + 1) =
f(x(t)). The functions can be presented as a vector, e.g.,
[0001], where the vector is the truth table column of the
function in ascending binary order. The variables xi(t)
that affect the state of xj(t + 1) are called the inputs of
node j and the number of these inputs is the in-degree of
node j. As one would assume, this simple structure makes
Boolean networks rather simple from the computational
perspective as well.

In the field of computational systems biology the idea
of using Boolean networks has a long tradition. In 1969
Stuart Kauffman proposed the use of Random Boolean
networks (RBNs) for modeling gene regulatory networks.

In these so-called Kauffman networks the update func-
tions of the nodes and the connections between the nodes
are chosen at random, yet the in-degree of the nodes is
kept constant [2]. These networks consisting of N nodes
and having a constant in-degree of K for all of the nodes
are also often referred to as NK networks or Kauffman
networks [3]. Indeed, Kauffman’s article showed the val-
ue of Boolean networks for theoretical biologists; a theo-
retical model, such as a Boolean network, can give insight
into the principles of dynamical behaviour of a network
even if the detailed network structures remain unclear.

Different properties of Boolean networks can be con-
nected with observables from real networks [2]. One of
these properties is the bias, b(t), of the network, i.e., the
proportion of ones in the network state and especially the
steady state value b∗. In the models of this article we as-
sume that the networks have reached the bias steady state.
For RBNs the bias steady state corresponds to the propor-
tion of ones in the functions of the nodes. This function
bias is denoted by bf .

Propagation of perturbations is particularly interesting
since it can be considered to characterize the response of
the system to internal perturbations and outside inputs. In-
dividual networks, however, have complicated nonlinear
dynamics and an exhaustive analysis of their state space is
typically impossible. To overcome these problems there
are tools such as the annealed approximation, which pre-
dict the dynamics using a probabilistic approach which
assumes that the effect of local structure on the dynamics
can be neglected [4].

Unfortunately, real regulatory networks are not ran-
dom; studies indicate that some local structures, called
motifs, appear more often than what would be expected in
a random network [5]. These local structures have an ef-
fect on the dynamical properties of the network that they
are a part of. To study these effects a partially annealed
approximation has been proposed [6]. Partially annealed
approximation means that the connections that are not part
of a motif are shuffled at each time step. As feed-forward
loops introduce a kind of a memory in the network dy-
namics, the standard annealed analysis will not, in gen-
eral, be sufficient. In this article, the aim is to find an ana-
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lytical model for propagation of perturbations in networks
with considerable amounts of local structures, particularly
feed-forward loops.

2. LOCAL STRUCTURES AND BIAS IN
BOOLEAN NETWORKS

This section introduces two models for approximating the
bias steady state distribution of a C1-FFL motif from [6]
and then replicates the results obtained in the aforemen-
tioned article. The analysis of bias fixed points is needed
as a first step towards perturbation calculations.

In this article we use the same naming convention as
in Alon’s article [5] for feed-forward loops. Our main ex-
ample, C1-FFL is a feed-forward loop, which can be mod-
eled in Boolean networks using 3 nodes. The circles rep-
resent nodes and the arrows are connections between the
nodes. The inputs for the nodeA are called input nodes for
the feed-forward loop and they can come from whichever
nodes in the network. Node B simply replicates the state
of A at the previous time step and node C expresses the
[0001] function of nodes A and B.

Figure 1. Illustration of a Boolean network representing a
C1-FFL motif.

2.1. Markov chain models

The state of the motif at t + 1 is defined by a transition
matrix M and the state of the motif at the previous time
step t. The transition matrix contains the probabilities for
the state transitions and it can be deduced from a state
transition diagram. In the transition matrix the row of the
element depicts the current state and the column the state
at the next time step. So, for example, element m2,1 con-
tains the probability of transitioning from state 001 to 000,
where the bits indicate the state of nodes A, B and C, re-
spectively.

When p is a vector that contains probabilities for the
states of the motif in an ascending binary order, i.e., the
first element is the probability that the motif is in state
000, the second element for state 001 and the last for 111,
the update rule can be expressed as

pT (t+ 1) = pT (t)M , (1)

where

M =




u0 0 0 0 ū0 0 0 0
u1 0 0 0 ū1 0 0 0
u1 0 0 0 ū1 0 0 0
u2 0 0 0 ū2 0 0 0
0 0 u1 0 0 0 ū1 0
0 0 u2 0 0 0 ū2 0
0 0 0 u2 0 0 0 ū2
0 0 0 u3 0 0 0 ū3




. (2)

In the transition matrix M , ui denotes the probability that
the node A of the motif is in state 0 at the next time step
when i is the number of nodes in state 1 in the motif. And
for the case that the aforementioned node is in state 1, we
denote ūi = 1 − ui. For the first model ui is considered
to be constant, i.e., ui = bf ,∀i. To calculate ui for the
second model we need to know the proportion of nodes
belonging to the motifs α and the probability bfbg that a
background node is in state 1. Now,

ui = ((1− α)(1− bfbg ) + α
3− i

3
)2. (3)

It is shown in [6] that both of the models in this Sec-
tion do indeed converge to a steady state p∗ and that this
steady state can be calculated in a rather simple manner
from the eigenvector v associated to eigenvalue λ = 1 of
the transition matrix M ,

p∗ =
v

‖v‖ . (4)

2.2. Results

The results shown here are from simulations run on Mat-
lab and they consist of 100 Boolean networks without an-
nealing and another 100 networks with annealing. Each
network was built out of NK networks of 2400 nodes
with K = 2 by rewiring and changing the functions of
1200 nodes so that 400 C1-FFL motifs with fA = [0111]
were formed. These networks were run for 10000 time
steps to reach a bias steady state. Then the mean of the
states of the motifs was calculated. The proportion of
nodes belonging to the motifs was α = 0.5. The func-
tion bias of the background nodes was bfbg = 0.7. The
theoretical results are calculated from the eigenvectors of
the transition matrices as shown in Equation 4.

The results are plotted in a bar graph in Figure 2 so
that it shows the steady state distribution of the states of
the motif. In the graph the height of the column is the
probability that a motif is in that state. The results from
the simulations done for this article repeat the ones ob-
tained in [6].

The first model does not quite succeed in estimating
the steady state distribution, but when looking at the re-
sults of the second model, we can see that they are signif-
icantly closer to those of the annealed networks. Hence,
the second model can be used to estimate the results from
such networks. When the annealing is dropped the results
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Figure 2. The above bar plot shows the steady state distri-
butions from two simulations and two different analytical
models. The simulation results are averaged from 100 net-
works of 2400 nodes containing 400 C1-FFL motifs for
which fA = [0111]. Two simulations were done: with-
out and with annealing. State ijk means that node A is in
state i, node B in j and node C in k.

from the networks are different. This difference should
get smaller as the size of the network goes up, since the
statistical properties of the quenched network get closer
to those of the annealed one. A more thorough analysis of
these results is found in [6].

3. LOCAL STRUCTURES AND PERTURBATION
PROPAGATION IN BOOLEAN NETWORKS

This section first introduces the so-called Derrida map and
illustrates the need for another perturbation propagation
model to be used in the case that the network includes
a considerable amount of motifs. Then a model for net-
works with feed-forward loops is introduced and the re-
sults obtained with that model are compared to the ones
obtained with the Derrida maps.

3.1. The Derrida map

The usual way of illustrating the propagation of perturba-
tions in a Boolean network is a Derrida map. The Derrida
map shows the average Hamming distance ρ(t+1) of two
identical networks’ states at time t+ 1 as a function of the
distance ρ(t) at time t. It is named after B. Derrida who
introduced it to study the evolution of overlaps between
configurations in RBNs [7].

Let fn denote a function composition, that is, function
f is iterated n times. Now, say f : [0, 1] → [0, 1] defines
a Derrida map: ρ(t + 1) = f(ρ(t)). For RBNs, when we
measure the average propagation of perturbations, Equa-
tion 5 holds.

ρ(t+ n) = fn(ρ(t)) (5)

But as can be seen in the example given in Figure 3,
when we add local structures to the network, the iterated

mappings do not match those acquired from the simula-
tions, and thus, the Derrida map can not be used to predict
the size of the perturbation avalanches over multiple time
steps. That is, Equation 5 does not apply in this case.

The iterated maps in Figure 3 are formed by iterating a
second degree polynomial that was fitted to the data from
a simulated network. For the Derrida map to work, the
iterated maps at t+ k, k > 1 should match those from the
simulations. In fact, the behaviour of the iterated maps
in this case is the opposite of what is actually observed.
The iterated maps rise higher, while the simulations show
a dip below the diagonal after a few time steps. This is
a radical difference, as the iterated maps suggest that the
perturbation grows bigger with time on average, when in
reality it would seem to die out eventually, which agrees
with the result in [6] that C1-FFL increases the stability of
the network.

Figure 3. Derrida map of networks with C1-FFL motifs.
Iterated maps are shown with the dashed line and the sim-
ulated data with solid line. The results above are averaged
from 100 partially annealed networks with 2400 nodes
and 400 C1-FFLs with fA = [0111]. A second degree
polynomial was fitted to the perturbation propagation data
after one time step and this polynomial was then iterated.
As seen above, the iterations do not match the results from
the simulations.

3.2. Perturbation model for feed-forward loops

To address the shortcomings of the previous Derrida map
approach, we suggest a partially annealed model to ap-
proximate the local structure effects that the feed-forward
loops introduce in the dynamics. The model divides the
nodes of the network into four parts: the A, B and C
nodes in the motifs and the background nodes denoted by
bg. Let us assume that we have a network with a consid-
erable amount of C1-FFL motifs and the initial perturba-
tion happens at time t. Now ρA(t) = ρB(t) = ρC(t) =
ρbg(t) = ρ(t) and the updating of these partial perturba-
tions happens according to the Equations 6–9. In order to
calculate the partial perturbations we also need to know
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Figure 4. Cumulative error distribution at different time steps, when the error measure is the area between the mappings
of the model estimate and the simulated results. Results of the Derrida map on the right and the model of Section 3.2 on
the left.

Figure 5. Scatter plot of the errors when the error measure is the area between the mappings. Time advances from left to
right, top to bottom, beginning at t + 2 in the top left and ending at t + 5 in the bottom right. The inset is a zoom in on
the cluster of red markers. This cluster is comprised of those networks for which fA = [0110] or [1001]. The instance
marked in green is seen in Figure 6.
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the bias steady states of the nodes belonging to the mo-
tif b∗A, b

∗
B , b

∗
C and the bias steady state of the background

nodes b∗bg . These biases can be obtained from simula-
tions or for example with the models of Section 2.1. Then,
knowing the amount, α, of nodes belonging to the motifs
we can calculate the total size of the perturbation given by
Equation 10.

ρA(t+ 1) = 2(1− b∗)ρ(t)(1− ρ(t))+

+ (b∗2 + (1− b∗)2)ρ(t)2 (6)
ρB(t+ 1) = ρA(t) (7)
ρC(t+ 1) = b∗A(1− ρA(t))ρB(t) + b∗BρA(t)

(1− ρB(t))(b∗Ab
∗
B + (1− b∗A)(1− b∗B))

ρA(t)ρB(t) (8)

ρbg(t+ 1) = (2ρ(t)(1− ρ(t)) + ρ(t)2)2b∗bg(1− b∗bg)

(9)

ρ(t+ 1) =
α

3
(ρA(t+ 1) + ρB(t+ 1) + ρC(t+ 1))+

+ (1− α)ρbg(t+ 1) (10)

The equations for approximating the propagation of
perturbations are obtained by looking at how the func-
tions in the feed-forward loops handle perturbations in
their inputs. For example, when we have a C1-FFL with
fA = [0111], one perturbation in the input nodes advances
to node A, if and only if, both of the inputs are in state 0.
If both of the input nodes are flipped, then the perturba-
tion advances only if the input nodes are both in state 0 or
both in state 1. Perturbation in nodeA advances always to
node B and the possibilities for perturbations advancing
to node C can be deduced from the truth tables.

3.3. Results

The results in this section are obtained using the two mod-
els introduced in Sections 3.1 and 3.2. Equations similar
to 6–9 were written for each of the 80 possible motifs,
with biases from numerical simulations(not shown due to
space constraints). These results are then compared to
those from simulations from a total of 8000 different net-
works. This is because 80 different feed-forward loops
were considered and the simulated results are always av-
erages from 100 different networks. Each network was
created from the so-called NK-networks with N = 2400
and K = 2 by adding 400 motifs. The networks were
then updated to reach the bias steady state, a copy was
made and a perturbation was introduced. Then, the aver-
age Hamming distance of these two networks was calcu-
lated at five time steps after the initial perturbation.

Two different measures were used in the comparison
of the Derrida map and the other model, the first one be-
ing the area between the curves of the simulated data and
the estimate; in this measure, a smaller value means a bet-
ter result. The second measure(not shown), which was the
maximum difference between the estimate and the simu-
lated model, gave similar results as the area measure.

A scatter plot of the area errors with all the differ-
ent feed-forward loops was also drawn. In the scatter
plot, a clear cluster can be seen formed by those feed-
forward loops for which fA = [0110] or [1001]. This
cluster was coloured red to highlight the points shown in
the zoomed inset. Also, one of the instances for which the
Derrida map gives a smaller error than the other model
is observed more thoroughly in Figure 6. This instance
marked with green in the scatter plot is a C3-FFL for
which fA = [0111], fB = [01] and fC = [1000].

Figure 6. Propagation of perturbations according to the
probabilistic model and simulated results averaged from
100 networks of 2400 nodes containing 400 C3-FFLs with
fA = [0111]. The model results are shown as the dashed
line and the simulated results as the solid line.

4. CONCLUSION AND DISCUSSION

This work started with the replication of the results in [6]
for the bias steady state in Boolean networks with local
structures. Then, a model for estimating the propagation
of perturbations in Boolean networks with local structures
was introduced. This model, based on applying partial
annealing, could be seen to improve on standard Derrida
map analysis in most cases where different feed-forward
loops were present in abundance.

Looking at the error distributions in Figure 4 it appears
quite clear that on average the probabilistic model predicts
the propagation of perturbations in Boolean networks with
local structures better than the Derrida map, and the scat-
ter plot in Figure 5 supports this claim. Although not the
case for all the feed-forward loops, most of them favour
the presented probabilistic model.

One of the most interesting phenomena is the cluster
that the feed-forward loops with fA = [0110] or [1001]
create in the scatter plot. This cluster is located rather
far above the diagonal, i.e., the Derrida map fails com-
pletely at estimating the propagation of perturbations in
these cases, whereas the probabilistic model is very close
to the simulation data.

However, there were also points below the diagonal.
These points illustrate those FFLs where the Derrida map
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performed better than the probabilistic map. One of these
was the C3-FFL with fA = [0111] for which the annealed
approximation and the simulated results are shown in Fig-
ure 6. The most likely cause for these shortcomings is the
average change in network bias that happens due to the in-
troduction of large random perturbations in the network.
Overcoming this problem would, however, require a more
complex model for the approximation than what was de-
scribed in this article.
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ABSTRACT

The sub-cellular organelles called oil bodies (OBs) are
lipid-filled quasi spherical droplets produced from the en-
doplasmic reticulum (ER) and then released into the cy-
toplasm during seed development. It is believed that an
OB grows by coalescence with other OBs and that its sta-
bility depends on the composition in oleosins, major pro-
teins inserted in the hemi membrane that covers OBs. Five
oleosin proteins, namely S1 to S5, were discovered. The
size of OBs evolves during the first steps of seed devel-
opment, but is also contingent upon their protein com-
plement. Individualized volumes of OBs were extracted
from confocal microscopy images of embryos from differ-
ent genotypes ofA. thaliana seeds at different days after
flowering (DAF). Models based on ordinary least squares
(OLS) and quantile regression (QR) estimators were pro-
posed to analyze the factors associated with the growth of
OBs. Whatever the estimator, S1 oleosin showed a signif-
icant effect in reducing the volume of OBs while S4 con-
tributed to its increase. S3 was shown to act by reducing
OB volume (p-values< 0.001, OLS) but only in higher
ranges of volume using QR. Over all selected quantiles (in
QR) and within OLS, a significant synergistic interaction
between S3 and S4 was shown, while a null interaction
between S1 and S4 was clearly shown within the QR in
low and high (p-value = 0.69, 0.1-quantile and 0.57, 0.75-
quantile respectively) volumes of OBs, as well as in OLS
(p-value= 0.99).

1. INTRODUCTION

In most eukaryotic organisms, storage lipids are deposited
in stable sub-cellular structures named lipid or oil bod-
ies (OBs). These structures are produced from the en-
doplasmic reticulum (ER) and then released into the cy-
toplasm during seed development [1]. OBs differ from
one species to another and between kingdoms, particularly
by their composition in neutral lipids and protein comple-
ments [2]. OBs are heterogeneous in size and in number,
and exhibit growth dynamics different from one organism
to another and from one cell type to another. Indeed, ac-
cording to its energy needs, the cell adopts the configura-
tion size and/or number of lipid bodies which optimizes

storage capacity, production, and consumption. However,
the growth mechanisms of lipid bodies are still unclear,
even if different hypotheses have been proposed [3]. In
seeds, a family of proteins called oleosins have been iden-
tified on the surface of OBs[4]. These proteins seem to
play an important role in the dynamics of OBs, and have
been suggested to act as ”stabilizers” preventing OBs co-
alescence. Studies of OBs inA. thaliana embryos defi-
cient in oleosins showed impaired lipid and protein accu-
mulation accompanied with a delay in germination, and
abnormal over-sized OBs [5]. In statistical analysis, the
conditional mean of observations is often estimated by or-
dinary least squares (OLS) in an analysis of variance. This
may not be informative enough, particularly in the case of
skewed distributions, where the few values on the tails of
the distribution are neglected. These values, despite their
small number, represent important information when con-
sidering for example the volume of individuals in a popu-
lation. In this situation, analysis of quantiles by quantile
regression (QR) can be an alternative solution to extract
information from these values [6]. The advantage of this
method is that we can track the range of data in which the
effect of associated covariates is impacting. Originally de-
veloped for econometrics [7], quantile regression is more
and more used in biostatistics and life science fields [8].
The aim of this paper is to study the factors involved in
the growth of OBs through ordinary least squares (OLS)
and quantile regression (QR).

2. METHODS

2.1. Data acquisition

Arabidopsis thaliana wild type and oleosin mutant plants
defective for one or several oleosins were grown from
seeds on soil in a greenhouse. Upon flowering, flowers
and subsequent developing siliques were tagged daily un-
til 12 days after flower opening. Siliques for each stage of
development were sampled and dissected to remove de-
veloping seeds. Seeds were spread on a glass slide, incu-
bated with Nile Red, a neutral lipid stain at a final con-
centration of 1µg/ml in a 60% glycerol solution. Embryos
were removed from the seed teguments by gently pressing
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Figure 1. OLS and QR coefficients estimation : Coefficients estimation showing the effect of day, oleosin, and interactions
between oleosins. OLS estimator coefficients (horizontal solid lines) and QR estimator coefficients (dashed dotted lines)
are presented with their 95% confidence interval.

seeds between slide and coverslip and observed after 30
min of incubation in the dark.Arabidopsis oleosin null
mutants are available for 3 oleosins,S1 (At3g01570),S3
(At4g25140) andS4 (At5g40420) (ref. NASC). Double
mutants (s1s3, s1s4, s3s4) and a triple mutant (s1s3s4)
have been generated in the laboratory.
3D images of dissectedArabidopsis embryos were ac-
quired using a LEICA SP2(AOBS) confocal microscope
with a spatial resolution of(0.09µm×0.09µm×0.16µm)
in the(x, y, z) referential. Third dimension was obtained
by scanning the sample through thez axis, providing a
sequence of 2D images corresponding to the fluorescence
emitted from the focal plane. Images were first filtered
using ND-SAFIR, a software for denoising n-dimensional
images especially dedicated to microscopy image sequence
analysis [9], then segmented through a pipeline we de-
signed using several algorithms from Avizo-Fire (Burling-
ton, USA), a 3D image processing software.

2.2. Statistical analysis

A total of 112 three-dimensional images from indepen-
dent samples were analyzed. Each image corresponds to
one of the 8 genotypes, observed at one of the 5 devel-
opment stages namely day 7, 8, 9, 10, and 11 days after
flowering (DAF). At least two or three samples for each
couple (genotype-day) were used, and from which indi-
vidualized volumes of OBs were extracted. Volumes were
classified on subsets of (genotype-day). In total, 50,379
OB volumes were quantified.
In the model we developed, we made the assumption that
the volume of OB was affected both by the three oleosin

factors (S1, S3 and S4), and the day factor. Each oleosin
factor was labeled by an index, notedi, j, andk for S1,
S3, and S4, respectively. Each index had two levels cor-
responding to the presence or the absence of the oleosin.
The day factor contained five levels, noted by the label
t, corresponding to 7, 8, 9, 10, and 11 DAF. Volumes
V of OBs were transformed to their decimal logarithm
Log10(V ) in order to verify normality assumption, and
equality of variance conditions needed for OLS. The model
is expressed as:

ynijk,t = intercept + Dayt + S1i + S3j + S4k

+ S1:S3ij + S1:S4ik + S3:S4jk

+ S1:S3:S4ijk + εnijk,t

Where: ynijk,t is the value ofLog10(V ) of the nth OB
on the population with oleosin labels (ijk) at day level
t. S1i, S3j andS4k are respectively the main effects of
factors S1, S3, and S4.S1:S3ij , S1:S4ik, andS3:S4jk

are the effects of double interactions between oleosins.
S1:S3:S4ijk is the effect of the triple interaction between
S1, S3 and S4. Last,εnijk,t is the error term which is sup-
posed to follow a normal distribution with mean 0 and
varianceσ2. The OLS estimator uses the minimization of
the sum of squares to fit predictions to observations:

θ̃ = argminθ

[
N∑

n=1

[yn − f(θ, n)]
2

]
(1)

Where yn denotes the responses for observationn , θ
the vector of parameters to be estimated, andf(θ, n) the
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QR OLS
τ1 τ2 τ3 τ4 τ5

Parameter value P value P value P value P value P value P

Intercept
-1.66
(0.01) 0.00

-1.39
(0.01) 0.00

-1.09
(0.01) 0.00

-0.69
(0.01) 0.00

-0.24
(0.02) 0.00

-1.01
(0.01) 0.00

8DAF
0.10

(0.01) 0.00
0.16

(0.01) 0.00
0.24

(0.01) 0.00
0.29

(0.01) 0.00
0.33

(0.01) 0.00
0.23

(0.01) 0.00

9DAF
0.12

(0.01) 0.00
0.20

(0.01) 0.00
0.33

(0.01) 0.00
0.41

(0.01) 0.00
0.46

(0.01) 0.00
0.31

(0.01) 0.00

10DAF
0.25

(0.01) 0.00
0.43

(0.01) 0.00
0.65

(0.01) 0.00
0.82

(0.01) 0.00
0.93

(0.01) 0.00
0.62

(0.01) 0.00

11DAF
0.30

(0.01) 0.00
0.57

(0.01) 0.00
0.88

(0.01) 0.00
1.10

(0.01) 0.00
1.22

(0.01) 0.00
0.83

(0.01) 0.00

S1
-0.06
(0.01) 0.00

-0.13
(0.01) 0.00

-0.13
(0.01) 0.00

-0.17
(0.02) 0.00

-0.25
(0.02) 0.00

-0.15
(0.01) 0.00

S3
0.00

(0.01) 0.99
0.00

(0.01) 0.64
-0.01
(0.01) 0.28

-0.05
(0.02) 0.00

-0.11
(0.02) 0.00

-0.04
(0.01) 0.00

S4
0.04

(0.01) 0.00
0.05

(0.01) 0.00
0.07

(0.01) 0.00
0.07

(0.01) 0.00
-0.02
(0.02) 0.19

0.04
(0.01) 0.00

S1:S3
0.01

(0.02) 0.63
0.02

(0.02) 0.21
0.04

(0.01) 0.03
0.10

(0.02) 0.00
0.17

(0.03) 0.00
0.05

(0.01) 0.00

S1:S4
0.00

(0.02) 0.69
0.00

(0.02) 0.69
0.00

(0.01) 0.91
-0.01
(0.02) 0.57

0.04
(0.02) 0.10

0.00
(0.01) 0.99

S3:S4
-0.07
(0.02) 0.00

-0.14
(0.02) 0.00

-0.18
(0.01) 0.00

-0.22
(0.02) 0.00

-0.20
(0.03) 0.00

-0.15
(0.01) 0.00

S1:S3:S4
0.06

(0.03) 0.05
0.09

(0.03) 0.00
0.09

(0.01) 0.00
0.08

(0.03) 0.01
0.00

(0.04) 0.89
0.10

(0.02) 0.00

Table 1. Adjusted parameter estimated value (standard error), and their p-values P given for each estimator (QR with
selected quantiles, and OLS) : QR = quantile regression, OLS= ordinary least square,τ1 = 0.1 quantile,τ2 = 0.25
quantile,τ3 = 0.5 quantile,τ4 = 0.75 quantile,τ5 = 0.9 quantile.

model used for each observationn.
Unlike OLS, QR utilizes the minimization of:

θ̃τ = argminθ [
∑

n:yn≥f(θ,n)

τ |yn − f(θ, n)|

+
∑

n:yn<f(θ,n)

(1− τ) |yn − f(θ, n)|] (2)

for a given quantileτ . We used QR with five selected
quantiles denotedτ1, τ2, τ3, τ4 andτ5 for respectively
0.1, 0.25, 0.5 (the median), 0.75, and 0.9 quantiles. All
analyses were done using R project. The model was im-
plemented in the function rq of the quantreg R-package
for the QR estimations.

3. RESULTS AND DISCUSSION

Focusing on oleosin factors using the QR estimator (Ta-
ble 1), the effect of S1 oleosin was statistically significant
for all quantiles (p-value< 0.001) and with negative val-
ues of parameters decreasing with the increase of quantile
(Figure 1). This reflects the contribution of S1 oleosin to
the reduction of the volume of OB. Similarly, S3 oleosin
factor had a significant effect of OB reduction, but only
at higher OBs volume (τ4, τ5) and was not significant
for lower volumes (p-value= 0.99, τ1; p-value = 0.64,
τ2 and p-value= 0.28, τ3). A significant effect of re-
duction was also shown for S3 with the OLS. The effect
of these two oleosins was clearly observed in the predic-
tions sorted by genotype where the fitted values of OB
volumes were always higher in genotypes lacking S1 and
S3 oleosins (s1s3 and s1s3s4) compared to those where
S1 and S3 oleosins were present (Figure 2). Unlike S1
and S3, S4 oleosin factor impact was significant with a
positive effect (increase of OB volume) in all quantiles

and within OLS estimator, except inτ5 (p-value= 0.19).
It is noteworthy that the effect of increasing OB volume
brought by the presence of S4 was smaller than the effect
of reduction due to the presence of S1. This is shown by
the low positive parameters values of S4 factor compared
to the high negative parameters values of S1 factor (Fig-
ure 1). A significant synergistic effect of S3 and S4 in-
teraction was shown, thus shedding light on the effect of
interactions that also participate in determining OB vol-
ume. OB volume was reduced even more when S3 and S4
were both present. This interaction effect was visible both
with the QR and the OLS estimators (p-values< 0.01).
The other interaction effects were less significant for S1
and S3, except inτ4, andτ5. A null interaction between
S1 and S4 was clearly shown both within the QR in low
(p-value= 0.69,τ1) and high quantiles (p-value= 0.57,
τ4) as well as with the OLS (p-value= 0.99). The triple
interaction between S1, S3 and S4 was significant only in
middle quantiles, and had no effect for higher volumes (p
= 0.89,τ5).
The heterogeneous distribution of OBs requires the use of
QR model in addition to OLS model since we were able to
access more detailed effects of factors, while OLS model
only indicated the differences on the central portion of the
distribution. Particularly, QR model had the advantage of
showing the significance of factors along quantiles. Our
results show that the OB volume changes in function of
time (between 7 and 11 DAF) and in function of the com-
position in oleosin proteins. The growth rate of the OB
volume is shown to be reduced between 8 and 9 DAF, then
increases between 9 and 10 DAF (Figure 2). While S1 and
S3 oleosins have an effect on reducing the volume of OBs
when they are present on the surface of OBs, S4 seems to
be implicated on the increase of OB volumes except for
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Figure 2. Predicted values ofLog10(V ) by date sorted by
genotype for each estimator (QR with the selected quan-
tiles and OLS) : Predicted values for wt and null oleosin
mutant are deduced from combining the effect of each
oleosin factor and their interactions respectively : wt (the
effect of S1, S3, S4, S1:S3, S1:S4, and S1:S3:S4), s1 (ef-
fect of S3, S4, and S3:S4), s3 (effect of S1, S4, and S1:S4),
s4 (effect of S1, S3, and S1:S3), s1s3 (effect of S4), s1s4
(effect of S3), s3s4 (effect of S1) and s1s3s4 (intercept).

higher ranges of volumes. One can also hypothesize that
S4 could be involved in bringing OBs close enough so that
their coalescence becomes easier. The null effect of S4 in
higher volumes may be explained by the fact that an in-
creased density of oleosins at the surface of OB prevents
their coalescence when two OBs get closer. Furthermore,
S1 and S4 do not interact and their effects seem to be only
additive. Last, S3 and S4 present a high interaction effect
of OB reduction. This may reflect an opposite action of
S3 when S4 acts to increase OB volume.

4. CONCLUSION

The population of OBs in the cellular pool ofA. thaliana
embryos is heterogeneous. It is mainly composed of small
OBs with a volume less than 1µm3 and few large OBs
with a volume up to 20µm3. The growth mechanism of
OBs is not fully understood, but many factors are sug-
gested to be involved. Particularly, membrane composi-
tion may act on the dynamics of OBs including produc-
tion, storage and mobilization of triacylglycerols. Further-
more, the membrane constituting elements follow them-
selves dynamical behaviors e.g. interaction and diffusion.
In cells of plant seed, electrostatic and/or steric interac-
tions may occur between oleosins on the surface of OBs.
Moreover, the coalescence process causes an increase of
the surface density. Based on these facts, one can sug-
gest the probable variable effects of oleosins in function
of OB size. Using OLS, we only focus on the effect of

oleosins on the mean volume of OBs and disregard their
variable effect due to the growth of OBs by coalescence.
The QR model provides a better understanding of the ef-
fect of oleosins in different ranges of OB volumes. For ex-
ample, OLS revealed that S3 oleosin reduced significantly
the size of OBs (Table 1). However, QR showed that this
effect was only significant on large OBs (τ4, τ5) and had
no effect on small OBs, and this may be explained by the
fact that S3 was only functional when reaching a certain
surface coverage. The same behavior is observed with re-
spect to S1 and S3 interactions (Table 1). A better under-
standing of the parameters controlling the growth of OBs
may open new perspectives on oil storage and extraction
techniques improvements. This statistical study will help
in the design of a mechanistic model of OBs dynamics.
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ABSTRACT

Constricted channel flow at moderate Reynolds numbers
is of physiological importance. The influence of the cross
section shape on steady and unsteady flow through a con-
stricted channel is assessed. Due to viscous effects the
cross section shape can not be neglected since the pres-
sure distribution depends on it. A flow model is proposed
accounting for flow inertia, viscosity and the cross section
shape in case of laminar steady and unsteady flow. Next,
experiments are performed to characterise the influence
of the cross section shape. Finally, the model outcome is
validated on experimental data.

1. INTRODUCTION

Pressure driven channel flow is associated with physio-
logical flows for which constricted channel portions oc-
cur either naturally or due to a pathology. Well known
examples are airflow through the human airways (human
speech production, asthma, obstructive sleep apnea) or
blood flow through a stenosis.

Consequently, efforts are made to model pressure driven
flow through constricted channels in order to understand
the mechanisms involved and to develop aiding tools for
health care workers. Due to the complexity of the hu-
man respiratory and cardiovascular system, most studies
severely simplify the physiological reality in order to limit
the number of physiological and physical parameters. Such
a simplification enhances understanding and facilitates im-
plementation and experimental validation.

In general, simplifications of the flow model are based
on a non dimensional analysis of the governing Navier-
Stokes equations [1]. Accounting for typical values of
physiological, geometrical and flow characteristics result
in non dimensional numbers which allows one to assume
the flow as incompressible, laminar, quasi one or two di-
mensional and quasi steady [2, 3]. Therefore, quasi-one
dimensional or two dimensional (2D) flow models derived
from boundary layer theory have proven to capture the un-
derlying physics and therefore to mimic and predict ongo-
ing phenomena at a low computational cost [2].

Nevertheless, the assumption of a 1D or 2D geometry
implies that details of the cross section shape perpendicu-
lar to the streamwise flow direction x are neglected. Vis-
cous effects, which are important at low Reynolds num-
bers, are known to depend on the cross section shape [1,
3]. The aim of the present paper is therefore to propose a
flow model capable to account for flow inertia, viscosity
as well as for the cross section shape in case of steady and
unsteady flow. Experimental data are presented in order to
assess the influence of cross section shape for steady and
unsteady flow. The model outcome is validated.

2. CROSS SECTION SHAPES

The geometry is fully defined by the cross section shape
and the streamwise area variation A(x). In order to al-
low the use of the cross section shapes in quasi-analytical
models only shapes for which the main geometrical pa-
rameters can be expressed analytically are assessed: rect-
angle (re), circle (cl), ellipse (el), eccentric annulus (ea),
half moon (hm), circular sector (cs), equilateral triangle
(tr) and limacon (lm) [3]. The cross section shapes used
during experiments are illustrated in Fig. 1. The shapes
are, although a severe approximation, relevant to describe
the cross section shapes in case of normal and/or patho-
logical geometrical conditions. The cross section is po-
sitioned in the (y, z) plane where y denotes the spanwise
and z the transverse direction. The cross section area is
uniform and yields A = 0.79cm2. Corresponding values
for the hydraulic diameter D (D = 4A

P with perimeter P )
are given in Table 1.

Table 1. Overview geometrical parameters.
cl re el sq tr ntr scs lcs

D[mm] 10 6.6 6.7 8.9 7.8 7.0 7.2 8.4
A = 0.79cm2

3. MODELLING

The streamwise area variation consists of a uniform con-
striction, with fixed length L = 25mm and varying cross
section shape, which is inserted in a uniform tube of in-
ternal diameter 25mm as schematically depicted in Fig. 2.
As the abrupt expansion is characterized by a sharp trail-
ing edge, the streamwise position of flow separation xs is
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Figure 1. Experimentally assessed cross section shapes
with pressure taps P1 (full arrow) and P2 (dashed arrow).

at the constriction end (xs = x3). The pressure down-
stream from the flow separation point is assumed to be
zero so that Pd = 0 and the model outcome remains con-
stant for x ≥ xs. Consequently, imposing the upstream
pressure P0 is equivalent to imposing the driving pressure
gradient P0 − Pd.

jet
flow x

P0 Pd = 0

x2x3x1 x4

xs = x3

L = 25mm

Figure 2. Flow through an abrupt expansion.

For a given fluid and under assumption of a laminar
and incompressible flow the streamwise momentum equa-
tion of the governing Navier-Stokes equations is simpli-
fied using additional assumptions. With driving pressure
gradient dP/dx, bulk velocity U , cross section area A,
volume flow rate Q, velocity u(x, y, z), kinematic viscos-
ity ν (1.5× 10−5m2/s for air) and density ρ (1.2kg/m3 for
air) the following flow models are assessed:

• Applying conservation of volume flow rate dQ
dx = 0,

the following simplified flow model accounts for
both viscosity and flow inertia and depends there-
fore on both shape and area of cross section:

dU

dt
− Q2

A3

dA

dx
= −1

ρ

dP

dx
+ ν

(
∂2u

∂y2
+
∂2u

∂z2

)
(1)

Making a 2D assumption allows to drop the first
term within brackets resulting in the quasi-one di-
mensional flow model, which is further labelled Ber-
noulli-Poiseuille flow (BP) [2]. The first term at the
left handside accounts for flow unsteadiness. Note
that in the current paper, unsteadiness is due to vary-
ing the upstream flow conditions, i.e. P0(t), whereas
the cross section area is time independent.

• Thwaites’ method for 2D and axisymmetrical flow
solving steady integral momentum equation [1, 4]:

dδ2
dx

+

(
2 +

δ1
δ2

)
δ2

Ue(x)

dUe(x)

dx
=

τ

ρU2
e (x)

(2)

with flow velocity outside the boundary layer Ue
and wall shear stress τ . Displacement thickness
δ1(x) and momentum thickness δ2(x) are defined:

δ1(x) =

∫ ∞

0

Rk(x)

(
1 − u(x, y)

Ue(x)

)
dy

δ2(x) =

∫ ∞

0

Rk(x)
u(x, y)

Ue(x)

(
1 − u(x, y)

Ue(x)

)
dy

flow index k =

{
0 2D flow
1 axisymmetrical flow

(3)

For uniform geometries and applying the no-slip bound-
ary condition u = 0 on the channel walls, Eq. 1 can be
rewritten as a classical Dirichlet problem which can be
solved analytically for simple cross section shapes, such
as the geometries shown in Fig. 1. Therefore, exact solu-
tions are obtained for: local velocity u(x, y, z), local pres-
sure p(x), wall shear stress τ and volume flow rate Q [3].
With these notations bulk Reynolds number Re = QD

νA

and Strouhal number Sr = f0DA
Q are defined using hy-

draulic diameter D and characeristic frequency f0.

4. EXPERIMENT: SETUP AND CONDITIONS

The flow facility, illustrated in Fig. 3, consists of an air
compressor (Atlas Copco GA7), followed by a pressure
regulator (Norgren type 11-818-987) providing an airflow
at constant pressure. The volume flow rate is controlled by
a manual valve placed downstream the regulator and mea-
sured by a thermal mass flow meter (model 4043 TSI) with
an accuracy of 2% of its reading. To homogenize the flow,
a settling chamber is used with volume 0.25×0.3×0.35m3

to which a series of 3 perforated plates with holes of di-
ameter 1.5mm are added. The walls of the settling cham-
ber are tapered with acoustic foam (SE50-AL-ML Elas-
tomeres Solutions) in order to avoid acoustic resonances.
The influence of the cross section shape on the flow de-
velopment is assessed experimentally by adding a con-
striction with different cross section shape (Fig. 1), fixed
area A = 0.79cm2 and fixed length L = 25mm to a uni-
form circular tube, with diameter 25mm, mounted to the
settling chamber by means of a converging nozzle. An
acoustic pressure driver unit (Ku 916T) upstream the con-
striction is used to create unsteady flow. Pressure sen-
sors (Kulite XCS-093) are positioned in pressure tap of
diameter 0.5mm upstream (P0) and in the middle (P1) of
the constricted portion. Volume flow rate Q is sampled at
500Hz. Pressure sensors P and microphones M are sam-
pled at 24kHz. Statistical quantities, such as mean and
root mean square (rms) pressure, are derived on 5s of sig-
nal corresponding to 120000 samples.

103



The 10 th International Workshop on Computational Systems Biology, WCSB 2013

Steady flow is studied for volume flow rates within
the range 0 ≤ Q ≤ 200l/min. The increment is 5l/min
for Q ≤ 80l/min, 90l/min and 25l/min for Q ≥ 100l/min.
Unsteady flow is assessed for Q = 5, 20 and 150l/min
with driving frequency f0 = 500Hz.

Figure 3. Illustration of the experimental setup.

5. RESULTS

5.1. Experimental data: steady flow

The pressure distribution in a constricted channel with
fixed streamwise area is experimentally assessed for steady
flow. Mean and rms pressures within the constriction nor-
malised by the mean upstream pressure P0 are illustrated
in Fig. 4. The mean and rms values vary up to ≈ 25% of
P0, which confirms the need to take into the cross section
shape. For all cross section shapes, the general decreas-
ing tendency in case of both mean and rms pressure val-
ues within the constriction is observed to change in the
range 2000 < Re < 4000. Indeed, in this Reynolds
number range an increase is observed so that a minimum
and peak values occur for both the normalized mean and
rms pressure for all assessed cross sections. This range of
Reynolds numbers is likely to be associated with the pas-
sage of vortices generated at the sharp constriction inlet
or at the outlet. Either way, vortex generation and interac-
tion is likely to cause a transition from laminar to turbu-
lent flow. Further research is required to fully determine
the flow dynamics.

5.2. Experimental data: unsteady flow

Measured pressures P0(t) and P1(t) in case of a circu-
lar and elliptic cross section shape are illustrated in Fig. 5.
The unsteady oscillatory flow P0(t) with period T = 1/f0
illustrates flow for Sr ≈ 1 and Sr < 1. As for steady flow
the mean pressure value within the constriction varies as
function of the cross section shape, e.g. the ratio observed
for the elliptic section is greater than the one observed
for the circular cross section. In addition, the amplitude
of the pressure in the constriction around its mean value,
P1(t) − P1(t), observed for the elliptic section is greater
than the one observed for the circular cross section. More-
over, a phase difference between the upstream pressure P0

and constriction pressure P1 is observed, which is seen to
depend on both Reynolds number and cross section shape
as summarised in Table 2. As for the steady flow, further
research is needed to fully determine the flow dynamics.
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Figure 4. Normalised mean and rms pressures within the
constriction for steady flow.

Table 2. Normalized phase difference of P0(t) and P1(t).

Q[l/min]
t
T [−]

cl re el sq tr ntr
5 0.08 0 0.02 0.98 0.98 0.02
20 0.10 0.02 0.02 0.98 0.98 0.04
150 0.04 0.02 0.94 0.90 0.94 0.92

5.3. Model validation

Fig. 6(a) illustrates normalized modeled and experimental
pressures within the constriction, P1/P0, for steady flow.
For all assessed geometries the variation of the normalised
model outcome accounting for the cross section shape is
within 5%. Moreover, since a uniform constriction is con-
sidered all flow models predict positive pressures at posi-
tion P1 so that the negative pressures occurring for all as-
sessed cross section shapes, except the rectangle, can not
be predicted with the used flow models. In addition, the
model outcome as a function of increasing Reynolds num-
ber results in monotonously decreasing values of P1/P0

so that more complex flow phenomena such as observed
in the range 2000 < Re < 4000 can not be captured with
the assessed flow models. Nevertheless, the discrepancy

104



The 10 th International Workshop on Computational Systems Biology, WCSB 2013

0 1 2 3
−500

0

500

t/T [−]

P
 [P

a]

 

 

cl P
0
 Sr=1.2

cl P
1
 Sr=1.2

el P
0
 Sr=0.8

el P
1
 Sr=0.8

(a) Q = 20l/min, Re ≈ 2000

0 1 2 3

0

200

400

600

800

1000

1200

t/T [−]

P
 [P

a]

 

 

cl P
0
 Sr=0.2

cl P
1
 Sr=0.2

el P
0
 Sr=0.1

el P
1
 Sr=0.1

(b) Q = 150l/min, Re ≈ 1.4× 104

Figure 5. Measured pressures P0 and P1 for a circular (cl)
and elliptic (el) cross section.

between modeled and measured values is quantified.

In addition to the model accounting for the exact cross
section shape (mod), Fig. 6(a) depicts Thwaites’ 2D and
axismmetrical solution (Th) and 2D Bernoulli-Poiseuille
(bp). For a rectangular cross section shape, the model out-
put accounting for the cross section shape and Bernoulli-
Poiseuille 2D flow coincides and result in an overall over-
estimation of the pressure drop within 5% for P0 > 300Pa
and within 10% for P0 < 300Pa. Thwaites 2D solution
severely underestimates the pressure drop, ≈ 5% for all
upstream pressures. In case of a circular cross section, the
axisymmetrical Thwaites solution severely overestimates
measured values, > 10% for all upstream pressures. The
model accounting for the cross section shape underesti-
mates the pressure drop within 5% for P0 > 300Pa and
fails for P0 < 300Pa. In general, accounting for the cross
section shape and 2D Bernoulli-Poiseuille both result in a
model accuracy of < 5% for P0 > 300 and of <5% up
to < 20% for P0 < 300 depending on the cross section
shape. Fig. 6(b) illustrates the scaled upstream pressure
and corresponding model outcome while accounting for
the cross section. The influence of the unsteady term is
apparent.

6. CONCLUSION

The influence of the cross section shape on flow through
a constricted channel is shown for experimental and mod-
eled data. While the flow model is not able to account for
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Figure 6. Modelled (mod, Th, bp) and experimental (exp)
values of P1/P0 for steady (a,b) and unsteady (b) flow.

complex flow dynamics such as vortex generation, inter-
action or turbulence, it does provide a 5% accurate pres-
sure prediction for P0 > 300Pa. Consequently, it is of use
to improve flow models used in mathematical or physical
models of physiological flow driven events such as fluid-
structure interactions in the upper airways, (etc.)
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ABSTRACT
Multiresolution data arises when the same phenomenon or thedata generating process is measured at different levels of
precision. If a system is measured exhaustively in detail, it produces data in fine resolution where as if the same system
is measured in-comprehensively, the data is produced in coarse resolution. This phenomenon is present in many systems
because the newer generation technology can measure the finer units of the system producing data in fine resolution. In
contrast, the older generation technology produces the data in coarse resolution as the older generation technology can
not measure the finer units of the data. In this scenario, whenthe same data generating process generates data in coarse
and the fine resolution, often a feature in coarse resolutionis the amalgamation of multiple features in the fine resolution.
Therefore, the dataset can be represented in the form of a tree where the features of the data in the coarse resolution forms
the root of the tree and the features of the data in the fine resolution forms the branches and the leaves of the tree. In
a typical case of multiresolution data represented in trees, the ancestors are the features of the data in coarse resolution
where as the children are the features of the data in the fine resolution. The number of nodes arising from a root node to
its branches determines the number of different features infine resolution originating from a single feature in the coarse
resolution. These relationships between the features in different resolutions of the data ascertained from the knowledge of
the application domain. We exploit such structures of multiresolution data in to propose a multiresolution mixture model
in this contribution.

Learning from multiresolution data is of paramount importance because machine learning algorithms are always data
hungry and single resolution datasets are always constraint by high data dimensionality coupled with the lack of large
number of data samples. Mixture models have been versatile in modelling diverse phenomenon for over a century.
However, the mixture model in its general form can only modelthe data in a single resolution i.e. data having the same
dimensionality. Currently, only mixture modelling solution to multiresolution data is to model the different resolutions
separately and at best compare them. In such scenario, a multiresolution mixture model can be an antidote to such
compounding problems of multiresolution data and also exploiting the benefits of mixture models. We learn a single
multiresolution model unlike our previous approach [1] where we generate a model each for each resolution of the data
although the model in single resolution absorbed the information in other resolution of data because of repeated merging
of mixture components. Learning mixture model involves: determining the number of mixture components and inferring
the parameters of each mixture component [2]. In this contribution, we represent multiresolution data in the form of
a collection of probabilistic graphical models and the components of the mixture model are graphical models itself.
However, learning a structured multiresolution mixture model is difficult because some resolutions can be missing from
the data. Our research considers this problem and proposes aprobabilistic approach using Bayesian networks to learn
a multiresolution mixture model even when data in some resolutions are missing. We experimented our algorithm on a
multiresolution artificial dataset generated such that it mimics the properties of a multiresolution chromosomal aberration
dataset. Similarly, we also experimented on a real world multiresolution chromosomal aberration dataset. The resultsin
both the cases show that multiresolution mixture models outperform single resolution models.
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ABSTRACT 

Castration resistant prostate cancer (CRPC) is the third most common cause of male cancer death in developed coun-
tries. Previous sequencing studies have focused on specific aspects of prostate cancer biology. Here we report the inte-
grative sequencing of genomic, transcriptomic and DNA methylation changes in 28 untreated prostate cancers and 13 
CRPCs. AR, TGF-β and WNT signaling pathways were recurrently altered in CRPC. We identified two new functional-
ly relevant fusion genes, TMPRSS2-SKIL and DOT1L-HES6. Fusion analysis in an independent cohort validated 
SKIL’s role as a recurrent 3’ fusion partner and oncogene in prostate cancer. The HES6 fusion was found in an AR-
negative CRPC, and its overexpression in vitro led to androgen independent growth. Transcriptome assembly uncov-
ered 128 previously unannotated prostate cancer associated transcripts, including the ERG regulated transcript TPCAT-
10-36067 whose knockdown had a dramatic effect on prostate cancer cell growth and apoptosis. Our data provides a 
unique resource for the prostate cancer research community and presents new opportunities for therapeutic intervention. 
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ABSTRACT 

Introduction: Chromothripsis is a newly discovered type of  genomic rearrangement, characterized by locally clustered 

copy number aberrations. It has been proposed that it may arise during a single genome-shattering event. In this model, 

contiguous chromosomal regions are fragmented into many pieces. Supposedly, these segments are then randomly 

fused together  by the cell’s DNA repair machinery. This “shattering”  and aberrant repair of  a  multitude  of  DNA frag-

ments could  provide  an  alternative  oncogenetic  route,  in  contrast  to  the  step -by-step  paradigm  of  cancer  devel-

opment. However, the underlying mechanisms and their specific impact on tumorigenesis are still poorly understood. 

Results: Here, we identified chromothripsis -like  genome  patterns in 918 cancer samples, from a  dataset of  more than 

22,000  oncogenomic  arrays  covering  132  cancer  types.  Fragmentation  hotspots  were  found  to  be  located  on 

chromosome  8,  11,  12  and  17.  The  uneven  distribution  of  chromothripsis  along  the  tumor  genomes  may  revea l 

associations  between  tumor  type  related  cancer  genes  and  molecular  mechanisms  behind  chromosome -shattering 

events. Among the  various cancer  types, soft-tissue  tumors exhibited  particularly  high  CTLP frequencies.  Genomic 

context analysis revealed that chromothriptic rearrangements frequently occurred in genomes that additional harbored 

multiple copy number aberrations (CNAs). Therefore, for those frequent cases exhibiting additional non -chromothripsis 

CNA events, their possible contribution to oncogenesis has to be considered when modeling the role of  chromothripsis 

in cancer development. Moreover, an investigation into the affected chromosomal regions showed a large proportion of 

arm-level pulverization and telomere related events , which would support breakage-fusion-bridge cycles as one of  the 

potential underlying mechanisms. We  also report evidence that this catastrophic  event may be correlated with patient 

age, stage and a lower survival rate.  

Conclusion: Chromothripsis-like patterns represent a striking feature occurring in a limited set of  cancer genomes, and 

can  reliably be detected using biostatistical methods. The  observed patterns  may reflect  on  heterogenous biolog ial 

phenomena  beyond  a  single  class  of  “chromothripsis”  events,  and  probably  vary  in  their  specific  impact  on 

oncogenesis. Fragmentation  hotspots  derived  from  our  large-scale  data  set  may  promote  the  detection  of  markers 

involved in chromothriptic rearrangements, or  may  be  used for  assigning disease  related effects to  a  chroothripsis 

induced genomic events. 
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ABSTRACT 

Introduction: UV radiation induces DNA lesions that must be processed by the Post-Replication Repair (PRR) pathway 

in order to allow the completion of genome replication. PRR is triggered by ubiquitylation, a post-translational modifi-

cation of the PCNA protein; in particular, mono-ubiquitylation of PCNA activates the mutagenic Translesion DNA Syn-

thesis, while PCNA poly-ubiquitylation directs PRR to the non mutagenic Template Switching. Through a Systems Bi-

ology approach we previously developed a reaction-based model of the PRR in yeast [Amara et al., BMC Syst. Biol. 

7:2013], investigated at different UV radiation doses, which correctly reproduces “in vivo” experimental PCNA ubiqui-

tylation dynamics at low acute UV doses. 

The reaction constants of the model were manually tuned exploiting the experimental time-courses of mono- and poly-

ubiquitylated PCNA isoforms. The aim of this work is to develop a framework to automatically identify a plausible set 

of model parameters, by integrating sensitivity analysis (SA) with parameter estimation (PE) methods. In order to reduce 

the computational burden due to the large number of independent simulations required by SA and PE, we used cupSO-

DA [Nobile et al., PaCT2013, accepted], our parallel GPU-based ODE integrator. 

Results: We first analysed the PRR model by means of the improved Elementary Effects SA method [Campolongo et 

al., Comp. Phys. Comm. 182:2011], to measure the influence of each kinetic parameter on the dynamics of mono-, di- 

and tri- ubiquitylated PCNA isoforms. 

SA results suggest that the most sensible reactions are those related to the formation of poly-ubiquitylated PCNA iso-

forms, whose sensitivity is mainly due to the contribution of the di-ubiquitylated isoforms. Moreover, these results en-

lighten that the sensitivity of each reaction is strongly influenced by the other kinetic parameters, underlying the system's 

non-linearity. 

Exploiting the results of the SA, PE was then performed by means of a GPU-based multi-swarm version of the Particle 

Swarm Optimizer [Nobile et al., LNCS 7246:2012], where each swarm can be assigned to a specific experimental condi-

tion tested “in vivo”. Thanks to its design, this methodology allows the simultaneous analysis of the behaviour of the 

PRR model at both low and high acute UV doses. 

Conclusions: Our GPU-powered framework achieved a relevant speedup of the simulations required for SA and PE 

(compared to the sequential implementation), thus widening the analysed parameters space. This allowed a deeper and 

precise investigation of the PRR model, and suggested biological insights related to the control points of the PCNA ubi-

quitylation pathway. 
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ABSTRACT

Genes form networks of interactions capable of performing complex functions that are not possible by single genes.
The resulting Gene Regulatory Networks (GRN) is more robust to fluctuations and adaptable to a multitude of envi
ronments. Organisms make use of these GRN to perform a variety of processes such as counting time, responding to
changes in the environment and regulating processes related to, for example, maintenance of the homeostasis of the
metabolism or the developmental program. To better understand the regulatory mechanisms of GRNs, synthetic cir-
cuits with defined components have been developed. The Repressilator is likely the best known synthetic genetic cir-
cuit. It comprises three promoters connected in a negative feedback loop such that the activity of one gene in the cir-
cuit represses the action of the subsequent one in the loop. The resultant oscillation in protein numbers is read through
the expression of a green fluorescent protein (GFP) reporter under the control of one of the promoters in the network.
Here, we present measurements of the dynamics of this circuit at different temperatures, showing that the mean period
is highly dependent on this environmental factor. The results aim to assist in developing artificial circuits that are ro-
bust to environmental changes by identifying the causes for the observed behavior modifications.
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ABSTRACT 

Introduction: 

Random Boolean Networks (RBNs) are computational tools to simulate the behavior of complex process. The investiga-

tion of cellular differentiation processes in human system applying RBNs is the topic and main aim of this project. 

Methodologies and tools, previously developed, are used to identify gene network relevant for B and T cells differentia-

tion and these now are simulated and studied. In this project are proposing new methods and techniques in order to  ap-

ply RBN system ad produce more reasonable results. 

 

Methods: 

The whole project is based on three foundations: 

- Network decomposition: A method developed previous ly allows getting for the most important elements of B and T cell 

specific immune system. Based on correlation of gene expression changes. This is the best way for study the whole  sys-

tem as sum of its parts.  

- Collection and analysis of row expression data: Microarray data are used for get Pearson's correlation coefficient be-

tween each gene pairs represented in the immune network. 

-Software for Boolean network simulation: Is developed from the generation  and study of attractors. The main difference 

between our program and earlier approaches is that for each nodes do not use the basic Boolean functions  (and/or), but 

only one function with a random noise component. 

 

Results: 

The simulation software was used to generate the states of the B cell specific gene influence network. The attractor 

study provides clusters of stable states  which correspond to B cell sub-types according to data from Gene Ontologies or 

from list of known clusters of differentiation (CD) markers from the literature. 

 

Conclusion: 

The study of complex biological system is a hard field of research and we suggest a novel approach. The results got are 

undoubtedly encouraging; in the simulation of B cell differentiation. Now the simulator is a gene basic method but we 

plan to implement it adding also the protein-protein interaction and reaction kinetics as the next step. 
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ABSTRACT 

Cell signaling pathways are usually modeled as systems of ordinary differential equations (ODEs). The problem of pa-

rameter estimation for given experimental data is usually solved by numerical minimization of an objective function 

which is defined as a measure of differences between measurements and model solution. The information about the 

gradient of the objective function with respect to the model parameters may significantly speed up the estimation pro-

cess. The gradient can be achieved by using sensitivity analysis [Fujarewicz et al. 2007]. 

The sensitivity analysis plays very important and useful role during investigation and modeling of dynamical systems. 

The sensitivity analysis of dynamic systems answers the question how changes of model parameters affects the model 

solution. The answer to this question can be useful in solving of many tasks, such as: estimation of model parameters, 

design of experiments, or the optimization of the structure of the model. Typically, the sensitivity functions with respect 

to model’s parameters are calculated but it is possible to perform the sensitivity analysis with respect to initial condi-

tions or signals stimulating the system. 

There are several practical approaches to determine the sensitivity functions, which can be divided into three groups: (i) 

finite difference approximation, which uses explicitly the difference quotient formula, (ii) forward sensitivity analysis, 

where so called sensitivity model (tangent-linearized) for the variations of signals is built and simulated, and (iii) 

adjoint sensitivity analysis, where so called adjoint system is built and simulated. Especially the third approach is very 

useful from practical point of view, because it minimizes the computational effort required to all sensitivity functions 

calculation.  

One of the proposed in the literature mathematical model of the JAK-STAT signaling pathway is described by means of 

a set of delayed differential equations (DDE) [Timmer et al. 2004]. For the parameter estimation purposes the forward 

sensitivity analysis may be used [Loxton 2010]. Instead of this we present the way to perform the adjoint sensitivity 

analysis of DDEs. The method is structural because it assumes that the system is presented in a structural form: as a 

block diagram. It simplifies the rules for the adjoint system creation and may be treated as a special case of so called 

automatic differentiation. The results of the sensitivity analysis for JAK-STAT signaling pathway and its application of 

to parameter estimation are presented.  

This work was supported by the Polish National Science Center under grant UMO-2012/05/B/ST6/03472. 
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ABSTRACT 

Cell division in Escherichia coli, under optimal conditions, is generally morphologically symmetric. However, recent 

evidence has shown that this organism preferentially segregates unwanted substances to the older pole. This bias in the 

segregation to the poles has been shown to weaken with decreasing temperature and in minimal media. It is unknown 

whether there is any relationship between this asymmetry and other morphological asymmetries in these organisms.  

Here, we investigate possible relationships between the asymmetric segregation of unwanted substances in E. coli and 

morphological asymmetries in the process of cell division. For this, first we characterize, in different environmental 

conditions, the variance in the sizes of the daughter cells immediately following division. Next, by tracking fluores-

cently-tagged aggregates with single-molecule sensitivity, we quantify the asymmetries in partitioning of MS2-GFP-

RNA aggregates in division. We then investigate the qualitative relationship between this and the asymmetries in size. 

We find that in optimal growth conditions (LB media at 37°C), divisions are more morphologically symmetric; though 

a strong asymmetry in partitioning of unwanted aggregates is observed. In this condition, these two quantities are not 

correlated. As conditions ‘worsen’, due to decreased temperature down to 24°C or due to being in minimal media 

(M63), the divisions became less symmetric, in that the variance in relative daughter sizes increased. Also, the shape, 

as measured by the roundness of the cell, changes, with cells becoming more elongated. In agreement with previous 

studies, we observe that the asymmetry in partitioning of aggregates in division decreases significantly in minimal 

media as well as for lower temperatures. Finally, in these sub-optimal environmental conditions, we observed a posi-

tive relationship between asymmetry in size of the daughter cell and the fraction of unwanted substances inherited in 

division. 

We conclude that, in the sub-optimal environments tested, the larger daughter cells are also the ones that inherit more 

unwanted aggregates and have longer division times. Consequently, cell division in these environments usually results 

in a smaller but healthier daughter cell and an older, larger parent. We additionally conclude that, in sub-optimal con-

ditions, an additional mechanism associated to cell rejuvenation becomes active. Consequently, aside from the asym-

metric segregation of unwanted aggregates, the chance for morphological asymmetries in division is significantly in-

creased, generating cells that while being smaller, are also less poised with unwanted substances 
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ABSTRACT 

CD4+ T cells play a crucial role in the adaptive immune system and they have the ability to differentiate to functionally 
distinct effector subtypes such as T helper 1 (Th1), Th2, Th17, and iTreg. Here we have studied histone modifications 
(H3K4me1, H3K27ac, H3K4me3) to identify the lineage-specific functional cis-regulatory elements for early differen-
tiating human Th1 and Th2 cells. To correlate epigenetic information with gene expression, we have utilized genome-
wide digital gene expression analysis from the Helicos platform. The identified enhancer regions are also overlaid with 
open chromatin sites (DNase-seq) from fully differentiated T cells in order to characterize whether early enhancers are 
active only during the early lineage specification or remain active in committed Th cells. Analysis of transcription fac-
tor binding sites at enhancers allowed us to identify known and novel transcriptional regulators, which drive the lineage 
determination. As improper cell fate specification can lead to immunopathogenesis, we studied the overlap of the identi-
fied enhancers with SNPs associated with different autoimmune diseases. The possibility of such overlapping SNPs to 
disrupt binding of TFs was studied using computational predictions and verified for a subset of cases using DAPA ex-
periments. This study is the first looking at contribution of enhancers to early human T cell lineage specification. The 
obtained results also provide insight into how regulatory SNPs may contribute to disease pathogenesis. 
 

115



The 10 th International Workshop on Computational Systems Biology, WCSB 2013

ANALYSIS OF ALTERNATIVE SPLICING IN PROSTATE CANCER USING EXON-

EXON SPLICE JUNCTIONS  

Sergei Häyrynen1, Matti Annala2, Kati Waltering2, Tapio Visakorpi2, Matti Nykter2

1Institute of Signal Processing, Tampere University of Technology,  

P.O. Box 553, FI-33101 Tampere, Finland 
2Institute of Biomedical Technology, University of Tampere, 

Institute of Biomedical Technology 

FI-33014 University of Tampere, Finland 

sergei.hayrynen@tut.fi, matti.annala@uta.fi, kati.waltering@uta.fi, tapio.visakorpi@uta.fi, 

matti.nykter@uta.fi 

 

 

ABSTRACT 

Alternative splicing of exons may result in transcripts with varying functions. Some splicing events, such as e.g. alterna-

tively spliced androgen receptor gene, have been shown to be associated to the emergency of the castration resistant 

prostate cancer (CRPC). The goal of this work was to screen RNA-sequencing data from samples of different stages of 

prostate cancer to find other splicing event candidates associated with the CRPC cases. 

Screening based on the relative exon expressions, the ratio of reads of an individual exon and combined reads of 

the other exons of a gene, resulted in a list of potential splicing candidates, but especially in the samples from castration 

resistant prostate cancer large numbers of intronic reads introduced a level of uncertainty in the validity of relative exon 

expressions. To obtain more reliable and convincing results the emphasis was shifted to reads aligning to exon-exon 

junctions. Using Ensemble gene annotations a splice junction library of all possible exon combinations inside each gene 

was made. Sequenced reads from 28 untreated prostate cancer tumors, 13 CRPC cases and 12 benign prostatic hyper-

plasia samples were aligned with Bowtie to splice junction library in addition to continuous exonic regions in the anno-

tations and obtained data was screened for statistically significant differing splicing events between sample groups. 

Proposed approach reduces the number of false positive candidates significantly. 

We also compared our approach to published alternative splicing analysis methods such as MISO, a probabilistic 

algorithm for quantification the expression level of alternatively spliced genes (Katz et. al 2010, Nature Methods). With 

published tools the analysis of large number of samples proved to be problematic as many of them, such as MISO, are 

focused on analyzing small number of samples and comparing differences in individual samples instead of sample 

groups. Thus, the utilization of splice junction based approach seems more suitable to large sample cohort than a statis-

tical model developed for two sample comparison.  
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ABSTRACT 

Background: White matter (WM) abnormalities can be assessed in vivo by applying diffusion tensor imaging (DTI), a 

specialized imaging protocol of magnetic resonance imaging (MRI). However, methodological limitations, such as small 

sample sizes, failure to control for pre-injury confounding factors and a lack of analysis standards, can cause bias  in the 

results. 

Objective: To develop a procedure for quantifying WM changes connected with specific neurological diseases with 

enhanced reproducibility and standardization. As an application we studied whether mild traumatic brain injury (MTBI) 

is associated with microstructural changes in WM. 

Materials and Methods: To assess the post-processing method, 75 patients with MTBI and 40 healthy control subjects 

were scanned under the same MRI protocol: whole-brain 3T diffusion weighted MRI, b-factor 0 and 1000 s/mm2 with 20 

diffusion gradient directions. DTI parameters tested for significant differences between patient and control groups were: 

fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). Voxel-wise statistical 

whole brain analysis (WBA) was carried out using tract-based spatial statistics (TBSS). The subjects’ FA data were first 

projected onto a mean FA skeleton, representing the centers of all tracts common to the group, before applying voxel-

wise intra-subject statistics. All MTBI patients and controls were compared taking age and gender into account by cor-

relating their effects as confound regressors and by analyzing age- and gender- matched subgroups. 

Results: A simplified method to operate TBSS analysis in a standardized way was developed in the form of a macro 

code, which merges the several TBSS scripts into one. No significant differences (p<0.01) were found between the con-

trol and MTBI groups or any of the subgroups for the tested DTI parameters in the application. 

Conclusion: A semi-automated procedure for quantitative statistical white matter WBA was developed. Originally TBSS 

is split to several phases requiring user input, but the method was reduced to only one phase, which utilizes various 

parts of the analysis, generating complete results with only a single script. The whole brain WM analysis method was 

made more user-friendly, efficient and reproducible through scripting. In this study TBSS was unable to distinguish any 

significant white matter anomalies between groups. This can be a consequence of the statistical n ature of TBSS, where 

localized abnormalities, characteristic to MTBI, are averaged out in the results. Without positive results the developed 

method was not fully utilized and quantitative results were not processed. 
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ABSTRACT 

Introduction: The differentiation of naive CD4+ helper T cells into effector T cells is largely determined by extracellu-
lar cytokine signals. The cytokine signals activate the differentiation specific transcription factors and control the dy-
namics of underlying regulatory mechanisms. For T helper (Th) 17 cell differentiation, the critical cytokines are TGFβ 
and IL6 which activate the key transcription factors, RORγt and STAT3. 
 
Results: In this study, we construct a mathematical model to describe the dynamics of the core components, which 
drive the Th17 cell differentiation. Our minimal model consists of the key transcription factors (RORγt and STAT3) 
and two cytokine inputs (TGFβ and IL6) driving the differentiation process. The model is implemented in the form of 
nonlinear ordinary differential equations to model the population average of the core components. The mRNA levels 
described by the model can be combined with time-course RNA sequencing data (B6 mice) through a Bayesian frame-
work, which provides us with a data driven, probabilistic description of model parameters and outputs. 
 
Conclusions: Our model is capable of reproducing realistic dynamics in four different cytokine conditions; for two of 
these conditions we have experimental time-course RNA-Seq data which our model is able to reproduce. Furthermore, 
our model can be used to generate predictions to hypothesize and design new wet-lab experiments. For example, we can 
determine cytokine conditions that lead to an increased risk of differentiation failure. 
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ABSTRACT 

The DIABIMMUNE project investigates environmental factors in the development of type 1 diabetes and other 

immune-mediated diseases in Finland, Estonia, and Russian Karelia. There are only minor differences in the 

frequencies of predisposing and protective HLA genotypes in these three countries, but the incidence of type 1 

diabetes is six times higher in Finland compared to Russian Karelia. A wide variety of data are being collected 

from young children born in Espoo (Finland), Tartu (Estonia), and Petrozavodsk (Russian Karelia), including 

e.g. serum, RNA, breast milk samples, stool samples, and food diaries.  

Our group studies the whole blood RNA samples from the DIABIMMUNE cohorts. To date, we have analyzed 

cord blood samples that were collected in Tempus Blood RNA tubes in Espoo (49 samples), Tartu (26 samples) 

and Petrozavodsk (41 samples). The RNA was isolated and GeneTitan
TM

 instrument was used for automated 

hybridization on Affymetrix Human U219 array plate. The aim was to survey general differences in 

immunologically active molecules in these three cities. The samples had not been selected in any way, except by 

date of birth (1.1. − 31.5.2010), mode of delivery (children born by caesarean section were excluded) and RNA 

quality. 

The data were pre-processed by robust multi-array average (RMA) and absent calls were filtered out by 

determining the threshold value empirically for each sample. Differential expression was detected by using the 

R Bioconductor package Limma to fit a linear model and compute a moderated t-statistic for each present 

probeset for all three contrasts: Espoo vs. Petrozavodsk, Tartu vs. Petrozavodsk and Espoo vs. Tartu. The results 

of our ongoing study suggest that some immunologically relevant differences are present between the children 

born in these cities. Molecular enrichment analysis revealed for example upregulated Interleukin 2 signaling in 

Espoo compared to Tartu. 
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ABSTRACT 

Activation and differentiation of T-helper (Th) cells is a complex process orchestrated by distinct gene activation pro-

grams  engaging  a  number  of  genes.  This  process  is crucial for a robust immune response that even a slight imbal-

ance might lead to disease states such as allergy or an  autoimmune  disease.  Therefore,  identification  of genes in-

volved in this processes is important to further understand the pathogenesis of immune mediated diseas es. In this study 

we identified lineage specific genes of Th1  and  Th2  subsets  (at  an  early  stage  of  differentiation), using both the 

traditional genome wide transcriptional  profiling  (microarrays)  and  next-generation  sequencing  techniques.  Next-

generation  sequencing  techniques  do  not  have  the  limitations  of  the  microarrays such as pre-selection bias.  Re-

sults from the comparison of various transcriptomic platforms are useful for future experimental  design.  Importantly,  

these  results  enabled us  to  generate  a  high  confidence  gene  list  that  is  in agreement in all the platforms employed. 

We discovered also  a  panel  of  novel  genes  deduced  from  the  next-generation sequencing data. 
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ABSTRACT

Embryonic stem (ES) cells possess the unique and essential abilities to self-renew and to differentiate into any cell
type, and have great potential in cell therapy and regenerative medicine. The amount of data generated from ES cell
research increases year by year. In order to facilitate the efficient use of the data, we have developed ESTOOLS DA-
TA@HAND (http://estools.cs.tut.fi/), a database for peer-reviewed data from microarray measurements of gene ex-
pression on ES cells. The data in ESTOOLS DATA@HAND is collected from public repositories, and contains more
than 1200 samples from 77 sample sets. The data covers human embryonic stem (hES) cells, human induced pluripo-
tent stem (hiPS) cells as well as dozens of other cell and tissue types reported in the same studies in various condi-
tions. By integrating the published data and extensively re-annotating the samples across all experiments, the data can
be combined and analyzed in new perspectives and new research questions can be asked.

All the data in ESTOOLS DATA@HAND has been preprocessed and normalized systematically across each sample
set. Two sample meta-sets, Affymetrix meta-set (408 samples) and Illumina meta-set (245 samples), have been estab-
lished by jointly normalized data from different studies. Thus, the integrative meta-analysis crossing experiments is
possible. ESTOOLS DATA@HAND has various tools to browse, retrieve, visualize, and analyze the data, for exam-
ple, to detect differentially or similarly expressed genes, to cluster the data, or to analyze enriched Gene Ontology
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for a given list of genes. Further, all samples
have been manually annotated along more than 60 dimensions covering biological properties and experimental pa-
rameters. This annotation information together with the various data analysis options make ESTOOLS DA-
TA@HAND a valuable web resource for the stem cell research community.
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ABSTRACT 

 
Prostate cancer is one of the most common cancers in the modern world. One of the key identified elements in the 

development and progression of the disease is the function of the androgen receptor (AR). Despite the extensive 

research concerning the regulatory role of the AR, the regulation cascade induced by the androgen receptor has not been 

thoroughly characterized. 

Here we use computational analysis of time series microarray data to uncover the temporal regulation of AR 

using data from Massie et al (EMBO J. 2011). First, we identified transcription factors (TF) whose expression change 

significantly during the first hours after hormone stimulation in LNCaP cells. Subsequently, the direct targets of these 

TFs were identified by binding prediction and literature curation. K-means clustering was performed for the expression 

dataset to identify modules of co-expressed genes. 

Two independent methods were used to link the early reacting transcription factors to clusters they putatively 

regulate. First, a gene set enrichment analysis was used for the targets of each early reacting TF in each of the clusters. 

Secondly, a time-lagged correlation based method was applied to the clusters in order to find correlation connections 

with reacting TFs. 

As a result, a cascade of regulatory interactions between AR primary and secondary targets was obtained. The 

early reacting genes, which presumably were direct AR targets seemed to regulate specific clusters of genes. These sec-

ondary targets can be used for further explore the regulatory and signaling pathways that propagate the AR signaling. 

Experimental validation of the predicted cascades is ongoing 
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ABSTRACT 
 

MicroRNAs (miRNAs) regulate gene expression directly through base pairing to their targets or 
indirectly through participating in multi-scale regulatory networks. Often miRNAs take part in feed-
forward motifs where a miRNA and a transcription factor act on shared targets to achieve accurate 
regulation of processes such as cell differentiation. Here we show that the expression levels of miR-27a 
and miR-29a inversely correlate with the mRNA levels of lipoprotein lipase (Lpl), their predicted 
combinatorial target, and its key transcriptional regulator peroxisome proliferator activated receptor 
gamma (Pparg) during 3T3-L1 adipocyte differentiation. More importantly, we show that Lpl, a key 
lipogenic enzyme, can be negatively regulated by the two miRNA families in a combinatorial fashion 
on the mRNA and functional level in maturing adipocytes. This regulation is due to direct targeting of 
the Lpl 3’UTR as confirmed by reporter gene assays. In addition, a small mathematical model captures 
the dynamics of this feed-forward motif and predicts the changes in Lpl mRNA levels upon network 
perturbations. The obtained results might offer an explanation to the dysregulation of LPL in diabetic 
conditions and could be extended to quantitative modeling of regulation of other metabolic genes under 
similar regulatory network motifs. To obtain a global overview of dynamic expression profiles of 
differentiation in adipocytes and related lineages, integration of multiple genome-wide approaches will 
be further applied.  
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ABSTRACT 

Systems biology experiments are studying wide range of topics with various organisms often using next generation 
technologies to produce thousands of data points across different -omics data types, including RNA, methylation, pro-
tein, gene, metabolite and copy number metrics. When analyzing this kind of data, the data mining algorithms and sta-
tistical analyses are yielding ranked and heterogeneous results and association networks distributed over the entire ge-
nome. To assist with the exploration and visualization of these results, we have developed RE-Plot, a web application 
to integrate and visualize genomic feature relationships and annotations across a broad range of organisms - human, 
mouse, nematode, fly, yeast, zebra fish, Arabidopsis and rice.  

 

Custom chromosomal feature networks can be uploaded as simple text files into the RE-Plot, and an optional numeric 
score column, such as p-value or correlation for filtering, is supported. In addition, RE-Plot supports all pairing of ge-
nomic types and the end nodes are color-coded based on its type. The graph represents the chromosome lengths as pe-
rimeter segments, as a reference outer ring, such as cytoband for human. The inner arcs between nodes represent the 
uploaded network allowing also filtering if the optional score column is included. Multiple annotation rings such as 
depiction of highly mutated versus expressed regions, can be uploaded as text files. These genomic annotations can be 
associated with values and visualized as continuous histogram rings. RE-Plot interacts with genomic browsers and 
clicking on applicable nodes will launch the UCSC Genome Browser for human and mouse and gbrowse for zebra fish 
and Arabidopsis. Other supported visualization views are tabular and cytoscapeweb network layouts. The visualization 
outputs can be exported as svg image or tabular text files. The freely available RE-Plot is built using open sourced Ja-
vaScript, HTML5, python and SQLite. 
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ABSTRACT

Blood cells are produced by hematopoiesis, in which hematopoietic stem cells give rise to mature cell types, each hav-
ing its own task in the circulatory or immune system. When a stem cell, precursor cell or fully differentiated blood cell
becomes cancerous, the resulting condition is called myeloma, leukemia, or lymphoma. The classification scheme of
blood cancers, or hematological malignancies, has conventionally relied on clinical traits. Recently, more emphasis
has been given to the lineage of the cell type from which the cancer originates.

Using microarray gene expression data from 6000 cancer and 900 normal blood cell samples we computationally
linked blood cancer subtypes to normal cell types. The underlying hypothesis was that the normal cell type with the
most similar gene expression profile to a cancer subtype is the most likely origin of the malignant behavior. The anal-
ysis was carried out with two different gene subsets: genes with the highest variance over all samples and transcription
factors. Principal component analysis was used to reduce data dimensionality. Each cancer sample was linked to a
normal cell type by k-nearest neighbor classification. The percentage of samples of a specific cancer type classified to
a normal cell type is interpreted as the similarity of the cancer and the normal cell.

The results, so far, reflect fairly well the known biology of hematological malignancies. Myeloid leukemias, for in-
stance, were clearly identified as myeloid originating and lymphomas were strongly linked to lymphocytes. Somewhat
surprisingly, though, lymphomas were also often linked to macrophages. Rather than cell of origin, this suggests high
level of macrophage activation in lymph node tumor samples. In addition, many leukemias showed a signature of
hematopoietic stem cells, indicating a transition towards stem cell like state as the result of cancer development.
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ABSTRACT

Recent studies in Escherichia coli reported that these organisms are capable of, when dividing, biased partitioning of
unwanted substances by the daughter cells, as a means to cope with aging. However, little is known about the possible
effects of stressful environmental conditions on this process, namely, on the kinetics of segregation of the unwanted
protein aggregates to the cell poles and subsequent partitioning in division. We use an RNA-MS2-GFP tagging meth-
od to study the in vivo partitioning in division of unwanted aggregates. We acquired fluorescent confocal time lapse
images as cells divide and accumulate these aggregates, for several hours. By employing a microfluidics system, we
subject cells to various stress conditions such as nutrient deprivation, temperature shift, oxidative stress, and hyperos-
motic shift. Also, we performed qPCR as a means to assess the stress response levels in the conditions tested by using
the rpoS as a target gene. From the data, we report our findings on the bias and kinetics of partitioning of unwanted
substances as a function of the stress levels. The results should provide better understanding of how these organisms
cope with stress.
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ABSTRACT 

Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and 

drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression 

of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3’–

untranslated region (3’-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in gli-

oma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and 

of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 

4p16.3, led to the loss of the 3’-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the 

fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured gliob-

lastoma cells and a mouse xenocraft model, we found that fusion protein expression promoted cell proliferation and tu-

mor progression, while WTFGFR3 protein was not tumorigenic, even under forced overexpression. These results dem-

onstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that 

promotes tumorigenesis in glioblastoma.  
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ABSTRACT

The tendency of bacterial transcription factor (TF) genes and their binding sites to colocalize has been known for a long
time. One hypothesis for the observed colocalization is based on possibly shorter search times for proximal binding sites
in comparison to distal ones. On the one hand, diffusion of signaling molecules in the cytosol has been observed to be
fast, so one might assume that the spatial distributions of TFs is uniform and that these aspects can be neglected, but on
the other hand, in a recent study by Kuhlman and Cox [Mol. Syst. Biol. 8, 610 (2012)], considerable spatial variation in
intracellular TF concentrations was observed, and its effect on regulation recognized.

We present a general, analytical theory for bacterial gene regulation in the case that the TF is a repressor. We consider
several aspects of the regulation process: transcriptional and translational stochasticity in TF production, the transport of
TF molecules to their binding site by facilitated diffusion in a spatially structured cellular environment, and the nonspecific
binding of TFs to the DNA near the binding site. We provide analytical formulae for the mean and variance of the target
gene transcription rate.

We show from analytical and numerical analysis that the distance between a transcription factor gene and its target
gene can drastically affect the speed and reliability of transcriptional regulation. The observed variations in regulation
efficiency are linked to the magnitude of the variation of the TF concentration peaks as a function of the binding site
distance from the signal source. Finally, we discuss transcriptional pulsing and the effect of TF gene location on the
transcription rate of the target gene.
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ABSTRACT 

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor, which senses oxidative and electrophile 

stress. When activated, NRF2 accumulates in the nucleus where it induces the expression of cytoprotective target genes. 

Accumulating evidence suggests that constitutively active NRF2 has a pivotal role in cancer as it induces pro-survival 

genes that promote chemoresistance and cancer cell proliferation. Therefore NRF2 is a novel oncogenic transcription 

factor, but the prevalence on NRF2 dysregulation and functions in cancer have not been fully characterized. We ana-

lyzed microarray data of over 900 cancer cell lines in Cancer Cell Line Encyclopedia (CCLE) and created a NRF2 sig-

nature model based on our previous microarray data to identify cancers with overactive NRF2 status. Four novel cancer 

types and a total of 78 cancer cell lines were discovered by two individual tools to have overactive NRF2 with > 95 % 

probability or FDR of 0.01. Furthermore, we investigated cancer types with constitutively active NRF2 in clinical sam-

ples available in The Cancer Genome Atlas (TCGA) and found characteristic NRF2 signature also in multiple TCGA 

samples. We also studied the TCGA mutation data to assess whether specific mutations could explain the mechanism of 

NRF2 hyperactivity. TCGA data can also reveal altered gene copy numbers and miRNA profiles, which may relate to 

the potential mechanism of increased NRF2 activity. 
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ABSTRACT 

According to several studies, genetic risk factors have been shown to be associated to prostate cancer susceptibility.  

Several chromosomal loci have been shown to be associated to familial prostate cancer. In a recent genome -wide linkage 

study strong signals coming from 2q37 and 17q21-22 were discovered in Finnish population. To study these loci in  detail 

we performed a targeted high-throughput DNA sequencing on 21 families including 65 cases and 5 controls. In addition, 

RNA-sequencing was performed for 33 of these cases from purified RNA from whole blood. The aim of this study was to 

identify variants that associate to prostate cancer susceptibility.  

Variant calling from sequencing was done using Samtools and variants were subsequently annotated using information 

from  UCSC  genome  browser  database.  Three  pathogenicity  prediction  tools  Polyphen -2,  Pon-P  and  Mutation  

taster were used to elucidate the possible phenotypic effects of variants located within genes. As an alternative a p-

proach to prioritize variants for validation in a larger population, a search for possible prostate cancer associated genes 

within the regions of interest was done utilizing information gathered from literature, Gene-Ontology and pathway data-

bases, and Cancer Gene databases. To study the intergenic variants in more detail an eQTL-analysis was conducted 

applying two statistical models: Linear and a non-parametric directional test based model.  

As a result of the pathogenicity prediction 152 variants, which might affect protein function, were discovered. From this 

set of variants 38 in addition with 20 additional variants from selected candidate genes were chosen for further validation 

which is currently ongoing. 
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ABSTRACT 

Indirect immunofluorescence (IIF) imaging can be used for studying protein localization in diagnos is of autoimmune dis-

eases. In the analysis of IIF microscopy images the key challenge is the interpretation of fluorescence patterns, corre-

sponding to protein localizations in cells. The patterns can be used for cell classification and for aiding diagnos is, but 

interpretation of fluorescence patterns is challenging as the image quality varies, and thus, even expert labeling is  not 

fully reliable. Automated methods for classifying the cells are needed in order to enable routine use of computer  aided 

diagnostics to support subjective analysis and in order to make the pattern interpretation more consistent.   

Lately, efforts for increasing the interest in classifying cells in IIF images through organizing contests and sharing  da-

tasets, particularly in the context of HEp-2 cells classification, have led to emergence of several classification methods. 

Typically these methods extract a set of features from the original IIF images and use statistical pattern recognition tools 

for predicting the class, in other words, cell type for an individual object in image. Building such classification methods 

is a two-fold challenge: First, the classifier should be able to deal with noisy, low contrast image data  with highly variable 

intensity levels and pattern distributions where some of the cell types are difficult to distinguish. Second, the amount of 

data available for training is limited since obtaining expert labeling is costly. The first challenge leads to the use of com-

plex classifiers which are known to be prone to overfitting, while the second challenge of having limited datasets makes 

it difficult to generate algorithms that would generalize well. Here we describe an ap proach for classifying HEp-2 cell 

types from IIF images while keeping in mind the generalizability through presenting  several error estimates. 

The cell classification approach involves a feature extraction step, where hundreds of features (related to, e.g., intensity, 

texture, shape, local binary patterns, histograms of oriented gradients) are quantified and normalized before feeding  them 

to the logistic regression and support vector machine classifiers. The data, originally from the ICPR 2012 Con test on 

HEp-2 Cells Classification (http://mivia.unisa.it/hep2contest/), was divided into training and test sets, and the  classifier 

function was trained in nested cross validation loop where classifier parameters were optimized before doing  the actual 

cross validation error estimation. We used 10-fold CV and leave-one-out both in cell and image level for error  estimation.  

Furthermore,  we examined  the correspondence between  the obtained  error  estimates and the error levels obtained for 

test data. 
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ABSTRACT 

Gene expression is a complex and stochastic process, which is regulated at different levels of transcript ion and transla-

tion. Previous studies suggest that gene expression in prokaryotes is controlled mainly at the level of transcription initia-

tion. Here, we study the dynamics of mRNA production under the control of P lac  promoter at the single cell level using 

time lapse microscopy and signal processing methods. We use the MS2-GFP (RNA-protein tagging) method to detect 

the production of mRNA. In this method, a single copy BAC vector contains Plac  tagged with 48 binding sites for the 

MS2d coat protein. Another plasmid, which encodes the production of MS2d -GFP under the control of PLtetO-1, was   

used as a reporter. The transcriptional activity of  Plac can be observed as fluorescent spots inside the cells. Cells con-

taining the plasmids were treated with IPTG and aTc to induce Plac  and PLtetO-1  respectively. Fluorescent images of the 

cells were acquired using a confocal microscope to detect the spots in the cells. From the images, using image analysis, 

we extracted the number of RNA molecules produced, mean and standard deviation of number of RNA molecules per 

cell, interval between subsequent transcription events, and number and  duration of steps in transcription. From the data, 

an analysis of the results is provided, concerning the noise of this process. Also, we compare the activity of this pro-

moter with that of other promoters, recently studied using the same methodology . 
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ABSTRACT 

RNA-sequencing has become a standard method for quantifying mRNA expression accurately in cancer and disease 

studies. A typical RNA-seq pipeline consists of a read aligner and a number of custom tools and scripts to extract ex-

pression values for both known genes and novel transcripts from aligned read counts. In addition, several distinct tools 

to determine typical gene structure features (ORFs, TATA box, poly-A tail motif etc.) from DNA or RNA sequences of 

the identified transcripts are often used. However, a single, easy-to-use and flexible tool that utilizes both alignment data 

and gene structure identification for quantitative and qualitative assessment of novel transcripts has not yet been pub-

lished.   

In this work, Novellette – a tool for thorough novel transcript analysis – is presented. In short, Novellette first extracts 

interesting regions in the genome (e.g. differentially expressed regions between cancerous and healthy samples), then 

filters out regions that overlap with known genes, and finally performs a gene structure analysis for the remaining re-

gions, resulting in a list of novel transcript candidates with their gene structure features. To test Novellette, an RNA-seq 

analysis of both novel transcripts and a subset of known genes is performed with publicly available data. The results 

show that Novellette is able to correctly reconstruct a known gene and identify the typical structural features of protein 

coding genes, when only a single exon of the gene is given as input. Furthermore, Novellette reliably estimates the sig-

nificance of identified novel transcripts based on their structural features and outputs a sorted list of novel transcript 

candidates. 
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ABSTRACT
The cytoskeleton is a cellular skeleton inside the cytoplasm of living cells. The front of the cytoskeleton, also known

as lamellipodium, is the driving mechanism of the cells motility [1]. The lamellipodium is comprised by long double
helix chains of actin protein termed actin-filaments.

The filaments have one of their ends at the cell membrane (plus end), and their other end (minus end) inside the
cytoplasm. They polymerize by addition of actin monomers in their plus end and at the same time they depolymerize at
their minus end. They are inextensible, behave like elastic beams with friction to the substrate. They exhibit crosslinks
between each other and are subjects of forces exerted on them by the membrane as well as contractile forces caused by
myosin. Moreover, new filaments are nucleated at the membrane.

We develop in this work a Finite Element method for the simulation of the both stationary -not moving but still highly
dynamic structures- as well as moving lamellipodia.

The model we resolve numerically was proposed in [2] and [3] and is 4th order parabolic delay problem. It assumes
that the lammelipodium is comprised of two families of 2 dimensional filaments. The System that stems reads as:

µB∂2s
(
η±∂2sF

±)
︸ ︷︷ ︸

bending

− ∂s
(
η±λ±∂sF

±)
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+ η±µAD±t F
±
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(
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±⊥
)
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(
D+

t F
+ −D−t F−

)
︸ ︷︷ ︸

stretching

= 0

where with ± we denote the two families of filaments, F±(s, α, t) ∈ R2, s ∈ [0, L], α ∈ [0, 2π], t > 0 describes the
position of the filament α of the family± at time t, L is the maximal length of the filaments, η± are distributions functions
that for the graded length, φ0 is the preferred angle of the crosslinked filaments, φ their actual angle, and µB , µA, µT , µS

are the state parameters of the problem. Dt = ∂t − v∂s is the material derivative operator where v is the polymerization
speed.

The discretization of the System is with respect to (s, a) and t > 0.We have used two dimensional finite element
method with Hermite basis function along the s-direction, and Lagrange basis along the a-direction.

The non-linearity in the in-extensibility term is treated by an implicit-explicit discretization; this gives rise to two
more equations for λ±. The adhesion term is discretized explicitly in time. The stretching and twisting terms couple the
two families; the temporal derivatives in the stretching term are treated by a predictor-corrector step.

We refer to the links, below for two numerical tests. In the first we consider a rotational symmetric lamellipodium,
and the second one is the twisting term has been deactivated. In both examples, the computational domain has been
discretized with 32 filaments in the α direction and 9 nodes in the s direction. A tangential and inner-directed force has
been implemented as inner boundary condition, modeling myosin pulling forces.

• http://homepage.univie.ac.at/nikolaos.sfakianakis/files/LamEquilibrium.mp4

• http://homepage.univie.ac.at/nikolaos.sfakianakis/files/LamZeroTwisting.mp4
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ABSTRACT 

Following rapid increase of biological data in recent years, mathematical modeling of signaling pathways evolved into 
a large area of research. Many models have been developed so far, describing different pathways, ranging from very 
simple to very detailed, high order systems. 
There are many different methods that can be used to describe such systems and their choice is subject to a particular 
question that the analysis should answer. In this work, ordinary differential equations that describe concentration of 
molecules involved in the pathway will be used. This gives a rise to a high dimensional model with a large number of 
parameters, that are unknown and difficult to estimate. Therefore, each model should be checked with respect to its 
sensitivity to parameter changes. Hence, sensitivity analysis became one of the necessary tools in investigation of sig-
naling pathways, as it provides information not only about dependence between parameter values and system behavior, 
but also about robustness of these systems. 
While sensitivity methods have been successfully applied to analysis of various pathways, they dealt with simulation 
results whose units were clearly determined (as concentration units). It is a reasonable approach if one wants to evalu-
ate, for example, variation of cellular responses due to heterogeneity of cell population or the model is built on fully 
quantitative data coming from experiments providing absolute values of measured quantities. Unfortunately, the latter 
is not the case in molecular biology. In most cases available data, though quantitative, is relative (i.e. available informa-
tion is about the fold increase of the number or concentration of given molecules and not about their absolute values). 
Therefore, to allow for comparison of experimental data coming from different sources and simulation results, normali-
zation of the results, both experimental and numerical, is necessary. Implications of such normalization, as far as sensi-
tivity analysis is concerned, are not discussed in the literature.  
This work summarizes known sensitivity indices with regard to their applicability in analysis of models built on nor-
malized experimental data. Additionally, it introduces another step to sensitivity analysis, based on frequency distribu-
tion of the system output. Thus, it makes possible analysis of sensitivity in pathways whose elements oscillate with 
various frequencies (e.g. when two oscillating regulatory modules are combined into one model, or dynamics of a 
pathway is analyzed in the context of a cell cycle or a circadian clock). 
This work was partially supported by the NCN grant DEC-2012/04/A/ST7/00353” 
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ABSTRACT 
 

The human gut microbiota is highly variable from person to person, but many studies have been conducted to examine 
as to what extent host genetics control the composition. Candidate gene approaches, in which one gene is deleted or 
added to a model organism, have been successful to show that a single host gene can have a tremendous effect on the 
diversity and population structure of the gut microbiome. In contrast to the candidate gene approach, the aim of this 
study is to assess these genotypic associations on a large-scale in human. 
 
For 71 healthy Finnish individuals, the host genomics (from blood derived DNA) was analyzed using the Illumina 
ImmunoChip SNP genotyping platform. The bacterial composition of the gut (from faecal samples) was extracted 
applying bar-coded pyrosequencing to the V1-V3 region of 16s RNA genes, where the sequences were further binned 
into operational taxonomic units (OTUs). To find associations between the host genotype and their corresponding 
bacterial composition, we employed various statistical and computational techniques. We opted for random forests, 
pair-wise linear modeling and one-way analysis of variance (ANOVA). Furthermore, several dimension reduction 
methods such as principal component analysis (PCA), diversity indices and haplotypic blocking, were adopted to 
reduce dependencies and noise within both the genotype as well as bacterial data. 
 
By applying the diverse set of tools, a number of SNPs from host genotype were found to be at least weakly associated 
to the gut microbiota. We continued by mapping the detected SNPs to their closest genes and then carried out pathway 
and ontology enrichment analysis by adjusting the background gene set according to the design of the ImmunoChip. As 
a result, the detected pathways and ontologies, which were either strongly or weakly enriched include, among others, 
immune response, Crohn's disease and systemic lupus erythematosus. Moreover, it was noticed that a handful of 
bacteria might be responsible for approximately 95% of the variation in the bacterial abundances across samples. This 
may give an idea as to which bacteria's abundances are targeted genotypically. Ergo, by using various statistical and 
computational techniques, a better understanding of how the gut microbiota are assembled, maintained and associated 
to the host genotype can be acquired. 
 
This study was supported by the SalWe Research Program for IMO (Tekes - the Finnish Funding Agency for 
Technology and Innovation grant 648/10). Moreover, the SNP annotation came from T1DBase in collaboration with 
Dr. Oliver Burren. 
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ABSTRACT

MicroRNAs (miRNAs) play important roles in gene regulation networks. These molecules are transcribed by RNA
polymerases analogously to protein coding genes. However, many miRNA are processed co-transcriptionally making
the annotation of primary transcripts, which can be tens of kilobases in length, problematic. Accurate annotation of
primary transcripts is necessary for example to study transcriptional regulation of miRNA. Current annotation efforts
are based on infering the putative transcriptions start sites (TSS) based on various histone modifications from ChIP-
seq experiments. Here we use recently developed Global run-on sequencing (GRO-seq), which maps the position,
amount and orientation of transcriptionally engaged RNA polymerases genome-wide, to study nascent RNA with goal
to identify primary miRNA transcripts.

To find TSS from GRO-seq data, we have developed a data-driven method for processing GRO-seq signal. We apply
our method to HUVEC cells to uncover primary sequence for miRNA that are transcribed in these cells. We calculated
the number of coding strand reads at each genomic position to identify the primary transcripts. We then determined
the near-symmetrical, divergent peaks to identify the TSSs. The primary transcript is interpreted as the non-zero sig-
nal starting from the TSS. Comparison with annotated protein coding transcripts and histone modification data from
ENCODE shows that TSS and transcript bodies can successfully be uncovered from GRO-seq data, enabling accurate
identification of primary miRNA transcripts.
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ABSTRACT 

Introduction: Given an i.i.d. sample of pairs (xi , yi ), i = 1, . . . , n, of two random variables X, Y, the mutual information 

(MI) I(X; Y ) (see [1])  is often hard to estimate if one or both of the two random variables are high dimensional and noth-

ing is known about their joint distribution, particularly for small sample sizes. E.g. for a sample size n = 1000, X 10-

dimensional and binary, Y 1-dimensional and binary, Y would already be divided into 2
10

 = 1024 partitions and the space 

of X and Y together into 2048 partitions, and therefore any estimated confidence interval would be  quite large due to the 

small sample size compared to the number of partitions. In this paper this problem is solved by using the k-means (see 

[2]) algorithm to get a specified number of partitions for X and Y and afterwards applying a suitable confidence interval 

estimator. 

Results: In this paper  it is assumed that X = (X1 , X2 , . . . , Xnx) and Y = (Y1 , Y2 , . . . , Y ny) are multivariate random varia-

bles, where each component can be discrete or continuous. Then the following observation is made: As soon as at least 

one component of  X and Y is continuous or countably infinite, and nothing is known about the joint  distribution of    

(X, Y ), the MI I(X; Y ) can be anything from 0 to ∞. Therefore, in this situation, it is impossible to find an upper bound of 

the MI confidence interval, and the best one can hope for is a lower bound. 

This lower bound can be calculated by the following steps. First the k-means algorithm is applied independently on 

the i.i.d. sample of X and Y, (xi ), (yi), i = 1, . . . , n, yielding the new random variables X
q
 and Y

q
 (q for quantized) which are 

1-dimensional, discrete and have freely chosen alphabet sizes kx and ky . By the data processing theorem (see [1]) I(X; Y ) 

≥ I(X
q
 ; Y

q
 ). Next one of the confidence interval estimators described  in [3] and [4] is used to find the desired lower 

bound on the MI confidence interval.  

Now the question remains how to choose kx and ky . Here simply the right tradeoff between bias and variance has to 

be found. Small kx and ky  results in a large loss  of information during the application of the k-means algorithm. Large kx 

and ky  result in a large variance and therefore a wide confidence interval. Somewhere in between is an optimal pair kx , ky  

that gives the best lower bound, and this lower bound can be found by varying kx and ky , starting with kx = 2, ky  = 2 and 

calculating the lower bound for all pairs kx and ky  until the lower bound starts to drop significantly.  

The authors have applied the described for the optimization of amino acid classes in a journal paper that is  currently 

in preparation. 

Conclusion: The described method is to our best knowledge the only  existing result on MI confidence interval estima-

tion for high dimensional random variables when only an i.i.d. sample is given and no further knowledge on the joint 

distribution, and we think that it has many applications in wide variety of fields, especially in molecular biology. 

Acknowledgements: The authors would like to thank the DFG for supporting their research with SPP1395 in the projects 

HU634_7 and STI155_3. 
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ABSTRACT 

The theory of games provides a very powerful tool for analysis of processes in which decision-making plays an im-

portant role. From its very beginning it was mainly applied in economics and econometrics, and soon it was also used 

successfully to solve problems in behavioural and social sciences, control and process engineering, and military situa-

tions. Apart from these applications, new perspectives in biology were introduced by John Maynard Smith and George 

Price [1, 2]. Their ideas linked the mathematical tools of game theory with Darwinian adaptation and species evolution, 

and initiated a new branch in decision-making mathematics called evolutionary game theory (EGT). This new approach 

differs from standard game theory by incorporating rational decision-making by the competing players, strategies are 

treated as phenotypes of individuals in the population acquired through evolution, and payoffs measure a change in the 

degree of fitness resulting from interactions of the individuals representing different phenotypes. EGT is based on the 

assumption of perfect mixing inside the population and interaction of each pair of strategies at one time. To overcome 

this simplification, evolutionary games have been transferred into spatial lattices by application of cellular automata 

techniques where an additional important factor, namely spatial allocation, is included. Although the origin can be 

found in the pioneering works of von Neuman [3], Nowak and May have usually been granted the name of the fathers 

of spatial evolutionary games theory (SEGT) [4]. As mentioned earlier, EGT has been used in biology to predict the 

survival of different phenotypes in a population. To check how and when a population becomes stable it is necessary to 

simulate phenotype  interactions among generations according to a payoff matrix. One way in which the dynamics of 

transients from an initial to new stable states could be studied is the use of replicator dynamics equations (RD) [5].To 

our knowledge, the first work in which evolutionary game theory was used to model the interaction behaviour of tu-

mour cells was presented by Tomlinson and Bodmer [6], who proposed the model  where one of the phenotypes at-

tempts to gain an advantage by producing cytotoxic substances. The results show that actively harming neighbouring 

cells may lead to dominance of the local population by the tumour cells. This study triggered a series of other papers, 

and below we overview the features of the models discussed in these publications and present the main results. We ap-

pend to this analysis our results obtained by SEGT and RD tools if absent in the original study. 

We review a quite large volume of literature concerning mathematical modelling of processes related to carcinogenesis 

and the growth of cancer cell populations based on the theory of evolutionary games. This review, although partly idio-

syncratic, covers such major areas of cancer-related phenomena as production of cytotoxins, avoidance of apoptosis, 

production of growth factors, motility and invasion, and intra- and extracellular signaling. We discuss the results of 

other authors and append to them some additional results of our own simulations dealing with the possible dynamics 

and/or spatial distribution of the processes discussed. Moreover we present also some our original results. 

Keywords: evolutionary games, cancer, replication dynamics, cellular signalling 
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ABSTRACT 

Ovarian cancer (OvCa) is the eighth most deadly tumor in the United States and despite a general low incidence world-

wide in the Scandinavian countries it has an higher incidence. Primary tumors are, generally, treated in a surg ical way 

followed by a variable number of chemotherapic cycles based on the diagnosed stage (FIGO system). Even with the 

pharmacological treatments recurrent tumors appear in more than 50% of patients with high grade OvCa. These are trea t-

ed in a pharmacological way with different chemotherapic drugs such as cisplatin, paclitaxel and doxorubicin. Unfortu-

nately, not all of them are sensitive to such treatments. Thus, it is a major clinical challenge to predict whether a recurre nt 

form of OvCa is resistant to platinum containing drugs or not. Here we use digital image processing and Random Forest 

classifier to predict recurrent forms of OvCa in a automated fashion from histological tissue data. 

 

The dataset is made up of 2444 high resolution histological images from 488 different patients obtained from The Cancer 

Genome Atlas Project enclosed with clinical data about each patient. Each image is processed to extract fe atures in an 

automated fashion. The basic workflow follows implies filtering, k-means clustering, watershed segmentation and outli-

ers removal. After these steps statistical analysis of the detected cell nuclei is performed to build the feature matrix input 

of the classifier. 

 

The computed feature matrix together with platinum sensitivity status coming from the clinical data are used to train a 

Random Forest classifier. In order to evaluate the predictive power of our features set we split the dataset in two parts: 

training set (60% of the whole data) and testing set (40% of data). In the initial testing of our pipeline we got 73% of out -

of-bag classification accuracy during the training phase, and 63% on a blind test on the testing set. 100-fold cross vali-

dation lead to similar results: 69% of out-of-bag accuracy in the training phase and 70% in the blind test. 

 

These results show that our feature set from histological data has predictive power of OvCa recurrence even if more re-

finement work has still to be done. Ongoing work aims to improve the image processing part and extend the classification 

to incorporate features from molecular data, including expression data and genomic alterations. These improvements and 

extensions should lead to even higher prediction accuracy. 
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ABSTRACT 

Isotope labeling experiments (ILE) are a well-established tool for metabolomics and fluxomics studies aiming at the 

absolute quantification of central metabolic concentrations and reaction rates in living cells [1]. Low intracellular me-

tabolite concentrations and complex biological matrices require highly selective and sensitive experimental methods, 

e.g., liquid chromatography combined with Multiple Reaction Mode mass spectrometry (MRM-based LC-MS). Data 

analysis of complex chromatograms is a major bottleneck of the evaluation pipeline requiring the development of effec-

tive and accurate evaluation tools. 

Most software packages for analysis of LC-MS data are either not compatible to MRM data or focus solely on prote-

omics applications [2]. Typically, integration results are unsatisfactory and imply time-consuming manual adjustments. 

To circumvent such limitations, we propose a white-box approach using advanced processing techniques from signal 

processing and pattern recognition combined in a single evaluation workflow. In particular, the similarity of mass chro-

matograms typically found in ILE-generated data, is exploited. This enables speeding up the evaluation process while 

keeping confidence in the analysis results. A graphical user interface allows for user intervention at important steps and 

visualizes various quality measures. 

We benchmarked our analysis workflow with a 
13

C-ILE data set consisting of approx. 2.000 chromatograms. In 95% of 

the cases a deviation of less than 2% compared to an expert operator in terms of 
13

C labeling fractions was found. In-

depth analysis of the deviates revealed two sources for discrepancies: (1) software integration errors (4%) and (2) non-

decidable cases in which rendering either the human or software solution as correct or wrong is hardly possible. The 

latter case was investigated using a data set with chromatograms of different complexity. A user study with 10 partici-

pants showed that (1) for complicated chromatograms a scatter of expert solutions emerges and (2) solutions of 

MRMQuant are well comparable to those of human operators. 

All in all, results generated by MRMQuant are promising, providing a first step towards a more reliable data processing 

toolkit. The workload of human operators is strongly reduced while confidence into the analysis results is kept. Howev-

er, the study demonstrates that evaluation errors are ever-possible (for human and software), and post-integration error 

checking remains time-consuming. Future work focuses on improving the quality indicators and proposing reliable qual-

ity measures. Machine learning techniques are evaluated to enhance the high-throughput processing capabilities of 

MRMQuant. 
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ABSTRACT 

Parameter estimation is very important for the analysis of models in Systems Biology. Stochastic models are of 

increasing importance. We show a fast and efficient method for parameter estimation in stochastic models. The method 

approximates the stochastic model on relatively small time intervals by a system of ordinary differential equations 

(ODE). Every measurement is used for readjusting the approximation. It is shown that the method works well even in 

partially observed systems which behave qualitatively different in stochastic modeling than in ODE modeling. As the 

method is based on ODEs it allows from computational point of view to tackle systems as large as those tackled in 

deterministic modeling. 

Introduction: Computational modeling is a central approach in Systems Biology for studying increasingly complex 

biochemical systems. Progress in experimental techniques, e.g. the possibility to measure small numbers of molecules 

in single cells [1] highlights the need for stochastic modeling approaches. Simulation methods for stochastic processes 

are being developed for decades since [2] and nowadays exist with a lot of variants [3]. The development of parameter 

estimation methods for stochastic models however has recently started. We present a recently developed approach for 

parameter estimation in stochastic models [4] and its performance on a stochastic model of a genetic toggle switch 

[5].Related work uses finite state projection [6] to tackle the chemical master equation or moment closure methods [7]. 

Stochastic simulations in combination with density estimation methods can be found in [8]. The common challenge is 

the size of the state space. 

Method: The MSS method uses one single realization of an intrinsic stochastic time course as input data. The data is 

recorded at discrete times. The method approximates the stochastic model on relatively small time steps with a system 

of ordinary differential equations (ODE). Every new measurement is used for the readjustment of the approximation. 

This allows for capturing the stochastic dynamics. Unobservable species are treated as optimization variables. As the 

method uses a deterministic objective function it can be optimized using global, Bayesian or derivative based 

optimization methods. 

Results: The first test model is an Immigration-Death model in steady state. Using conventional ODE methods for 

parameter estimation the model is structurally non-identifiable. The MSS method is able to exploit the information in 

the stochastic fluctuations and resolve the structural nonidentifiability. The second model is a stochastic model of a 

genetic toggle switch. This model of the genetic toggle switch has a stable steady state in ODE modeling but shows a 

switching behavior in stochastic modeling. As data input for the method a single recording of one of the species at 

discrete time points is used. A reliable test of the MSS method’s performance must be independent of the intrinsic 

stochasticity of a single realization. To address this point, the estimation procedure is repeated 50 times which yields 50 

estimates. Statistics over these will be shown. The repeating of the estimation procedure is only done for testing 

purposes. For the estimation of parameters from experimental data one single recording is enough. Results on a genetic 

toggle switch show that the method is able to estimate the parameters very fast and with acceptable accuracy. Some 

larger confidence intervals are due to identifiability problems. 

Conclusion: We show a method for parameter estimation in stochastic models based on an approximation with ODEs 

on a relatively short time scale. This performance of the method is demonstrated by estimating successfully the 

parameters in a stochastic model of a genetic toggle switch which has in stochastic modeling a qualitatively different 

dynamical behavior than in ODE modeling. The advantage of the method is high speed as no stochastic simulations or 

solutions of the chemical master equation are needed. 
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ABSTRACT 

One of the challenging questions in modelling biological systems is to characterize the functional forms of the processes 

that control and orchestrate molecular and cellular processes. Recently proposed methods for the analysis of metabolic  

pathways, for example dynamic flux estimation, can only provide estimates of the underlying fluxesin a point-wise fa-

shion at discrete time-points (mostly, in fact, just a single time-point) but fail to capture the complete temporal beha-

viour. In order to describe the dynamic variation of the fluxes we additionally require the assumption of  specific func-

tional forms that can capture the temporal behaviour. Here we propose a novel approach to modelling metabolic fluxes: 

derivative processes that are based on Multiple-output Gaussian processes (MGPs), which are a flexible nonparametric  

Bayesian modelling technique. Our derivative process approach does not require detailed knowledge of the dynamics of 

regulatory/metabolic pathways or corresponding ODE models. 

Our approach allows us to characterize the temporal behaviour of metabolic fluxes from time course data. Because the 

derivative of a Gaussian process is itself a Gaussian process we can readily link metabolite concentrations to metabolic 

fluxes and vice versa. Here we discuss how this can be implemented in an MGP framework and illustrate its application 

to simple metabolic models, including nitrogen metabolism in Escherichia coli. 
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