
HAL Id: hal-02748236
https://hal.inrae.fr/hal-02748236v1

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An accept-and-reject algorithm to determine
performance objectives that comply with a food safety

objective
Laurent Guillier, J.C. Augustin, Jean-Baptiste Denis, Marie-Laure

Delignette-Muller

To cite this version:
Laurent Guillier, J.C. Augustin, Jean-Baptiste Denis, Marie-Laure Delignette-Muller. An accept-
and-reject algorithm to determine performance objectives that comply with a food safety objective.
7th International Conference on Predictive Modelling of Food Quality and Safety, Sep 2011, Dublin,
Ireland. �hal-02748236�

https://hal.inrae.fr/hal-02748236v1
https://hal.archives-ouvertes.fr


7th International Conference 
on Predictive Modelling of Food Quality and Safety

7ICPMF, September 12 — 15th, 2011, Dublin, Ireland

Radisson Blu Royal Hotel, Golden Lane, Dublin 8, Ireland

Conference Proceedings

www.icpmf.org/2011

E. Cummins, J.M. Frías and V.P. Valdramidis (Eds.), 
Predictive Modelling of Food Quality and Safety – Conference Proceedings, 

UCD, DIT, Teagasc, Dublin, Ireland



E. Cummins, J.M. Frías and V.P. Valdramidis (Eds.), 
Predictive Modelling of Food Quality and Safety – Conference Proceedings, 
UCD, DIT, Teagasc, Dublin, Ireland

ISBN  1 900454 46 7

1



Preface

This book contains the proceedings of the Seventh International Conference on Predictive Modelling of Food
Quality and Safety (7ICPMF). Following a decision by the Committee of the PMF society the name of the
conference, originally Predictive Modelling in Foods, has been altered in order to accommodate research
activities in the wider area of modelling in Food Science. The conference is hosted in Dublin, Ireland (September
12-15, 2011) and has been co-organised by three major Irish Institutes: University College Dublin, Dublin
Institute of Technology and Teagasc Food Research Centre, all having pioneer research activities in the area of
predictive modelling and food science and being involved in the organisation of other major events, e.g.,
European Symposia — International Association for Food Protection (2010), ProSafeBeef Safety Conference
(2009), FOODSIM (2008).

Over 130 contributions from 23 nationalities have been received for presentation. These are presented as oral
lectures or as posters. The oral presentations have been organised in a single session to ensure that all attendees
will have the chance to actively participate in all the presented works. 

The current state of new outbreaks (e.g., Shiga toxin-producing E. coli) requires the application of modern
quantitative risk assessment techniques that can help food authorities on the tasks of risk management and
communication. Additionally, unraveling the mechanism of chemical, microbial and physical changes require
studies at a microscopic level. All these, and more issues, are addressed in the presented works of this
conference based on either bottom up or top down modelling approaches. The topics are showcased including
modelling at single cell levels, quantitative (microbial) risk assessment, predictive modelling in the food chain,
quality and safety management, modelling of food processes, predictive mycology, and sampling and
experimental designs/plans. Most of the sessions start with a more elaborated keynote lecture from experienced
and distinguished international scientists.

At this point we would like to thank Tom McMeekin for accepting to be the Honorary President of 7ICPMF
and all members of the International Scientific Committee for their active contribution to the review procedure
and session planning. Many thanks also to the companies and institutes who support this event in different ways.

We hope that the UNESCO city of literature will inspire you to continue contributing in the PMF community
with your research findings and finally, wish you a pleasant, enjoyable and fruitful time in Dublin at 7ICPMF.

Vasilis P. Valdramidis

Chair of 7ICPMF & the National Organising Committee
Dublin, September 2011
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Organisation

The Seventh International Conference on Predictive 
Modelling of Food Quality and Safety is organised by: 

University College Dublin Dublin Institute of Technology    Teagasc Food Research Centre

And proudly sponsored by:

Science Foundation Ireland
(www.sfi.ie) 

Food Safety Authority of Ireland
(www.fsai.ie) 

Creme Software Ltd 
(www.cremeglobal.com)

The International Committee on Food 
Microbiology and Hygiene of the IUMS
(http://icfmh.org/)

Society for Applied Microbiology 
(www.sfam.org.uk)

    Innovative Science
(www. innovative-science.com)

Fáilte Ireland
(www.failteireland.ie)

Meet in Ireland
(www.meetinireland.com)
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General Information

Registration Desk 
The registration/information desk will remain open throughout the conference and will be staffed at the
following times:

Monday, 12th September 7.00pm-9.00pm 
Tuesday, 13th September 8.00am-5.00pm
Wednesday, 14th September 9.00am-4.00pm
Thursday, 15th September 9.00am-5.30pm

Badges
For security reasons and catering purposes please make sure your wear your conference badge.

Meetings Room Locations
Oral presentations will be given in the Main Hall 
Poster presentations will be given in Hall 1

Messages
Messages for delegates received at the registration desk will be posted on the message board at
registration. You are welcome to use the message board to contact fellow delegates.

Poster Session
Posters will be displayed for the duration of the Congress in Hall 1. Presenters should refer to the 
program to check which of the three viewing sessions their posters are assigned.

Speaker Technical Area
Please upload your presentation at the beginning of the day on which you are presenting.

Conference Meals 
The following are included in the registration fee for all delegates:

— Drinks Reception – Monday 12th September 7.00pm — 9.00pm in Main Hall of the venue.
— A lunch will be served for all delegates in Radisson Blu restaurant. 

Please make sure that you wear your conference badge to obtain lunch.
— Mid-session coffee/tea breaks will be served as mentioned in the conference program

Certificates of Attendance
Certificates of Attendance will be available upon request from the registration desk.

Conference Secretariat
For post-conference enquiries, please contact 7icpmf@dit.ie
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TEA & COFFEE AREA

MAIN HALL POSTER
PRESENTATIONS
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BAR
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Program Overview

Monday September 12

19.00-21   .00 Reception

Tuesday September 13

08.30-09.00 Opening lectures
09.00-09.30 Plenary lecture
09.30-10.45 Technical Sessions 

10.45-11.30 Tea/coffee break and poster sessions

11.30-12.45 Technical Sessions 

12.45-14.00 Lunches

14.00-14.30 Keynote lecture
14.30-15.45 Technical Sessions 
  
15.45-16.30 Tea/coffee break and poster sessions

16.30-17.15 Technical Sessions 

Wednesday September 14

09.00-09.30 Keynote lecture
09.30-10.45 Technical Sessions

10.45-11.30 Tea/coffee break and poster sessions

11.30-12.45 Technical Sessions 

12.45-14.00 Lunches

14.00-14.30 Keynote lecture
14.30-16.00 Technical Sessions

Free afternoon

19.00 Gala dinner

Thursday September 15 

09.00-09.30 Keynote lecture
09.30-10.45 Technical Sessions 

10.45-11.30 Tea/coffee break and poster sessions

11.30-12.45 Technical Sessions 

12.45-14.00 Lunches

14.00-15.30 Technical Sessions 

15.30-16.00 Tea/coffee break and poster sessions 

16.00-17.00 Technical Sessions 
17.00-17.15 Closing remarks 
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S. Chitlapilly Dass, N. Abu-Ghannam, E.J. Cummins

357 Predictive modelling as a tool for Performance Objectives (PO) achievement and Performance 
Criteria (PC) and Process/Product Criteria (PcC/PdC) calculation for the mycotoxin hazard 
D. García, A.J. Ramos, V. Sanchis, S. Marín

361 Development of predictive model to predict the outgrowth of Listeria monocytogenes in Ready-To-
Eat food products 
S. Kumar, T. Wijtzes, G. Lommerse, D. Visser, E. Bontenbal

362 Application of predictive microbiology in food and drink SMEs: assessment based on 20 years of 
experience 
M. El Jabri, F. Postollec, D. Sohier, C. Travaille, D. Thuault

363 Accurate assessment of microbial safety in food industry: adapting predictive models for specific 
food products 
A.M. Cappuyns, A. Vermeulen, H. Paelinck, F. Devlieghere, J.F. Van Impe
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Quality and Safety Management (presented as posters)

367 The integration of compliance and economic outcomes through the application of enhanced 
traceability and verification systems in food production 
P.C. Pond, A.R. Wilson

371 Pasta Salad Predictor – development of a new tool to support shelf-life and safety management 
N.B. Østergaard, J.J. Leisner, P. Dalgaard

372 Development of response surface model to describe the effect of temperature and relative humidity 
on Staphylococcus aureus on cabbage 
T. Ding, J. Wang, N.J. Choi, H.N. Kim, S.M.E. Rahman, J.H. Park, D.H. Oh

376 Development of an all-Ireland Food Microbial Database and its implications for food chain integrity 
F. Tansey, F. Butler

379 Modelling Pathogens of Foodborne Infections at the Pre-harvest Level of the Food Production Chain 
I. Soumpasis, F. Butler

383 Temperature Integrators as tools to validate thermal processes in food manufacturing 
P.J. Fryer, M.J.H. Simmons, K. Mehauden, S. Hansriwijit, F. Challou, S. Bakalis

Quantitative Food Quality Assessment (presented as posters)

384 Multi spectral imaging analysis for meat spoilage discrimination 
A.N. Christiansen, J.M. Carstensen, O. Papadopoulou, N. Chorianopoulos, E.Z. Panagou, G.-J.E. 
Nychas

388 Development of spoilage classification models using support vector machines and combined 
analytical methods 
F. Mohareb, A. Grauslys, A. Argyri, E. Panagou, B. Conrad, G.-J. Nychas

389 The potential of Raman spectroscopy in evaluating spoilage and safety of beef 
A. Argyri, O. Papdopoulou, Y. Xu, A. Grounta, E. Panagou, R. Goodacre, G.-J. Nychas

390 Rapid assessment of beef fillet quality by means of an electronic nose and support vector machines 
O.S. Papadopoulou, M. Vlachou, C.C. Tassou, E.Z. Panagou, G.-J.E. Nychas

394 Mathematical modelling of migration from packaging into solid foods and Tenax® 
I. Reinas, J. Oliveira, J. Pereira, F. Machado, F. Poças

398 Modelling the kinetics of Galacto-oligosaccharides synthesis in organic solvents using β-galactosidase
F. Manucci, G.T.H Henehan, J.M. Frías

402 Kinetic modelling of quality decay of granulated breakfast cereal during storage 
I.S.M. Macedo, M.J. Sousa-Gallagher, P.V. Mahajan, E.P. Byrne 

406 A methodology to predict the pre-harvest and post-harvest level of polyacetylenes in carrots 
A. Rawson, U. Tiwari, N. Brunton, J. Valverde, M. Tuohy, E. Cummins

407 Development of shelf life predictive model for fresh-cut produce 
F. Oliveira, M. J. Sousa-Gallagher, P. V. Mahajan, J. C. Teixeira

411 Modelling of antibacterial effect of spice extracts on growth of spoilage flora in VP and MAP cooked 
lamb product on chilled storage 
S. AL-Kutby, J. Beal, V. Kuri 
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Predictive models and tools for food processing (presented as posters)

412 Modelling the effect of aw and fat content on the high pressure resistance of Listeria monocytogenes
S. Bover-Cid, N. Belletti, M. Garriga, T. Aymerich

416 Effect of nisin and citral on the heat resistance and recovery of Alicyclobacillus acidoterrestris spores 
J.P. Huertas, M.D Esteban, A. Palop

420 Antimicrobial activity of melt blended and Layer by Layer (LBL) self assembled Low Density 
Polyethylene (LDPE) – Silver Nanocomposite 
M. Jokar, R. Abdul Rahman

423 Comparison of the kinetic data of spores obtained in different heating systems 
Z. Atamer, S. Bachmann, M. Witthuhn, J. Hinrichs 

427 From laboratory inactivation experiments in static conditions to spore reduction at ultra-high 
temperature processing 
M. Witthuhn, O. Couvert, Z. Atamer, J. Hinrichs, L. Coroller

431 Effect of heat treatment and recovery conditions on the inactivation of Salmonella Enteritidis 
M. Munoz-Cuevas, A. Metris, J. Baranyi

435 Modelling the thermochemical non-isothermal Bacillus coagulans spores inactivation in nutrient broth
added with oregano essential oil 
L.U. Haberbeck, C. Dannenhauer, B.C. Salomão, G.M.F. Aragão

439 Kinetic characterisation of Bacillus sporothermodurans in liquid food under static and dynamic 
heating regimes 
F. Cattani, S. D. Oliveira, C.A.S. Ferreira, P.M. Periago, M. Muñoz, V.P. Valdramidis, P. S. Fernandez 

443 Modelling the survival and growth of Salmonella spp. in vacuum-packaged slices of RTE stuffed 
chicken breast as a function of temperature 
A. Morales-Rueda, E. Carrasco, A. Valero, F. Pérez-Rodríguez, M.Y Rodríguez- Caturla, G.D 
Posadas-Izquierdo, R.M García-Gimeno and G. Zurera

447 Modelling the influence of the starter culture on proto-cooperation 
W.S. Robazza, D.A. Longhi, G.A. Gomes, D.O. Stolf

451 Modelling the effect of high pressure on the activity of orange limonoid glucosultransferase and limonin 
degradation
E. Gogou, M. Strofyllas, L. Goga, P. S. Taoukis

452 Monte Carlo simulation to predict the shelf-life of high pressure and thermally processed orange juice 
B. Tiwari, T. Norton, C.Brennan, PJ Cullen, C. O’Donnell

Modelling of thermal processes (presented as posters)

453 Modelling the heat resistance of Bacillus spores as a function of sporulation temperature and pH 
E. Baril, L. Coroller, O. Couvert, I. Leguerinel, F. Postollec, C. Boulais, F. Carlin, P. Mafart

457 Effect of thymol in heating and recovery media on the heat resistance of Bacillus species 
M.D. Esteban, J.P. Huertas, and A. Palop

461 Modelling inactivation of Leuconostoc mesenteroides in dextran added to dairy ingredients 
C.P. Pacheco, A.R. Silva, P.R. Massaguer 

465 Calorimetric assessment of Listeria innocua relevant to thermal processes 
T. Skåra, A.M. Cappuyns, D. Skipnes, E. Van Derlinden, J.T. Rosnes, J.F.M. Van Impe, V.P. Valdramidis

469 Effect of a gelified matrix on the heat inactivation of E. coli and Salmonella Typhimurium 
E.G. Velliou, E. Van Derlinden, L. Mertens, A. Cappuyns, A.H. Geeraerd, F. Devlieghere, J. Van Impe

473 A theoretical assessment of microbial inactivation in thermally processed fruits in syrup in still cans 
A. Dimou, N. G. Stoforos, S. Yanniotis
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Predictive Mycology (presented as posters)

474 An asymmetric model dedicated to germination of fungi 
P. Dantigny

478 Influence of humidity, time of storage and temperature on the germination time of Penicillium 
chrysogenum
S. Nanguy, P. Dantigny

482 Modelling the effect of temperature on the germination and mycelium formation dynamics of fungal 
spores 
M. Gougouli, K.P. Koutsoumanis

486 From single spores to mycelium: variability of Aspergillus westerdijkiae, Aspergillus carbonarius and 
Penicillium verrucosum growth and ochratoxin A production
A.E. Kapetanakou, E.H. Drosinos, M. Mataragas and P.N. Skandamis

490 Predictive modelling to describe the effect of water activity and temperature on the radial growth of 
heat resistant molds 
A. Tremarin, B.C.M. Salomão, S. Zandonai, G.M.F. Aragao

Sampling and experimental designs/plans (presented as posters)

494 Optimal sequential sampling design for improving parametric identification of complex 
microbiological dynamic systems by nonlinear filtering 
J.-P. Gauchi, J.-P. Vila

498 A novel class of statistical process control for microbial counts in foods 
U. Gonzales-Barron, F. Butler

499 Proposal of operating characteristic curves developed for Cronobacter in powder infant formula 
A. Moussida, F. Butler

500 Tracing the contamination levels of acid curd cheese implicated in an outbreak of listeriosis in Austria,
2009/2010 
P. Skandamis, M. Wagner, D. Schoder
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Predictive microbiology, theory and application: is it all about rates? 

T.A. McMeekin, J. Olley, D.A. Ratkowsky, T. Ross 

School of Agricultural Science and Tasmanian Institute of Agricultural Research, University of Tasmania, Hobart, 
Tasmania 7001, Australia. 
 
Keywords: growth rates, Copenhagen School, balanced growth, stringent response and 
persister cells, temperature models, integrating ecology, physiology and genomics 

Rates: all pervasive and all persuasive? 
Time scales range in microbiology from milliseconds for enzyme catalysed reactions to 
doubling times of seven minutes for Clostridium perfringens, to days, weeks or months for 
psychrophiles growing under their optimum conditions, to 3.5 billion years to reach the 
current stage of adaptive evolution. In microbial ecology and physiology we tend to focus on 
the rates at which population and intracellular events occur with time as the universal 
denominator. A very readable account of early work on bacterial growth rates was given by 
Schaechter (2006) indicating the major contribution of Monod. In 1958 Schaechter had also 
introduced the concept of “balanced growth” during which all cell constituents increased in 
proportion in the same time interval. From that realisation it became clear that growth rate 
was the primary factor determining the physiological state of cells. Schaechter (2006) also 
argued strongly for precision in design and execution of experiments to ensure balanced 
growth. Prerequisites included exact media composition, inoculum size and time/temperature 
conditions to prepare starter cultures. Cooper (1993) is a “must read” paper to understand the 
origins and meaning of the Schaechter – Maaløe – Kjeldgaard experiments and the excitement 
generated by the pioneering research of the Copenhagen School. The balanced growth 
condition also provided a physiological explanation for transition from the lag phase to the 
exponential phase and then to the stationary phase of growth, respectively as a nutritional up-
shift and a series of nutritional down-shifts. While the lag and stationary phases are regions of 
zero growth rates, it is important not to lose sight that zero rates have important physiological 
and practical implications. Another member of the Copenhagen School (Neidhardt 1999) 
wrote about the obsession with dN/dt but did not subscribe to the view that emphasis on 
growth had delayed work on the stationary phase.  

The stringent response (SR) – paradigm lost in food microbiology? 
Earlier we briefly considered the gamut of time spans in microbiology and here note that even 
major changes, involving a large part of cellular physiological capacity, can occur in seconds. 
A good example is the transition from the relaxed response (RR) state to that of the SR and 
the converse switch which occur in 20-30 seconds (Cashel 1975). Thus, in a few seconds the 
purpose of cellular metabolism is totally reversed from a focus on growth (RR) to a focus on 
survival (SR). The SR may provide an explanation for the Jameson Effect which describes a 
non-specific interaction where the component of a mixed culture first approaching its 
maximum population density (MPD) produces sufficient levels of the alarmone, guanosine 
tetraphosphate (ppGpp) signalling its entry into the SR state as well as that of competing 
organisms that cease growth before reaching their MPD. Relief from the SR condition is 
achieved by inoculation into a fresh batch culture or is prevented by growth in continuous 
cultures in which the alarmone is continually diluted and nutrients are continually added. 
However, if a continuous culture is set up in a retentostat (a chemostat with 100% feedback of 
biomass) very slow or zero growth rates ensue. The phenomenon can be attributed to the 
programmed objective of the SR physiological state: survival at any cost. Cell density and 
quorum sensing compounds have been proposed to have a role in the mechanism of transition 
from the exponential to the stationary phase. However, as other factors also change, quorum 
sensing alone is insufficient to explain the transition. An alternative conclusion, based on both 
batch and continuous culture experiments, is that specific growth rate plays a prominent role 
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and that ppGpp is an intracellular signal linking general stress responses and specific growth 
rate. From an ecological standpoint this strategy of self determination by individual cells is 
preferable to the more risky option of depending on signals from other cells. 

Persister cells: stealth bombers in the microbial survival armoury? 
Cells with slow or zero growth rates confer a very distinct advantage on microbial 
populations in that, as a result of minimal metabolism, they are extremely difficult to 
inactivate. This trait is well described by the term “persisters” which represent a distinct 
physiological state in E.coli (Shah et al., 2006) and other organisms such as Pseudomonas 
aeruginosa, Mycobacterium tuberculosis and Candida albicans (Silver, 2011). 

Categorising models in predictive microbiology 
The title for this section does not require a question mark as the scheme of Whiting and 
Buchanan (1993) classifying predictive models as primary, secondary and tertiary is entirely 
logical. Commonly used primary models describing sigmoidal bacterial growth curves 
include the Logistic, Gompertz and Baranyi models. Secondary growth models describe the 
effect of environmental factors on growth rate. A paper by Mejholm et al. (2010) describing 
the combined effects of up to nine environmental factors on the growth of L. monocytogenes 
is in the “must read” category. Tertiary models are algorithms incorporated into devices that 
record and integrate the effect of environmental variables. Microbial Resources Viewer 
(MRV: http://mrv.nfri.affrc.go.jp) was developed at the National Food Research Institute, 
Japan (Koseki 2009). MRV provides growth/no growth data sets with growth rate contour 
plots allowing users to identify conditions at the growth/no growth boundary visually as well 
as quantitatively. Koseki (2009) is another “must read” publication.  

Temperature dependence models – a never ending source of scientific debate? 
Temperature is the primary target for measurement as it is the factor likely to fluctuate, to the 
greatest extent and most often. The major “competitors” for this purpose are Arrhenius-type 
and Bělehrádek-type models. Whilst the goodness fit of these models have been compared in 
many studies differences are often minimal. The conclusion is that both logarithmic and 
square root transformations of data are very effective in homogenising variance. Subsequent 
arguments may arise about the relative merits of a model on the basis of other criteria e.g. 
does the model have a mechanistic basis? Arrhenius type models have their origin in chemical 
reaction kinetics which has been sufficient to give them a “mechanistic aura” despite not 
adequately describing biological reaction kinetics. But this is a non-issue if the primary 
objective of homogenising variance is achieved. Differences of opinion on the goodness of fit 
within a particular model type also arise e.g. what is the best exponent to select for a 
Bělehrádek-type model. Normally an exponent of 2 is used giving rise to square root models 
but Huang (2010) suggested that a better fit was obtained with an exponent of 1.5. Much of 
this discussion arose from failure to recognise that Tmin is the theoretical minimum growth 
temperature. It is not the actual minimum growth temperature which is several degrees higher 
than Tmin. The widely accepted concept of absolute zero, proposed by Lord Kelvin as a basis 
for chemical reaction kinetics, suggests that a theoretical Tmin has a credible precedent in 
science. 
 

Can we effectively integrate knowledge of quantitative microbial ecology with 
knowledge of microbial physiology and genomics? 
Food industries are faced with a complex series of drivers that interact with each other 
changing with time in relative importance. One of the drivers, food safety, is a sine qua non 
and has considerable influence on the approach adopted by industry and regulators to other 
drivers including political, economic, social, technological, environmental and regulatory and 
trade drivers (Quested et al. 2010). 
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Above we suggest that the quantitative microbial ecology of foods is now underpinned by 
enormous databases that have been synthesised into knowledge capsules termed predictive 
models. The need to link this ecological resource with knowledge of microbial physiology is 
not new. However, it seems that in food microbiology we may have squandered the benefits 
of cementing this connection by forgetting the basic experiments of the Paris and Copenhagen 
Schools in the 1940’s and 50’s.  
As world population increases food security and increasing food prices are now front of mind 
for government policy makers and food industry strategists in developed countries. At the 
same time hunger, malnutrition, famine and poverty continue unabated in the developing 
world, often exacerbated by environmental degradation and natural disasters. This brings into 
stark relief the imperative to preserve and store foods post-harvest to prevent major loss of 
food resources after successful growing and harvesting. Properly controlled storage 
conditions will maintain nutritional qualities, and ensure safety.  
This is where food scientists and technologists have a pivotal role and responsibility and 
where food microbiologists can contribute greatly to global goals. The principles of microbial 
eco-physiology are the same whether the target is safe and nutritious food and clean water for 
underprivileged communities or minimal processing to produce “as fresh” food for wealthy 
consumers with apparently sophisticated palates. It follows that the answer to the last question 
posed must be yes! We are encouraged by studies such as that by Vieira-Silva and Rocha 
(2010) which the authors summarised as follows: 
“Microbial minimal generation times vary from a few minutes to several weeks. The reasons 
for this disparity have been thought to lie on different life-history strategies…. Prokaryotes 
have evolved a set of genomic traits to grow fast, including biased codon usage and/or… gene 
multiplication for dosage effects. Here, we studied the relative role of these traits and show 
they can be used to predict minimal generation times from the genomic data of the vast 
majority of microbes that cannot be cultivated. …this inference can also be made within 
complete genomes and thus be applied to metagenomic data…. Our results also allow a better 
understanding of the co-evolution between growth rates and genomic traits and how they can 
be manipulated in synthetic biology. Growth rates have been a key variable in microbial 
physiology in the last century…and they are linked with genome organization and 
prokaryotic ecology.” 

Conclusions 
We conclude that the Copenhagen School struck a rich research vein in the late 1950’s and 
that the “mother lode” continues to provide excellent scope for returns in significance and 
impact. Growth rates are, indeed, all pervasive and all persuasive! 
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alejandro.amezquita@unilever.com) 

Abstract 
The objective of this study was to evaluate the combined effects of temperature, pH, NaCl, 
potassium sorbate and acetic acid on the inactivation of Escherichia coli O157:H7. Seventy 
five experimental conditions were tested and the organisms enumerated for up to 28 days. The 
survival kinetics were described by the Weibull model (defined by a scale parameter δ and a 
shape parameter p).The secondary model for δ was developed based on the Gamma concept 
extended to bacterial survival. Based on experimental observations, the parameter p was 
modelled as a function of temperature and NaCl concentration. A one-step fitting procedure 
was performed to identify directly the secondary model parameters from the survival curves. 
The model describes accurately the observed kinetics (R2

adj=0.87). Model validation was 
performed by comparison against ComBase and literature data. Results are promising for 
further application of the Gamma concept for non-thermal inactivation and the model 
developed will aid in supporting the safe design of dressing formulations ensuring rapid 
inactivation of E. coli O157:H7 at ambient and chilled temperatures. The approach taken may 
also be applied to other infectious agents that are relevant to this type of product formulation.  
 
Keywords: Escherichia coli O157:H7, non-thermal inactivation, weibull model, Gamma concept 

Introduction 
Salad dressings rely on low pH combined with acetic acid and to a lesser degree, citric and 
lactic acids (in the aqueous phase), natural antimicrobials and preservatives such as sorbic or 
benzoic acid, to control pathogenic and spoilage microorganisms. The objective of this work 
was to develop a model for the effects of temperature (5, 10 and 23°C), pH (3.5-4.7), NaCl 
(2-10%), potassium sorbate (0-0.1%) and acetic acid (0-0.5%) on the inactivation of 
Escherichia coli O157:H7. The ability of the Gamma concept (successfully applied to model 
bacterial growth, see e.g. Rosso et al. 1995) to model non-thermal bacterial inactivation was 
investigated.  

Materials and Methods 
Microorganism and media preparation 
A cocktail of five strains of E. coli O157:H7 was used. Experiments were conducted in 
Tryptone Soya Broth (TSB) and seventy five experimental conditions (with two independent 
replicates) were studied. The different media compositions were prepared by the addition of 
sodium chloride, acetic acid and potassium sorbate to TSB and were pre-incubated at the 
appropriate temperatures (23°C for the ambient experiments and 5°C and 10°C for the 
experiments at chill) for 24 hours prior to inoculation. 
Each composition was inoculated with 100 μl of the pathogen cocktail to give an inoculum of 
ca. 106 cfu/ml. Compositions were incubated at the appropriate temperatures. E. coli O157:H7 
was enumerated at various time-points for up to 21 days (23°C) or 28 days (5 and 10°C) by 
spread plating onto Tryptone Soya Agar supplemented with 0.1% pyruvate (TSAP). Each 
inactivation curve consists at least of 6 time/ log counts points. 

Mathematical model 
The Weibull model reparametrized by Mafart et al. (2002) was used as a primary model. It is 
defined by a scale parameter δ and a shape parameter p. The secondary model is based on the 
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Gamma concept which assumed that the combined effects of the environmental factors on the 
bacterial growth rate can be obtained by multiplying their separates effects. The concept has 
been extended to bacterial resistance by Mafart (2000): 
 

 

1
δ

=
1

δ *
λi Xi( )∏        (1)  

  
where λi (Xi) is the effect of the environmental factor Xi and δ* is the value of δ when 

 

λi Xi( )∏ =1. When taking the logarithm of both sides of Eq. (1), it becomes: 
 
 

 

log δ( ) = log δ *( )− λi Xi( )∑       (2) 
 
Assuming that the effect of each factor can be described by ( ) iiii XaX =λ , Eq. (2) can be 
rearranged into: 
 
 ( ) [ ] [ ] [ ]SorbicUaAceticUabaHaTaa w 543210log +++++= +δ  (3) 
 

Where T is the temperature, [H+] is the proton concentration (x10-3 mM), bw=sqrt(1-
aw),  [AceticU] and [SorbicU] are the concentrations of undissociated acetic and sorbic acid 
(mM), respectively. 

Based on experimental observations the shape parameter p was modelled as a 
function of temperature and bw by the following equation: 
 

 

p = b0 + b1 *T + b2 *bw       (4) 

To minimize the effects of the structural correlation between p and δ in the Weibull model, a 
one-step fitting procedure (implemented in Matlab R2009a, The Mathworks, Natick, MA, 
USA) was performed to identify directly the secondary model parameters from the survival 
curves. The interpolation region of the model was defined by the MCP (Minimum Convex 
Polyhedron) which encompasses all the conditions used to develop the model (Baranyi et al. 
1996). 

Model validation 
There are limited literature data in the model region; validation was performed with the aim 
of studying the model performance beyond the interpolation region. Model outputs were 
compared against ComBase data (30 curves, temperature range: 5-20°C, pH range: 3.5-5.0, 
NaCl range: 0-10%) and observations from Chapman et al. (2006) (ambient temperature, pH 
range 3.5-4; NaCl range: 1-8%; acetic acid range: 0.7-2.1%). Predictive ability of the model 
was assessed by comparing:  (i) whether or not a 3-log reduction was achieved within 28 days 
(maximum length of experiment), and (ii) the time to 3-log reduction observed and predicted 
by the model.  

Results and Discussion  
Effects of environmental factors 
At chilled temperatures (5°C and 10°C), only a few conditions gave an inactivation greater 
than a 3-log reduction within the sampling period of 28 days. As expected, faster inactivation 
was observed at ambient temperature. Compositions with potassium sorbate appeared to be 
the most effective at causing rapid inactivation. For example, at pH 3.8, 6% NaCl, 0.2% 
acetic acid, cells of E. coli O157:H7 were able to survive for 21 days whereas the 
microorganism was not detected after 7 days when 0.05% potassium sorbate was added to the 
formulation.  
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Modelling 
The model described accurately the observed kinetics (R2

adj=0.87). Examples of fitted curves 
are shown in Fig. 1.Estimated parameters and standard errors are indicated in Table 1. 
A strong structural correlation between the parameters p and δ has been highlighted by other 
researchers (Couvert et al. 2005). To overcome this problem, instead of modelling separately 
two parameters mutually dependent on each other, we have therefore used a single-step fitting 
procedure. Attempts to follow the usual two-step procedure (primary modelling and 
development of secondary models of δ and p) led to a poor description of the inactivation 
curves (data not shown). An additional advantage of the one-step fitting approach used in this 
study was that it also allowed for inclusion of curves exhibiting only small log reductions 
(and therefore for which the parameters of the Weibull model could have not been identified 
otherwise). 
The parameter p was not fixed to a single value as in other studies (e.g. Couvert et al. 2005) 
as the survival curves exhibited different shapes (linear, upward and downward curvatures) 
depending on the experimental conditions. A linear relationship between p and the 
temperature and bw was assumed, which was found sufficient to describe the data accurately. 
Attempts to introduce the effects of pH, sorbic and acetic acids in Equation 4 did not improve 
significantly the quality of fit (at p=0.05). 

Table 1: Estimates of the model parameters and their 95% confidence intervals. 
Model Parameter Estimate 95% Confidence 

Interval 
ln(δ) a0 2.98 [2.89  3.07] 

 a1 -0.034 [-0.036  -0.032] 
 a2 -1.75 [-1.85  -1.65] 
 a3 0.22 [0.18  0.25] 
 a4 -0.022 [-0.026  -0.019] 
 a5 -6.58 [-6.81  -6.34] 
 a6 -0.31 [-0.36  -0.26] 
p c0 1.94 [1.67  2.21] 
 c1 0.052 [0.044  0.062] 
 c2 -0.20 [-0.23  -0.17] 
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Figure 1: Examples of comparison between observed (replicate 1: ▲; replicate 2: ■) and 

fitted inactivation curves (solid line). a) T=5°C, pH=4.6, NaCl=6%, %potassium sorbate=0.1, 
%acetic acid=0.5%; b) T=23°C, pH=3.8, NaCl=9%, %potassium sorbate=0.05, %acetic 

acid=0.2. 

The main purpose of the model is to provide predictions either at chilled (5-10°C) or at 
ambient temperature (23°C). In their model on inactivation of L. monocytogenes, Coroller et 
al. (2011) used two functions for the effect of temperature on ln(δ): a linear effect for T≤12°C 
and a quadratic effect  (for T>12°C). Using a quadratic model did not improve the description 

a b 
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of our data but it could be due to the lack of data between 10 and 23°C. Consequently, the 
model should be used with caution for temperatures values ranging between 10 and 23°C. 

Model validation 
Out of 30 survival curves selected in ComBase, only 8 fell within the model MCP. For 7 
conditions, the model predicted correctly that a 3-log reduction in the concentration of E. coli 
O157:H7 was not achieved within 28 days. For the remaining condition, the model provided 
fail-safe predictions (3-log reduction not achieved whereas observations showed a reduction 
>3-log). Fig. 2 shows comparison between observed and predicted time to 3-log reduction for 
conditions outside the model region. Although, the model would need to be improved for 
predictions in an expanded region, results are promising for further application in a wider 
experimental range. 
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Figure 2: Observed vs. predicted time to achieve a 3-log reduction of E. coli O157:H7 (data 

outside the model interpolation region, o: Combase data, : Chapman et al. 2006). 

Conclusions  
The Gamma concept was successfully applied for the non-thermal inactivation of E. coli 
O157:H7 at ambient and chilled temperatures. The methods used in this work include a one 
step fitting procedure to minimize the effects of the structural correlation between the Weibull 
model parameters and the description of the shape parameter p as a function of temperature 
and water activity. Future work will focus on extending the model to a wider range of 
formulations and on applying the same methodology for other infectious pathogens, such as 
L. monocytogenes or Salmonella spp. 

References 
Baranyi J., Ross T., McMeekin T. and Roberts T.A. (1996) The effect of parameterisation on the performance of 

empirical models used in Predictive Microbiology. International Journal of Food Microbiology 13, 83-91. 
Chapman B., Jensen N., Ross T. and Cole M. (2006) Salt, alone or in combination with sucrose, can improve the 

survival of Escherichia coli O157 (SERL 2) in model acidic sauces. Applied and Environmental Microbiology 
72, 5165-5172. 

Coroller L., Kan-King-Yu D., Leguerinel I., Mafart P. and Membré J-M. (2011) Modelling of growth, growth/no-
growth interface and inactivation areas of Listeria in foods. International Journal of Food Microbiology 
(submitted to publication). 

Couvert O.,  Gaillard S., Savy N., Mafart P. and Leguérinel I. (2005) Survival curves of heated bacterial spores: 
effect of environmental factors on Weibull parameters. International Journal of Food Microbiology 101, 73-
81. 

Mafart P. (2000) Taking injuries of surviving bacteria into account for optimising heat treatments. International 
Journal of Food Microbiology 55, 175-179. 

Mafart P., Couvert O., Gaillard S., and Leguerinel I. (2002)  On calculating sterility in thermal preservation 
methods : application of the Weibull frequency distribution model. International Journal of Food 
Microbiology 72, 107-113. 

Rosso L., Lobry J.R., Bajard S. and Flandrois J.P. (1995) Convenient model to describe the combined effects of 
temperature and pH on microbial growth. Applied and Environmental Microbiology 61, 610-616. 

24



On the evaluation of the gamma hypothesis: the effect of pH on the 
cardinal temperatures 

M. Baka, E. Van Derlinden, K. Boons, J. F. Van Impe 

CPMF2 – Flemish Cluster Predictive Microbiology in Foods – www.cpmf2.be 
Chemical and Biochemical Process Technology and Control (BioTeC), Department of Chemical Engineering,  
Katholieke Universiteit Leuven, Leuven, Belgium, [maria.baka, jan.vanimpe]@cit.kuleuven.be 

Abstract 
Prediction of the microbial specific growth rate and cardinal temperatures for growth are 
important issues in food industry. The Cardinal Temperature Model with Inflection (CTMI), 
which describes the influence of temperature on the specific growth rate from the minimum 
(Tmin) to the maximum growth temperature (Tmax), is a suitable model to incorporate the 
temperature effect. Following the so-called gamma hypothesis, the cardinal temperatures are 
only determined by the microbial temperature response and not influenced by other 
environmental conditions. The purpose of this research is to examine if pH influences the 
values of the cardinal temperatures. CTMI parameters were derived based on experimental 
data. Tmin, Tmax and μopt as a function of pH follow a parabolic trend. For Topt, however, no 
obvious trend could be observed. 
 
Keywords: E. coli, cardinal temperatures, pH, gamma concept 

Introduction  
In recent years, it is widely accepted that temperature, pH and water activity are among the 
major environmental factors that affect growth. In several articles, predictive models have 
been developed that describe microbial growth rate as a function of different environmental 
factors (see, e.g., McMeekin et al. (1987), Wijtzes et al. (1993; 1995), and Zwietering et al. 
(1993)). These models are based on the gamma concept where the effects of controlling 
variables can be multiplied, and cardinal parameters are not a function of other variables 
(temperature, pH, and water activity). By the combination of the previous models, Wijtzes et 
al. (2001) validated the gamma concept over a wide range of controlling variables. In the 
current work, the effect of different pH values (between the limits that permit growth) on the 
cardinal temperatures of E. coli K12 is examined. As such, the gamma hypothesis is 
evaluated. In addition, cardinal temperatures and cardinal pH values are estimated. 

Materials and Methods 

Bacterial strain and inoculum preparation 
E. coli K12 MG1655 (CGSC#6300) was acquired from the E. coli Genetic Stock Center from 
Yale University. For the inoculum, a loopful of E. coli stock culture was transferred into 20 
mL BHI incubated at 37 ºC. The refresh of the inoculum took place after 9 h, when 20 μL 
were transferred into 20 mL fresh BHI and again incubated at 37 ºC for 15h.  

Bioreactor experiments 
Dynamic experiments were performed in a bench top bioreactor (BioFlo 3000, New 
Brunswick Scientific Inc.). The reactor vessel, filled with 3.5 L BHI was aerated at 2 L/min 
and the stirrer speed was set at 400 rpm. To avoid foam accumulation, 1 mL of anti-foam 
agent (Sigma) was added at the start of the experiment. Time–temperature profiles were 
implemented via the AFS-biocommand Software (New Brunswick Scientific Inc.). The 
bioreactor unit was connected to a circulation cooler (CFT-33, Neslab Instruments Inc.) 
enabling temperature control. The pH value was kept constant by the addition of base (1 N 
KOH) or acid (1 N H2SO4) (Acros Organics). At regular time intervals, a sample was taken 

25



aseptically to determine the cell density via plate counting. The appropriate dilutions were 
plated on BHI agar (i.e., BHI + 14 g/L agar) using a spiral plater (Eddy Jet, IUL Instruments 
s.a.). Plates were counted after 18 hours of incubation at 37 °C. 

Cardinal temperature model with inflection (CTMI) 
The Cardinal Temperature Model (CTMI) with inflection point relates the maximum specific 
growth rate with temperature (T [ºC]) (Rosso et al. (1995)) 
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with Tmin, Tmax, Topt [ºC] the minimum, optimum and maximum temperatures for growth. At 
T>Tmax and T<Tmin, the growth rate is zero. 

Cardinal pH Model (CPM) 
The CPM model describes the effect of pH on the maximum specific growth rate, i.e, 
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(2) 
with pHmin, pHopt, pHmax [-] the minimum, optimum, maximum pH values for growth. At 
pH>pHmax and pH<pHmin, the growth rate is zero. 

Gamma concept 
The gamma-concept is based on the assumption that the effect of various factors affecting the 
growth rate of microorganisms can be combined by multiplying the separate effects 
(Zwietering et al. (1996)) 

)()(),(max pHTpHT opt γγµµ =                                                                                                      
(3) 
For this research )(Tγ and )( pHγ are corresponding to Equations (1) and (2) respectively. 

Results and Discussion 
To study the relation between temperature and pH, dynamic T-profiles are implemented at 
different pH values. In Table 1, the temperature profiles applied for each pH value are given.   
For stressing pH values, more than one temperature profile was applied. A single experiment 
was designed using OED/PE to optimize the estimation of the four CTMI parameters (Van 
Derlinden et al. 2008). This optimal experiment, (see the second column in Table 1), was 
used as a starting point for the experiments implemented at non-stressing pH-values. At pH 
values close to the minimum and maximum growth pH, performing this single optimal 
experiment was shown insufficient: either the lag phase was too long or the duration of the 
exponential phase was too short. Previous experiments have shown that temperature changes 
up to 5 ºC/h do not induce an intermediate adaptation phase. 
The combination of the growth model of Baranyi and Roberts (1994) and the CTMI model 
was fitted to all data for a single pH value. For pH values where more than one temperature 
profiles was applied, data were combined in a global fitting. The resulting Tmin, Topt, Tmax and 
μopt values are represented in Figure 1 as a function of pH. 
These results indicate that the factor pH affects the cardinal temperatures. Tmin, Tmax and μopt 
versus pH follow a parabolic relation, in contrast to Topt versus pH for which the relation is 
inconclusive. The Topt cannot be considered statistically constant, but it is not following any 
other relationship with a biological meaning. In Figure 1, it can be seen that in stressing pH 
values Tmin, Tmax and μopt are lower than for pH values close to optimum values. This 
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observation can be of high importance for the food industry, as two factors that affect growth 
seem to interact.  

Table 1: Temperature profiles applied for each pH value [T1, Tf]-ΔT/Δt. T1: the 
initial T, Tf: the final T and -ΔT/Δt the slope of temperature decrease in ºC/h. 

pH                                               Temperature profiles  
4.5 [45ºC, 15.1ºC] -4.1916   
5 [45ºC, 15.1ºC] -4.1916 [43ºC, 27ºC] -1.729 [35ºC, 12.5ºC] -2.75 
5.5 [45ºC, 15.1ºC] -4.1916 [43ºC, 27ºC] -1.729 [35ºC, 12.3ºC] -2.75 
6 [45ºC, 15.1ºC] -4.1916   
6.5 [45ºC, 15.1ºC] -4.1916 [43ºC, 27ºC] -1.75  
7 [45ºC, 15.1ºC] -4.1916   
7.55 [45ºC, 15.1ºC] -4.1916   
8 [45ºC, 15.1ºC] -4.1916   
8.5 [45ºC, 15.1ºC] -4.1916 [43ºC, 27ºC] -1.75 [35ºC, 17.2ºC] -1.729 
9 [45ºC, 15.1ºC] -4.1916 [43ºC, 27ºC] -1.75 [35ºC, 14.9ºC] -2 
9.5 [45ºC, 15.1ºC] -4.1916   

  

  
Figure 1: Cardinal temperatures and μopt as a function of pH with 95% confidence intervals. 

The relations are in contrast to what Ratkowsky et al. (1982), McMeekin et al. (1987) and 
Wijtzes et al. (1995) observed, i.e., independence of Tmin, pHmin and pHmax to other 
environmental factors. Results of Ratkowsky et al. (1982) indicated that Tmin is independent 
of medium and aeration, and is an intrinsic property of the organism when growth conditions 
other than temperature are nonlimiting.  In accordance to that research, McMeekin et al. 
(1987), using the square root model and Arrhenius equations, found that Tmin remains 
constant with changing water activity, as well as Topt and Tmax, for which they suggested that 
more data are required. These data were collected by optical density measurements, in 
contrast to plate counting method of our research. Wijtzes et al. (1995) found that Tmin could 
be assumed constant and around zero for Lactobacillus curvatus using the square root model 
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of Ratkowsky et al. (1982). Data from that research were coming from constant temperature 
experiments concluded in the same way as in the previous researchers  

Conclusions 
This research based on dynamic temperature profiles implemented for different constant pH 
values resulted in a parabolic relation between Tmin, Tmax and μmax versus pH and a non-
determined relation between Topt and pH. These observations are in contrast to other results 
coming from different experimental conditions (basically from constant temperature profiles) 
and the use of different models. For that reason, the gamma concept still demands further 
validation, as these results are contradicting results already published and consequently to 
gamma hypothesis, as cardinal temperatures seem dependent to pH.  Further experimental 
data are required for the validation of the gamma hypothesis. The use of different temperature 
profiles, a more wide range of pH values (more close to pHmin and pHmax), dynamic pH 
profiles in constant temperatures and combination of dynamic temperature and pH profiles 
could give more reliable results for the evaluation of the gamma concept. In addition, 
experiments including the factor of water activity in combination to the other factors would 
contribute in a conclusion about the gamma concept. 
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Abstract 
Gamma models describe the combined effect of preservative factors on growth inhibition in a 
modular way, i.e. by estimating independently the effect iγ  of each single factor and then 
multiplying these together ( iopt γµµ Π×= ). Such models are known to mimic the 
concept of hurdle technology. This paper presents a methodology for modelling the effects of 
hurdle technology in the presence of disparate data sets. It includes i) data selection, ii) the 
procedure for estimating the parameters of the Gamma-type model, and iii) generation of 
experimental data for model validation. Data from industry, public database and literature 
were used in the study. Model development was carried out using R (nls function and nlstools 
package). Statistical criteria and graphical inspections were used to assess the goodness-of-fit. 
The validation procedure combined targeted generation of new data with the use of 
performance indicators. The methodology was illustrated with Listeria monocytogenes. The 
effects of temperature (1 to 40 °C), pH (4.5 to 8.2), aw (0.911 to 0.997), acetic (0.05 to 1%), 
lactic (0.05 to 2 %) and sorbic (0.025 to 0.3 %) acids on the bacterial growth rate were 
assessed. A Gamma-type model was successfully validated against the generated data. In a 
last step, the possibility of testing equivalences between inhibitory factors (‘iso-hurdle rules’) 
was explored. The iso-hurdle rule ‘replacement of salt by combination of organic acids’ was 
successfully tested. This is promising for supporting the food industry in developing milder 
safe and stable preservation systems with limited data.  
 
Keywords: growth modelling, Gamma model, hurdle effect, Listeria monocytogenes, organic 
acids 

Introduction 
Preservatives act as hurdles against microbial proliferation by inhibiting microbial growth. 
The safety and stability of a food product often rely on the concentration of each preservative 
present in the food preservation system. Modular models such as Gamma-type models 
(Zwietering et al. 1991) allow the quantification of individual and combined hurdle effects. 
Different combinations of hurdles can be then compared to each other to derive inhibitory 
effect equivalences (namely ‘iso-hurdle rules’). 
It is not uncommon for food companies to generate and accumulate data on microbiological 
contaminants associated with their food production (e.g. for safety and quality purposes). 
However, such data are often disparate. For example, one data set may have been generated to 
describe the interaction effects of temperature, pH and water activity on microbial growth, 
and a separate one generated for describing the interaction effects of pH and organic acids. 
Should additional data be generated for investigating the interaction effects of temperature, 
pH, water activity and organic acids together? This paper presents a methodology for 
developing microbiological models based upon re-analyses of existing data, and validating 
them by generating very few new data.  
The objective of the study was to demonstrate the feasibility of establishing iso-hurdle rules 
based on the modelling of disparate existing data sets. 
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The methodology and the iso-hurdle concept are illustrated with Listeria monocytogenes and 
the factors temperature, pH, aw, acetic, lactic and sorbic acids. 

Materials and Methods 
Selection of the existing experimental data 
A total of 1778 growth curves obtained from the literature, Combase or industrial trials were 
collected for this study. Several data selection criteria were applied to ensure the relevance 
and the quality of the final data to be used. 652 growth rates of Listeria monocytogenes were 
kept in the analysis, corresponding to 25 sub-datasets from different sources. The factors 
studied were temperature (1 to 40°C), pH (4.5 to 8.2), water activity (0.911 to 0.997), sorbic 
(0.025 to 0.3% of potassium sorbate), acetic (0.05 to 1% of sodium acetate), and lactic (0.05 
to 2% of sodium lactate) acids. 

Predictive models 
Maximum specific growth rates, µmax (h-1) were obtained by fitting the kinetic data with the 
logistic model with delay used by Zuliani et al. (2007) . The secondary model is based on a 
Gamma-type model (Rosso et al. 1995) with or without a synergistic term (Le Marc et al. 
2002). The effects of acids (possibly in combination) are included in the model as proposed 
by Coroller et al. (2005). The model can be written as: 

( ) ( ) ( ) ( ) ( ) ( )ξγγγγγγµµ lacticaceticsorbicapHT wopt=max    (1) 
where μopt is the specific growth rate at optimum growth conditions, γ(T), γ(pH), γ(aw), 
γ(sorbic), γ(acetic), γ(lactic) are the effects of temperature, pH, aw, sorbic, acetic and lactic 
acids, respectively. ξ is a term for the synergistic effects of factors at the growth limits.   

Statistical Methods and software 
Two fitting procedures were used: a ‘sequential’ method, consisting of estimating the effect 
of each Gamma term successively, using its associated subset of data; and a ‘simultaneous’ 
method, for which all model parameters were estimated simultaneously using the whole data 
set. Fitting was carried out using R (http://www.r-project.org/).  

Experimental design for model validation 
To validate the model, a total of 64 experiments (each duplicated) were carried out at 23°C. 
The experimental design was built to verify the inhibition equivalence (iso-hurdles rules) of 
various preservative formulations. Three iso-hurdle rules were tested: i) replacement of acetic 
acid by lactic acid, ii) partial replacement of NaCl by a combination of organic acids, and iii) 
replacement of sorbic acid with a combination of salt and acetic or lactic acids (clean label). 
For example, the iso-hurdle rule (ii) was tested at four different pH levels. For each pH level, 
salt and acid concentrations were set to achieve an equivalent inhibitory effect of salt 
((γ(aw)=k, k<1) and acids (γ(acetic)×γ(lactic)×γ(sorbic)=k). 

Experimental procedure 
A cocktail of 11 strains of Listeria monocytogenes was used throughout the study. One 
hundred milliliters of Tryptone Soya Broth (TSB) were inoculated at a level of ca 500 cfu/ml. 
The growth of L. monocytogenes was followed by plate counts (5 days at 30°C).  

Model validation 
The Bias factor (Bf) and the Accuracy factor (Af) as defined by Ross (1996) and the 
discrepancy factor by Baranyi et al. (1999) were used along to assess model performance. An 
ANOVA was performed to compare specific growth rates obtained for the same iso-hurdle 
rules. 
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Results and Discussion  
Building the model on the existing dataset, validating it with new experimental data 
The inhibitory effect of each hurdle (i.e. each Gamma term) was estimated by using two 
models (with or without synergistic term ξ) and two fitting procedures (sequential or 
simultaneous). Parameter estimates (for the non-synergistic model fitted using the 
simultaneous method) are presented in Table 1. 
 

Table 1: Estimated parameters and their confidence interval obtained for the simultaneous 
method without including the interaction term ξ. 

 Estimated 
parameters Confidence interval 

   2.5% 97.5% 
Tmin(°C) -0.904 -1.19 -0.613 
pHmin 4.19 4.12 4.26 
awmin 0.921 0.919 0.924 
MICsorbic(mM) 6.35 5.50 7.20 
MIClactic(mM) 9.87 6.82 12.9 
MICacetic(mM) 10.9 9.42 12.4 
Tmin, pHmin, awmin were estimated from the cardinal model (Rosso et al. (1995)). 
MICs were determined using equations cited by Zuliani et al. (2007) 
 
Once the model was built, the observed growth rates from the new experimental data were 
compared with the predictions (Figure 1) and Bias factor (Bf) were calculated. 
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Figure 1: Comparison of observed and predicted growth rates (square root 

transformation), for sequential method (A), without ξ (○), Bf =1.03, and with ξ (+), Bf=1.25; 
for simultaneous method (B), without ξ (○), Bf =1.03, and with ξ (+), Bf=1.17. 

 
Regarding bias factors, the best fit was obtained with the simultaneous method with a slight 
difference in terms of prediction ability whether ξ is integrated or not in the model. As the 
addition of the interaction term generates more complexity in estimation, it should only be 
chosen in particular applications, e.g. near the growth/no growth interface. That is to say, if 
the objective is to predict growth under mild stress conditions (∏ ≥ 2.0γ ) (e.g. where 
limited growth is tolerated) a model without interaction might be sufficient. 

Applying the predictive model to derive iso-hurdle rules 
Once the Gamma-type model was built, the inhibitory effect of one environmental factor 
could be quantified independently of the level of the other inhibitory factors. This 
mathematical characteristic was used to deduce iso-hurdle rules. For example, in theory, the 
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inhibitory effect of salt (hurdle effect γ(aw)) is equivalent to a combination of inhibitory 
effects due to acids (hurdle effect γ(acetic)×γ(lactic)×γ(sorbic)). This leads directly to an iso-
hurdle rule which might be formulated as ‘replacement of salt by combination of organic 
acids’. To validate whether the mathematical characteristics derived from Gamma-type 
models might be explored further, kinetics obtained in broth, with or without salt ((γ(aw)=k, 
0<k<1) were compared against kinetics obtained with combination of acids 
(γ(acetic)×γ(lactic)×γ(sorbic)=k), at various pH values (Figure 2).  
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Figure 2: Kinetics of L. monocytogenes at pH 6.5 (black symbols and lines) and pH 

5.7 (grey symbols and lines). Culture in presence of salt (o) or acids (+). 
 

There was no difference (p>0.05) between growth rates from L. monocytogenes kinetics 
obtained in presence of salt or acids. This confirms the model outputs and emphasizes the 
possibility of using Gamma-type models to aid in new product formulation development. 

Conclusions  
A methodology for using disparate data to assess the effects of preservative factors on 
microbial growth has been developed. The Gamma model structure is appropriate to perform 
this analysis. The methodology has been successfully applied to L. monocytogenes for 
temperature, pH, aw, sorbic, acetic and lactic acids. Iso-hurdle rules such as ‘replacement of 
salt by combination of organic acids’ were successfully tested. This is promising for 
supporting the food industry in developing milder safe and stable preservation systems with 
limited data. 
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Abstract 
A stochastic model integrating intra-species variability data, and predicting the maximum 
specific growth rate (μmax) of Salmonella enterica as a function of pH and water activity (aw), 
was developed in the present study. The growth kinetic data utilized for this purpose were 
μmax values of 60 S. enterica isolates, estimated during monitoring of growth in tryptone soy 
broth of different pH (4.0-7.0) and aw (0.964-0.992) values. The effects of the environmental 
parameters on μmax were modelled for each tested strain using cardinal type and gamma 
concept models for pH and aw, respectively. A multiplicative without interaction-type model, 
combining the models for pH and aw, was used to describe the combined effect of these two 
parameters on μmax. The strain variability of the growth behavior of S. enterica was 
incorporated in the modelling procedure by using the cumulative probability distributions of 
the values of pHmin, pHopt and awmin as inputs to the growth model, while the cumulative 
probability distribution of the observed μmax values corresponding to growth at pH 7.0-aw 
0.992 was introduced in the place of the model’s parameter μopt. The introduction of the above 
distributions into the growth model resulted, using Monte Carlo simulation, in a stochastic 
model with its predictions being distributions of μmax characterizing the strain variability. The 
developed model was validated using independent growth kinetic data (μmax values) generated 
for the 60 strains of the pathogen at pH 5.0-aw 0.977, and exhibited a satisfactory 
performance.            
 
Keywords: Salmonella enterica, strain variability, stochastic growth model  

Introduction 
Strain variability of the growth behavior of foodborne pathogens has been recognized as an 
important issue in food safety management. It has been acknowledged that such intra-species 
variability may have a great impact on quantitative microbial risk assessment, and, thus, 
should be systematically assessed and accounted for (Delignette-Muller and Rosso 2000). 
Although microbial growth variability among strains of a single bacterial species has been 
observed for several foodborne pathogens, only a limited number of studies have attempted to 
characterize this variability (Lianou and Koutsoumanis 2010), while stochastic approaches 
explicitly taking into account strain variability have been described mainly during the last 
decade (Delignette-Muller and Rosso 2000). Furthermore, in contrast to what is the case for 
other bacterial foodborne pathogens, the available research data on the variability of the 
growth behavior among strains of Salmonella enterica are relatively few. Therefore, the 
objective of the present study was the development and validation of a stochastic model for 
integrating strain variability in modelling S. enterica growth.     

Materials and Methods 
Growth data of S. enterica strains 
The growth kinetic data used in this work were maximum specific growth rate (μmax) values 
corresponding to 60 S. enterica isolates, and were generated in a previous study undertaken in 
our laboratory (Lianou and Koutsoumanis 2010). The tested strains were primarily isolates of 
human or animal (almost exclusively bovine) origin belonging to various serotypes, and their 
growth kinetic behavior was assessed at 37°C in culture broth (tryptone soy broth) of different 
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pH (4.3, 4.5, 5.0, 5.5 and 7.0) and aw (0.964, 0.977, 0.983 and 0.992) values. The μmax    
values corresponding to each strain and growth condition were estimated by means of 
absorbance detection times of serially decimally diluted cultures using an automated 
turbidimetric system (Lianou and Koutsoumanis 2010). In order for the μmax modelling as a 
function of pH to be facilitated, additional experiments assessing the growth kinetic behavior 
of the 60 S. enterica strains in tryptone soy broth (TSB; Lab M Limited, Lancashire, United 
Kingdom) of pH 4.0 (and 0.5% NaCl as part of its basal composition) were undertaken in the 
present study. The pH of TSB was adjusted to this value using HCl (min. 37%; Sigma-
Aldrich, Seelze, Germany), and the growth experiments were carried out following, overall, 
previously described procedures (Lianou and Koutsoumanis, 2010).      

Growth rate modelling 
The effect of pH on μmax was modelled for each S. enterica strain using the cardinal type 
model of Rosso (Rosso et al. 1995): 
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where pHmin, pHopt and pHmax are the corresponding cardinal values, and μopt is the optimum 
value of the maximum specific growth rate (when pH=pHopt). The effect of aw on μmax was 
modelled using the gamma concept model of Zwietering et al. (1996), with the gamma factor 
for aw being slightly modified: 
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where awmin is the aw value below which growth is not possible, and awopt is the aw value at 
which the maximum specific growth rate is equal to its optimum value.   
The values of pHmin, pHopt, pHmax and awmin were determined by fitting the estimated μmax 
values for each tested strain to the above models using the Excel v4 format of the curve-
fitting program TableCurve 2D (Systat Software Inc., San Jose, CA, USA). The awopt was set 
at 1 when the μmax data were fitted to the gamma concept model. A multiplicative without 
interaction-type model, combining the above models for pH and aw, was used to describe the 
combined effect of these two environmental parameters on μmax: 

)()(optmax wapH γρµµ ⋅⋅=         (3) 
where μopt is the maximum specific growth rate corresponding to optimum growth conditions. 

Stochastic modelling approach 
The intra-species variability of the growth behavior of S. enterica was incorporated in the 
modelling procedure by using the cumulative probability distributions of the values of pHmin, 
pHopt and awmin as inputs to the growth model described above. The cumulative probability 
distribution of the estimated μmax values corresponding to growth at pH 7.0-aw 0.992 (regarded 
as optimum growth conditions) was introduced in the place of the model’s parameter μopt. The 
introduction of the above probability distributions into the growth model was carried out 
using the custom cumulative function of the @RISK 4.5 for Excel software (Palisade 
Corporation, Newfield, NY, USA), and resulted in a stochastic model with its predictions, 
using Monte Carlo simulation (10000 iterations), being distributions of μmax values. 

Model validation 
The stochastic growth model was validated against independent data generated for the 60 
strains of the pathogen at pH 5.0 and aw 0.977. The latter growth kinetic data were μmax values 
corresponding to growth at 37°C in TSB of the above characteristics, and were estimated as 
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described previously (Lianou and Koutsoumanis, 2010). The pH of TSB was adjusted to 5.0 
with HCl as previously practiced, while the aw value of 0.977 corresponded to a NaCl (Merck, 
Darmstadt, Germany) concentration of 4.5% (w/v). Model validation was undertaken utilizing 
the Monte Carlo simulation technique with 10000 iterations, performed with the @RISK 4.5 
for Excel software, and was based on the comparative evaluation of the predicted and 
observed distributions of μmax. The latter comparison was made graphically and quantitatively 
using the percent relative error (%RE) values for the mean, standard deviation and percentiles 
of the μmax distributions based on the following equation: 
%RE = [(xo-xp)/xo]*100         (2) 
where xo and xp are the values of the above statistics for the observed and predicted 
distributions, respectively.  

Results and Discussion  
The μmax data exploited in this study were overall well-fitted to the secondary models used, 
with the mean (± standard deviation) coefficient of determination (r2) for all the fitting trials 
(n=60) being 0.934 (± 0.034) and 0.983 (± 0.009) for pH and aw, respectively. The mean and 
the 5th and 95th percentiles of the estimated pHmin for the 60 S. enterica strains were 3.84 and 
3.75 and 3.99, respectively, while the corresponding values for the awmin were 0.939 and 0.934 
and 0.947. The mean and the 5th and 95th percentiles of the estimated pHopt were 6.47 and 
6.17 and 6.72, respectively. No considerable association was observed between the values of 
pHmin, pHopt and awmin. For pHmax, the mean and the 5th and 95th percentiles were 14.10 and 
13.99 and 14.99, respectively. For the latter parameter, however, a high uncertainty was 
observed from the fitting of the μmax data to the model due to the absence of data at 
superoptimal conditions. Thus, the distribution of pHmax was chosen not to be used in the 
stochastic model development, and, alternatively, pHmax was set at 14.0. Moreover, since the 
distribution of the estimated μmax values corresponding to growth at aw 0.992 was used as μopt 
in the stochastic model, the awopt was set at 0.992.     
Via the introduction of the cumulative probability distributions of the values of pHmin, pHopt 
and awmin into the growth model and the use of Monte Carlo simulation, the model is 
converted into a stochastic one, which, by integrating strain variability, provides μmax 
predictions in the form of distributions. As demonstrated in Fig. 1, where the single effects of 
pH and aw on the predicted μmax are presented, the growth environment affected both the 
position and the shape of the predicted μmax distributions. Furthermore, these stochastic 
predictions obtained with simulations at various pH (assuming aw=awopt) and aw (assuming 
pH=pHopt) values, were, overall, in good agreement with the observed μmax values (i.e. 
dependent data), with most of the observed data being satisfactorily allocated within the 
predicted distributions (Fig. 1).           
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Single effects of pH (a) and aw (b) on the maximum specific growth rate (μmax) of 
Salmonella enterica, as predicted by the developed growth model. Points (o) represent the 

observed values of μmax. 

The performance of the stochastic model was evaluated by comparing its predictions with 
independent data obtained at pH 5.0-aw 0.977. The predicted probability distribution of μmax 
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obtained with Monte Carlo simulation was fairly close to the probability distribution of the 
observed values. The mean, standard deviation, and the 5th and 95th percentiles of the 
predicted μmax distribution were 0.83, 0.08, and 0.69 and 0.96 h-1, respectively, while the 
corresponding values of the observed distribution were 0.73, 0.09, and 0.61 and 0.85 h-1. The 
mean (± standard deviation, n=100) %RE for all the percentiles of the μmax distributions was  
-13.8 (± 2.1) %. It has been suggested that %RE values in the range of -30% (fail-safe) to 
15% (fail-dangerous) delimit an “acceptable prediction zone” for model evaluation purposes 
(Oscar, 2005). The stochastic growth model described here meets the above criterion, with its 
predictions being exclusively localized in the fail-safe area. When the stochasticity provided 
by a modelling approach, such as the one described in the present study, is embedded in a 
primary model, then more realistic predictions of microbial growth than those resulting from 
deterministic models are expected to be generated. For instance, incorporation of the 
developed stochastic model in the place of μmax in a three-phase linear model (Buchanan et 
al., 1997), and assuming for all the tested S. enterica strains an initial population N0=2 log 
CFU/ml and a physiological state h0=1, resulted, using Monte Carlo simulation (5000 
iterations), in the stochastic growth prediction at pH 5.0-aw 0.977 illustrated in Fig. 2. 
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Figure 2: Growth of Salmonella enterica at pH 5.0-aw 0.977 as predicted using a three-phase 

linear model combined with the developed stochastic model for integration of growth rate 
variability among strains of the pathogen.  

Conclusions  
The stochastic approach developed in this study described adequately the μmax variability 
among strains of S. enterica while modelling its growth as a function of pH and aw, and can 
be useful in integrating this variability in quantitative microbiology and microbial risk 
assessment.     
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Abstract 
During grinding of pork, Salmonella present on a single slice of meat may be transferred to 
many portions of minced meat due to cross contamination. In order to develop a mathematical 
model describing this process, transfer rates of Salmonella were measured in three 
experiments, where between 10 and 20 kg meat was ground into 200-g-portions. In each 
experiment, 5 pork slices (ca. 200 g/slice) were inoculated with 8-9 log-units of Salmonella 
Typhimurium DT104 and used for building up the contamination in the grinder. 
Subsequently, Salmonella free slices were ground and collected as samples of approx. 200 g 
minced pork. Throughout the process, representative samples were analyzed quantitatively for 
Salmonella. In minced pork, Salmonella counts decreased quickly and reached 5 log-units in 
the 13-16th portion but after observing up to 100 portions it was still possible to detect 
Salmonella at levels around 4 log-units. A model suggested by Nauta et al. (2005) predicting 
cross contamination of Campylobacter in poultry-processing could efficiently describe the 
observed transfer of Salmonella during grinding of the first 20 slices but could not explain the 
‘tail’ of low contaminated portions. Therefore, it was hypothesized that the input of 
Salmonella is organized in two different matrices inside the grinder. One matrix, where 
Salmonella is loosely attached, is responsible for the fast transfer to the minced meat and 
from a second matrix Salmonella’s transfer occurs at a slower rate. Based on this hypothesis a 
modified model was implemented and challenged. This model satisfactorily predicted the 
observed behaviour of Salmonella during its cross contamination in the grinding of up to 110 
pork slices. The proposed model may be an important tool to examine the effect of cross 
contamination in quantitative microbial risk assessments. 
  
Keywords: pork, Salmonella, cross contamination, modelling  

Introduction 
Salmonella has been linked to many foodborne illness cases across the world, and it is 
considered to be one of the main agents causing human gastroenteritis. In Denmark, the 
locally produced pork was estimated as an important source of salmonellosis in 2009. 
Investigations showed that S. Typhimurium was the predominant serotype in retail pork 
cuttings in Denmark. Surface cross contamination of foodborne pathogens during processing 
or preparation is a major concern to consumers and food manufactures. The aim of this study 
was to develop a model to predict cross contamination of Salmonella in pork processing. 

Materials and Methods 
Salmonella culture and inoculation of meat  
A strain of Salmonella Typhimurium DT104 isolated from pigs was grown in LB-broth with 
shaking (200 rpm) overnight at 37°C. The culture was then kept at 5°C/24 h and then diluted 
to approx. 109 CFU ml-1 or 107 CFU ml-1. A whole piece of meat was surface inoculated with 
10 drops of 10 µl of the Salmonella culture. The inoculum was spread on the whole surface of 
the selected side of the meat that subsequently was kept for 40 min to allow attachment of 
cells. The inoculated piece of pork was then divided into five 200-g-slices.  
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Transfer experiment  
A semi-industrial grinder (la Minerva®, Italy) was used to process Salmonella free pieces of 
vacuum packaged boneless skinless fresh pork leg (6-8% fat) measuring about 7 x 10 x 15 cm 
and weighing approx. 1 kg. Five 200g-slices of non-inoculated meat were processed to create 
a matrix inside the grinder. The five inoculated samples were then ground and 40 to 90 200-g-
slices of non-inoculated pork were processed. Individual portions corresponding to each 
processed slice were collected in separate sterile stomacher bags and mixed two-times during 
1 min to ensure a homogeneous distribution of Salmonella. Subsequently, 25 g samples were 
diluted in 225 ml of Brain Heart Infusion broth and mixed in a stomacher for 2 min. Further 
dilutions were made in Maximum Recovery Diluent and drop-plated (3 x 10 µl) or spread-
plated (1 x 100µl or 3 x 333µl) onto XLD agar (37°C, 16-24 h).  

Model development  
A model from Nauta et al. (2005) predicting cross contamination of Campylobacter in 
poultry-processing could efficiently describe the transfer of Salmonella during grinding of the 
first 20 slices, but not explain the ‘tail’ of low contaminated portions. It was hypothesized that 
input of Salmonella is organized in two different matrices inside the grinder as shown in 
Figure 1. One matrix, with Salmonella relatively loosely attached, is responsible for the fast 
transfer to the minced meat, while in the second matrix the transfer occurs at a slower rate. 
 

 
 
 
 
 
 
 
 
 

 
Figure 1: Diagram of the transfer hypothesis of Salmonella during grinding of pork.  

 
Based on this hypothesis a modified version of Nauta et al. (2005) model was implemented. 
Modifications of the parameters and addition of an extra parameter to the model in order to 
describe the whole transfer were tested as shown in the following model equations: 
 

Mi = (1-a1)(1-a2)(1-c2) Si  + (b1 gr1,i-1) + (b2 gr2,i-1)                 
gr1,i =  a1 Si  + (1-b1) (1-c1) gr1,i-1  
gr2,i =  a2 Si  + (1-b2) (1-c3) gr2,i-1  Equation 1 

 
This model has seven parameters but two of them have their values assumed as zero since no 
inactivation in meat (c2) or environment 1 (c1) is expected. Therefore, it is considered as a five 
parameters model (all with values between 0 and 1) and considers k portions of sliced meat 
that are processed in a grinder to minced meat (i = 1, 2,... k). The ith slice carries Si 
Salmonella. Minced portion of meat i, is the same slice of meat after grinding and carries Mi 
Salmonella. The ‘contamination status’ of the grinder is gri. The probability of transfer per 
cell from meat to grinder (environment 1) and to grinder (environment 2) is represented by a1 
and a2, respectively. The backward transfer probabilities from the grinder (environments 1 
and 2) to ground meat are given by b1, and b2. The survival in grinder (environment 2) is 
represented by (1-c3). The equations were applied to the Salmonella counts (CFU/slice or 
portion) for Si and Mi. For estimation of parameters, the Residual Sum of Squares (RSS) of 
the difference between observed and predicted log counts was minimized using the Solver 
function in MS Excel. Three experiments, studying levels of 109 CFU of Salmonella per 
contaminated slice, were used for fitting of parameter values and three different models were 
applied to those datasets.  

a1 - transfer from meat slice to E1 
a2 - transfer from meat slice to E2 
b1 - transfer from E1 to ground meat 
b2 - transfer from E2 to ground meat 
c1 - inactivation in E1 
c2 - inactivation in meat 
c3 - inactivation in E2 
     - grinder            
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Meat c2 

c1 

c3 
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b1 

b2 

Salmonellainput 

Salmonellaoutput 
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Statistical analysis and validation of models  
A four-parameter model (4p-1ge) that considers one grinder environment (Nauta et al. 2005), 
a modified version of this model (4p-2ge) also with four parameters but taking into account 
two grinder environments (Equation 1 with c3=0), and a version of the last model with 5 
parameters (5p-2ge) (Equation 1) were used to fit the data and to calculate the Residual Sum 
of Squares (RSS). Fitting of the three studied models were compared by F-tests. Considering 
the RSS of the model, the number of observations and the number of model parameters the 
Root Mean sum of Squared Errors (RMSE) and the bias-corrected version of Akaike 
Information Criterion (AICc) were used as measures for goodness of fit (Ratkowsky 2004; 
Hurvich & Tsai 1989). In order to validate the best-fit model, two challenge tests were 
performed. The first challenge test (100 processed slices) was conducted by adding slices 
contaminated with 109 CFU of Salmonella per slice processed as 1st, 2nd and 3rd, 29th and 55th 
slices. A second challenge test processed 110 portions where 1st, 2nd and 3rd slices were 
contaminated with 107 CFU of Salmonella per slice, and the 19th and 35th slices had 109 CFU 
and 107 CFU of Salmonella, respectively. In addition to the visual inspection of the data, bias 
and accuracy factors (Ross 1996) with log10CFU/slice as the response variable, were used to 
evaluate the performance of the fitted model (Equation 1).  

Results and Discussion  
The fitted models and evaluation of goodness of fit 
As shown in Table 1, three different models were fitted to datasets from three transfer 
experiments. The suggested 5p-2ge model was evaluated as the best choice as it resulted in 
the lowest RMSE- and AICc-values for all three datasets (Table 1). Pair wise comparisons of 
the models using F-tests supported this conclusion (results not shown). 

Table 1: Evaluation criteria for each model performed – Number of parameters, Root Mean 
sum of Squared Error (RMSE) and Akaike Information Criterion (AICc). 

Model 
 

Dataset 1  
  

Dataset 2   
Dataset 3 

 
 

RMSE  
 

AICc  
 

RMSE 
 

AICc  
 

RMSE 
 

AICc 
         

5p-2ge 1.2029 2.608  1.1345 0.856  1.1378 1.563 
4p-2ge 1.2612 5.383  1.2364 5.512  1.2291 7.184 
4p-1ge 1.4534 16.172  1.2862 8.382  1.3596 18.073 

  
Figure 2 is an example of fitting the three models to dataset 2. It clearly shows why the 5p-
2ge was the superior model. For parameter estimation, dataset 3, which included the highest 
number of processed slices, was applied. The following parameter estimates were obtained: a1 
(0.0010), b1 (0.0275), a2 (0.8909), b2 (0.0558) and 1-c3 (0.4887).   
 
 

 
Figure 2: Transfer of Salmonella Typhimurium DT104 during grinding of 45 slices of 200-g 

boneless skinless pork leg (dataset 2) fitted to the three proposed models. 
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Validation of the new model 
Levels of 109 and 107 CFU per 200 g were used in order to follow the decrease of Salmonella 
quantitatively for validation of the model describing transfer during the grinding process. Bias 
factors between 0.88 and 1.04, and accuracy factors between 1.03 and 1.15, were obtained 
using the parameter estimates from the three different datasets, indicating good performance 
in all cases. However, Figure 3 shows that only the parameter estimates from fitting of dataset 
3 could predict the observed tailing phenomenon.   
 

 
Figure 3: Observed and predicted transfer of Salmonella Typhimurium DT104 during 

grinding of 110 slices of 200-g boneless skinless pork leg (validation dataset 3).  

The fitted model obtained (Figure 2) is specific to the studied grinding process including the 
evaluated grinder. However, the structure of the model, and particularly its ability to predict 
the tailing phenomenon, seems relevant for different cross contamination processes. The 
tailing corresponds to transfer of low concentrations of a pathogen to numerous portions of 
food, and it has been observed in several studies of slicing and food contact processes (Vorst 
et al. 2006; Aarnisalo et al. 2007; Sheen 2008; Sheen & Hwang 2010). 

Conclusions  
The present study observed a tailing phenomenon of transfer of Salmonella during a small-
scale grinding process. It was, therefore, hypothesized that transfer occurred from two 
environmental matrices inside the grinder and a model was developed. The developed model 
satisfactorily predicted the observed behaviour of Salmonella during its cross contamination 
in the grinding of up to 110 pork slices. The proposed model is an important tool to examine 
the effect of cross contamination in quantitative microbial risk assessment investigations and 
might also be applied to various other food processes where cross contamination is involved. 
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Abstract 
A time-lapse microscopy method was applied to study the effect of abrupt temperature shifts 
on the kinetic behavior of very small populations (2-10 cells) of Salmonella Typhimurium on 
tryptone soy agar. The temperature was initially set at 25 oC and decreased to 15 oC after a 
few cell divisions (one to five). Images were taken at 5-min intervals for 20 h after 
inoculation. In total, the behaviour of 81 single cells was monitored. After counting, the 
numbers of cells vs. time for each colony, after the temperature shift, were fitted to the 
primary model of Baranyi and Roberts for the estimation of the maximum specific growth 
rate and the “additional lag” caused by the shift. The results showed a significant variability 
in the kinetic behaviour after the temperature downshift. The “additional lag” ranged from 0 
to 1.26 h (mean=0.291 h) with a coefficient of variation (CV) of 116.7%. The maximum 
specific growth rate (mean=0.326 h-1) after the shift showed less but still significant 
variability with CV=36.1%. The above distributions of the kinetic parameters were used to 
simulate the effect of abrupt temperature shifts on the kinetic behavior of the pathogen at 
various population levels.  
 
Keywords: Salmonella, single cell, temperature shifts 

Introduction 
Predictive microbiology deals with the development of deterministic models based on studies 
with large microbial populations. Most available mathematical models describe the growth of 
microbial populations as a whole, without considering individual cells. In practice, however, 
contamination of foods with pathogens usually occurs at levels of few or even one cell. 
Recently, the importance of single-cell microbiology and the interest in stochastic models 
capable of predicting the effects of more “realistic” contamination events (low microbial 
numbers) in food safety has been stressed. Thus, predictive microbiology studies have 
focused on monitoring microbial kinetics at a single-cell level.  
Recently, several studies have focused on monitoring the kinetics of single microbial cells. 
Elfwing et al. (2004) and Wakamoto et al. (2001) developed novel automated microscopic 
methods that enabled the user to monitor the division times of individual cells. Both of the 
above methods, however, allow for monitoring of only one cell with the daughter cell being 
removed after division. This approach does not take into account the “community effect”. 
Indeed, in “real life”, interactions among cells of a forming colony may occur during growth 
of an initially single cell on a solid food. In addition, all available studies on single-cell 
behavior have been performed at constant temperature conditions without taking into account 
temperature fluctuations which are common during distribution and storage of foods.  The 
objective of the present study was to apply a time-lapse microscopy method for monitoring 
colonial growth of single cells, and to study the effect of abrupt temperature shifts on the 
kinetic behavior of very small populations (2-10 cells) of Salmonella Typhimurium. Beyond 
the scientific interest in understanding single-cell growth dynamics at fluctuating temperature 
conditions, the data provided are valuable for the development of stochastic models and for 
quantitative microbial risk assessment purposes. 
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Materials and Methods 
The bacterial strain used in the study was Salmonella enterica serotype Typhimyrium FSL 
S5-520 (bovine isolate), kindly provided by Dr. Martin Wiedmann (Cornell University, 
Ithaca, New York). Ten microliters of a 24-h culture of the isolate, after the latter was diluted 
in quarter-strength Ringer’s solution (Lab M Limited, Lancashire, United Kingdom) to a 
concentration of ~7.5 log cfu/ml, were added to 150 μl of tryptone soy agar (TSA; Lab M 
Limited) solidified on a glass slide, and were left to dry in a biological safety cabinet for 5 
min. A z-motorized microscope (Olympus BX61) equipped with a ×100 objective (Olympus) 
and a high-resolution device camera (Olympus DP71) was used for monitoring growth of 
single cells. The temperature was initially set at 25 oC and decreased to 15 oC after a few cell 
divisions (one to five). Images were taken at 5-min intervals for 20 h after inoculation. The 
quality of the images was improved using the ScopePro module of the ImageProPlus software 
and an auto-focus procedure with an Extended Depth of Focus (EDF) system developed in 
our laboratory. The auto-focus procedure in conjunction with the EDF system allow for 
multiple serial images in different z-axis planes to be taken, and then combine the best focal 
areas of the serial images into a single in-focus image (z-stack). The latter procedure provided 
high quality images of bacterial colonies in which cells could be counted either manually or 
by the image analysis software. After counting, the numbers of cells vs. time for each colony, 
after the temperature shift, were fitted to the primary model of Baranyi and Roberts (1994) for 
the estimation of the maximum specific growth rate and the “additional lag” caused by the 
shift. In this study the colonial growth of 81 Salmonella Typhimurium single cells was 
monitored. Experiments are still in progress in order to increase the number of cells tested.  

Results and Discussion  
Fig. 1 shows a representative colonial growth of a S. Typhimurium single cell and the 
formation of a colony on TSA during a temperature shift at 195 min from 25 to 15 oC. 
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Figure 1: Representative colonial growth of a S. Typhimurium single cell and the formation of 

a colony on TSA during a temperature shift at 195 min from 25 to 15oC. 

Representative growth curves of S. Typhimurium during the above temperature conditions are 
shown in Fig. 2. After counting, the numbers of cells vs. time for each colony, after the 
temperature shift, were fitted to the primary model of Baranyi and Roberts (1994) for the 
estimation of the maximum specific growth rate and the “additional lag” caused by the shift. 

42



 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8

Time (hours)

Ln
 (c

el
l n

um
be

r)

10

12

14

16

18

20

22

24

26

Te
m

pe
ra

tu
re

 (o C
)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8

Time (hours)

Ln
 (c

el
l n

um
be

r)

10

12

14

16

18

20

22

24

26

Te
m

pe
ra

tu
re

 (o C
)

 
Figure 2: Representative growth curves of S. Typhimurium single cells during a temperature 

shift at 195 min from 25 to 15oC. 

 
The data showed that the temperature shift may result in an “additional lag phase”. However, 
a significant variability in the kinetic behaviour after the temperature downshift was observed. 
The “additional lag” ranged from 0 to 1.26 h (mean=0.291 h) with a coefficient of variation 
(CV) of 116.7%. The maximum specific growth rate (mean=0.326 h-1) after the shift showed 
less but still significant variability with CV=36.1%. The distributions of the maximum 
specific growth rate and the “additional lag” after the temperature shift are presented in Fig. 3. 
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Figure 3: Distributions of the maximum specific growth rate (μmax) and the “additional lag” 

after the temperature shift from 25 to 15oC. 

Conclusions  
The data showed that the temperature shift may result in an “additional lag phase” of S. 
Typhimurium growth. However, a significant variability in the kinetic behaviour after the 
temperature downshift was observed. The distributions of the kinetic parameters were used to 
simulate the effect of abrupt temperature shifts on the kinetic behavior of the pathogen at 
various population levels. The Monte Carlo simulations showed that the variability is masked 
at high population levels. The results of the present study provide useful information for 
understanding the colonial growth of single cells under changing temperature conditions. 
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Abstract 
It is now well established that the growth prediction of pathogenic microorganisms in foods 
often requires a probabilistic approach taking into account the individual cell behaviour of 
contaminating cells. In this Individual-based Modelling (IbM) approach, we also have to deal 
with the description of the microenvironment surrounding the bacterial cells. The aim of this 
study was then to characterize the physico-chemical environment of bacterial cells 
contaminating the surface of a smear soft cheese and to assess the impact of the heterogeneity 
of the microenvironment on the bacterial behaviour. We used microelectrodes for pH 
measurements and freeze-drying to measure the water activity of micro-samples. Models 
were then established to describe the spatial and temporal variability for the pH and water 
activity at the surface of a smear soft cheese during ripening. The individual cell growth 
probability of Listeria monocytogenes according to the pH and the water activity was also 
determined. Probabilistic individual-based growth models were then combined with the 
micro-environmental models to predict the behaviour of L. monocytogenes cells 
contaminating the surface of the cheese during the ripening and the IbM approach was 
compared to growth predictions obtained with a population and macroscopic approach. 
 
Keywords: Individual-based Modelling, Listeria monocytogenes, cheese, micro-environment 

Introduction 
The importance of variability of biological and natural phenomena is widely recognized in the 
context of risk analysis framework (WHO 2008). The major sources of variability affecting 
microbial responses in foods are the initial contamination level, the variability in processing 
factors, the variability in the food characteristics, in the storage conditions and the biological 
variability, i.e., the variability of microbial behaviour. This biological variability encompasses 
the strain variability in growth rates and limits, in physiological state, and in individual cell 
behaviour (Koutsoumanis 2008; Pin and Baranyi 2006). Although the significance to study 
individual cell behaviour to assess the risks linked to natural contaminations by few stressed 
cells of foodborne pathogenic microorganisms is well established, this approach was, to our 
knowledge, never combined with a description of the microenvironment surrounding the 
bacterial cells. The aim of our study was then to characterize the physico-chemical properties 
of a smear soft cheese at a microscopic scale and to compare a classical population 
macroscopic modelling approach with a fully Individual-based Modelling (IbM) approach. 

Materials and Methods 
Characterization of the physico-chemical properties of smear soft cheese 
The pH and water activity (aw) of the surface of smear soft cheese were measured during 
ripening at 14°C. For the macroscopic approach, the surface of cheese was sampled and 
mixed and the pH was measured with a conventional pH-meter (Hanna instruments). The 
surface aw was measured with a GBX FA-st/1 water activity meter. The within-batch (or 
between cheeses) variability of pH and aw was characterized by examining several cheese 
surfaces. For the micro-scale characterization of the surface pH of cheese, we used a pH 
microelectrode with a 50 µm tip diameter (Unisense). The micro-aw of 30 mg surface cheese 
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samples was deduced from the water content sublimated during a freeze-drying cycle with a 
Telstar LyoBeta 25.  

Characterization of the individual L. monocytogenes cell growth probability 
Individual L. monocytogenes (strain LM14) cell growth probability according to the pH 
adjusted with HCl and aw adjusted with NaCl was assessed with MPN estimates using the 
microwell plates method and pH 7 TSBYE at 37°C as the reference medium allowing the 
growth of every cells present in the bacterial suspensions (Dupont and Augustin 2009). 

Prediction of the fate of L. monocytogenes cells contaminating the cheese surface 
Individual-based growth models were combined with the micro-environmental pH and aw 
models to predict the behaviour of L. monocytogenes cells contaminating the surface of the 
cheese during ripening at 14°C for 20 days. The individual growth probability models were 
combined with secondary cardinal and square root models and with the differential form of 
the primary Baranyi and Roberts model to take into account the pH profile. The differential 
form was solved numerically with the Runge-Kutta method using the Matlab software. 
Growth predictions were also performed with a population and macroscopic approach by 
assuming a between-cheese variability of pH and aw. 
Three initial contamination levels (10, 100, and 1 000 cells) and three initial physiological 
states were considered. The three initial physiological states corresponded to cells with no lag 
phase (product µmax•lag equal to 0), intermediate stressed cells (product µmax•lag equal to 4.5, 
Couvert et al. 2010) and severely stressed cells (product µmax•lag equal to 8, Couvert et al. 
2010). The parameters of individual-based microscopic-scale and population macroscopic-
scale approaches are reported in Table 1. 

Table 1: Identification of parameters used in the population and individual-based modelling 
approaches. 

Parameters Population approach Individual-based modelling 
Cheese 
characteristics 

Initial pH N(4.83, 0.054)a N(4.83, 0.039) 
Final pH N(6.91, 0.064) N(6.91, 0.235) 

pH increase rate (day-1) N(0.298, 0.015) N(0.298, 0.055) 
aw N(0.961, 0.006) U(0.916, 0.998) 

Individual cell 
growth 
probability 

pH _ [exp(-4.32)-exp(-pH)]/[exp(-
4.32)-exp(-6.33)] 

aw _ (0.925-aw)/(0.925-0.998) 
Listeria 
monocytogenes 
growth 
characteristics 

Initial physiological state µmax•lag 0, 4.5, 8 Extreme values distribution 
µopt (h-1) 0.212 0.212 
Tmin (°C) -1.08 -1.08 
Topt (°C) 38.2 38.2 
Tmax (°C) 43.3 43.3 

pHmin 4.32 4.32 
pHopt 7 7 
pHmax 9.68 9.68 
awmin 0.925 0.925 
awopt 0.998 0.998 

Initial contamination n0 10, 100, 1000 10, 100, 1000 
Growth yield log(n0)+6 log(n0)+6 

a N(a,b) is the normal distribution with expected value a and standard deviation b, U(a,b) is the uniform 
distribution with minimal value a and maximum value b. 

Results and Discussion  
Micro-scale physico-chemical properties of smear soft cheese 
An increase of surface pH was observed during the ripening of cheese at 14°C and a logistic 
type model was used to model it (Figure 1a). The micro-scale variability of initial and final 
pH and pH increase rate was estimated assuming a nonlinear mixed effects model and fitting 
was performed with the Monolix 2.4 software. No significant evolution of the aw was 
observed during ripening and a uniform distribution adequately described the micro-scale 
variability of aw (Figure 1b). 
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Figure 1: (a) Evolution of the micro-scale pH at the surface of smear soft cheese during 

ripening at 14°C (boxplots are observed values, the solid line is the median pH evolution and 
dashed lines represent the 95% confidence envelope of the model predictions) and (b) 
cumulative distribution of micro-scale water activity values at the surface of cheese. 

Individual L. monocytogenes cell growth probability 
The individual cell growth probability logarithmically increased with pH between 4.32 and 
6.33 (Figure 2a) and linearly increased with aw between 0.925 and 0.998 (Figure 2b). 

 
Figure 2: Individual cell growth probability of L. monocytogenes according to (a) the pH and 
(b) the water activity. Circles represent the mean values and vertical bars represent standard 

deviations of replicated experiments. 

Prediction of the fate of L. monocytogenes cells contaminating the cheese surface 
The distributions describing the variability of the final contamination of cheese are shown in 
Figure 3. With the population modelling approach, the variability of the final contamination 
was approximately constant whatever the initial contamination level and physiological state. 
Distributions were essentially the same, only the scale was disturbed depending on the initial 
parameters. Conversely, the distributions obtained with the IbM approach were very 
dependent on the initial contamination level and physiological state. For low initial 
contamination level, i.e. 10 cells, as it can be expected for natural contaminations, the final 
contamination exhibited a very large variability with no growth in 10 to 80% of cases 
depending on initial physiological state and a maximum contamination sometimes exceeding 
106 cells (Figure 3d). When the number of initial cells increased, the growth yield was 
significantly increased and the variability of the final contamination was decreased. For 
instance, most of the final contamination levels were in a 0.5 log range for an initial 
contamination of 1 000 unstressed cells (Figure 3f). In these cases, the variability of the 
contamination was even lower than with the population modelling approach. This could be 
explained by an increasing probability to find cells surrounded by a particularly favourable 
microenvironment leading to a substantial growth. This phenomenon could be observed when 
challenge tests are performed in heterogeneous foods and these results highlight the risk to 
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overestimate the growth when using these experiments and average macroscopic food 
characteristics. 

 
Figure 3: Cumulative distributions of L. monocytogenes contamination on the surface of 

smear soft cheese after 20 days at 14°C. Cumulative distributions obtained for a population 
modelling approach / IbM approach with initial contamination levels of (a/d) 10, (b/e) 100, 
(c/f) 1 000 cells. Solid, dashed and dotted lines are cumulative distributions obtained with a 

physiological parameter equal to 8, 4.5 and 0, respectively. 

Conclusions  
This study clearly shows the large discrepancies in the growth predictions performed when 
using a population approach associated with a macroscopic description of food environment 
in comparison to an IbM approach of the bacterial growth in foods. 
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Abstract 
We aimed to evaluate the growth variability of Listeria monocytogenes and Salmonella 
Typhimurium single cells in leafy-vegetable salads, identifying potential uncertainty sources 
in broth-based simulations. Freshly cut lettuce and cabbage samples were inoculated with 1-4 
or 1000 cells and stored at 8oC. Their liquid or solidified sterile extracts were also inoculated 
with the above cell numbers to evaluate the behaviour of pathogens in the presence or absence 
of indigenous flora. Storage at 8-10oC was tested to simulate marginal temperature 
fluctuations. A minimum of 30 independent samples were analyzed per sampling day. 
Population of 1000 cells increased with limited variation (SD <1 log CFU/g), as opposed to 
the great variability (<0.5-3 log CFU/g increase) in the growth of single cells, especially in 
different batches and in liquid extracts. The percentage of lettuce samples exceeding the 
microbiological criterion of 100 CFU/g for L. monocytogenes varied from 5 to 70%, 
depending on storage time. Cabbage did not support growth of Salmonella. Conversely, L. 
monocytogenes single cells did not increase in sterile cabbage extracts, whereas they 
increased from 1 to 3.5 logs in cabbage salad, probably due to the stimulatory effect of 
indigenous flora. Notably, this was not evident with high inocula. Salmonella showed no 
growth at 8°C but increased 4 logs at 10°C, illustrating the impact of boundary conditions on 
food safety. Results of Monte Carlo simulation of bacterial growth based on broth data 
overestimated growth of L. monocytogenes on lettuce, while it underestimated the actual 
increase in cabbage. The above suggest that growth simulations in risk assessment should 
consider the interactions of pathogens with background flora. 
 
Keywords: stochastic, individual, single cells modelling, variability, vegetables 

Introduction 
It is well known that great variability exists in lag time and probability of growth among 
individual cells. This biological variability markedly impacts the dynamics of low 
populations, such as 1-50 cells and increases with the intensity of environmental stresses 
(Francois et al. 2006). However, the majority of challenge tests are performed with high 
inoculation levels, e.g. 1000 cells, in order to obtain the average behaviour of the population 
derived from the fastest growing cells and hence, the worst case scenario for risk assessment. 
Thus, in order to extrapolate the results to realistic conditions of low contamination, the 
variability of population numbers due to the variance of individual cell lag times also needs to 
be evaluated. Contrary to the extended research on individual-based modelling in laboratory 
media, limited information is available for the assessment of individual cell variability in 
foods. Considering the implication of fresh-cut salads, made of leafy greens, in various 
outbreaks and that the intrinsic factors of these products favour bacterial growth, we aimed: 
(i) to determine the variability in the growth of 2 pathogens in lettuce and cabbage at 8°C; (ii) 
to compare the response of individual cells with that of higher populations; (iii) to identify the 
contribution of the commensal flora, temperature abuse and food structure in the above 
variability; and (iv) to evaluate whether broth-based growth simulations may approximate the 
average outgrowth of a population from single cells in foods.  
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Materials and Methods 
Bacterial strains and single cell isolation 
Listeria monocytogenes Scott A (serotype 4b; epidemic strain) and Salmonella enterica subsp. 
enterica Le Minor and Poppof serovar Typhimurium (calf bowel isolate) were used. The 
isolation of single cells was conducted according to a modified protocol of Francois et al. 
(2003) involving 2-fold dilutions in a 8 x 12 microtitre plate, starting from an OD-counts 
standardized 103 CFU ml-1 suspension in the first column. The whole content of the wells of 
the appropriate column was used for the inoculation of the samples. 

Inoculation and microbiological analysis of vegetables 
Whole heads of Romaine lettuce and white cabbage were always purchased from a local 
retailer on the day of the study. Following removal of 4-5 outer leaves from each head, both 
vegetables were treated with 200 ppm chlorine for 15 min and washed with sterile water for 5 
min. The dry leaves of lettuce were evenly cut into strips (approx. 1 cm width), while cabbage 
was cut using a household cabbage cutter. Portions (10 g) of each vegetable were transferred 
into sterile 100-ml containers, spot-inoculated with single (approx. 1-4) or 1000 cells of L. 
monocytogenes or S. Typhimurium and aerobically stored at 8oC. Periodically, the pathogens 
were enumerated on ALOA (L. monocytogenes) or XLD (S. Typhimurium) plates. In 
addition, the indigenous microflora of the samples was enumerated on TSA (total viable 
counts), CFC (Pseudomonas sp.) and VRBG (Enterobacteriaceae). 

Preparation and inoculation of sterile extracts 
Portions of lettuce or cabbage were blended for 1 min with distilled water (1:1 ratio) and the 
pulp was heated for 2 hours at 80oC, in order to denature the enzymes and proteins of the 
vegetables. The homogenate was filtered and autoclaved in 5 ml tubes (liquid extract) or after 
the addition of 1.5% agar (solidified extract). Both prepared media were inoculated with 
single or 1000 cells of L. monocytogenes or S. Typhimurium and were stored at 8 or 10oC. 
Bacteria were enumerated on TSA plates. 

Results and Discussion  
Growth of single or 1000 cells on lettuce and cabbage salad 
Fitting a Poisson distribution (λ=1.932) to actual measurements of cells numbers in each well 
of the target 2-fold dilution, we estimated that 27% of samples were inoculated with a single 
cell (0.1 CFU/g), whereas 95% of samples were inoculated with 1-4 cells (0.4 CFU/g) of each 
pathogen. Growth of ‘single’ cells of Salmonella occurred in lettuce but not in cabbage, 
whereas ‘single’ cells of L. monocytogenes grew in both foods. Recorded increase from single 
cells ranged from 1-3 log CFU/g and was always halted when the psychrotrophic background 
flora reached the maximum level of 108 and 109 CFU/g in cabbage and lettuce, respectively 
(Fig. 1). This phenomenon may be associated with the so-called ‘Jameson’ effect (Mellefont 
et al. 2008). Growth of the 1000 cells inoculum also ceased under the same constraints, but 
notably, the total log-increase was limited to 2 log CFU/g, compared to that observed for 
‘single’ cells (Fig. 1). Competition between adjacent colonies within a population density of 
1000 cells may possibly explain the latter observation. Growth of 1000 cells was less variable 
than growth of single cells. These results suggest that if log increase was judged only by a 
challenge test with high initial population, the actual risk would have been underestimated. 
Overall, cabbage seemed a more stressful environment than lettuce and this likely explains 
the higher variability in log numbers during storage (death also occurred; Figs 2 & 3). 

Contribution of background flora, structure, batch and temperature to the variability 
of microbial responses  
In general, factors which inhibited growth of pathogens, such as the type of salad, the 
substrate structure and the storage temperature caused marked variability in the log-increase. 
Such variability was more pronounce between different batches (Figs 2 & 3). 
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Figure 1: Growth of single and 1000 cells of Salmonella Typhimurium on lettuce and L. 
monocytogenes on lettuce and cabbage at 8°C. 

The role of background flora was crucial for both pathogens. In particular, although 
Salmonella did not grow on cabbage, remarkable growth from single cells was observed on 
solidified cabbage extract (Fig.2). Notable is also the observation that growth of L. 
monocytogenes occurred only on cabbage, contrary to the complete inhibition of the 
bacterium in product extracts, suggesting that the increase of background flora on the surface 
of cut-tissue enhanced growth of the pathogen. This is a potential result of metabiosis 
(Marshal and Schmidt 1991), either due to the local increase of pH around L. monocytogenes 
cells, or due to the conversion of macro-molecules by psychrotrophs to readily available 
nutrients for L. monocytogenes. The stimulatory effects of background flora on pathogens 
introduce variability in microbial responses and are hardly accounted for by broth-based 
models. Moreover, the fact that this was evident only in growth from single cells suggests that 
challenge tests with high inocula would have indicated fail-dangerous trends. The structure 
(i.e., solid vs. liquid) of product extracts also influenced growth of pathogens with liquid 
extracts being on average more inhibitory than solid ones. A single cell of Salmonella could 
initiate growth on the surface of solid cabbage extract, but not in the corresponding juice, in 
which only the high inocula of 1000 cells was capable of growth initiation. It is likely that the 
intensity of stress factors, e.g., non-fermentable nutrients, or phenolic and acid compounds, 
possibly extracted from the plant tissues, is perceived by bacteria more in juices than on agar 
surfaces (Skandamis et al. 2000). 
In many cases, increase in temperature from 8 to 10°C had such a pronounce effect on 
pathogen response that could shift cells from no growth to a growth status. If that was not the 
case, then marked variability was observed between batches, as some batches did support 
growth and some did not (Figs 2 & 3). This was more evident for Salmonella, due to the 
range of 8-10°C being close to the growth boundaries. For instance, depending on the batch, 
the 1000 cells inocula had 50% probability of growth at 8°C contrary to the single cells which 
could not initiate growth.  

Lettuce broth, single cells

0

1

2

3

4

5

6

7

8

0 5 10 15 20
Time (days)

Lo
g 

CF
U/

 m

8oC- Batch 1

10oC- Batch 1

8oC- Batch 2

10oC- Batch 2

Cabbage agar, single cells

0

1

2

3

4

5

6

7

8

0 5 10 15 20
Time (days)

Lo
g 

CF
U/

 g

8oC- Batch 1

10oC- Batch 1

8oC- Batch 2

10oC- Batch 2

Cabbage agar, 1000 cells

0

1

2

3

4

5

6

7

8

0 5 10 15 20
Time (days)

Lo
g 

CF
U/

 g

8oC- Batch 1

10oC- Batch 1

8oC- Batch 2

10oC- Batch 2

 
Figure 2: Growth of Salmonella Typhimurium on lettuce and cabbage extracts at 8 and 10°C. 
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Figure 3: Growth of L. monocytogenes on lettuce and cabbage extracts at 8 and 10°C. 

Broth-based simulation of growth on lettuce and cabbage  
Considering the pH and aw of the salads (i.e., 6.0±0.2 - 0.978±0.002 for lettuce and 5.8±0.2-
0.970±0.002 for cabbage), the Weibull distributions of broth-based individual lag times by 
Francois et al. (2006), corresponding to the approximate levels of the above intrinsic factors, 
were used to simulate growth of L. monocytogenes from ‘single’ cells in salads. The μmax 
estimated by the experiments with the high inoculum was used as 0.016 and 0.011 h-1 for 
growth in lettuce and cabbage, respectively. Simulations for 6 and 12 days of storage over 
predicted growth on lettuce but significantly under-estimated growth in cabbage (Fig. 4). This 
deviation is associated with the fact that growth on lettuce occurred more slowly than that 
predicted based on broth data due to the competitive effect of background flora, whereas on 
cabbage, the stimulatory effect of background flora on growth of L. monocytogenes was an 
uncertainty factor of the broth-based lag distributions, leading to fail-dangerous predictions. 
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Figure 4: Predicted and observed cumulative distribution of L. monocytogenes on lettuce and 

cabbage after 12 days of storage 

Conclusions  

High uncertainty is expected when extrapolating broth-based simulations from single cells in 
foods. The stimulatory or competitive effect of background flora is more pronounce and 
evident only at low inocula, compared to higher levels, suggesting that challenge tests in fresh 
produce based on high initial bacterial numbers may underestimate the actual growth risk. 
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Abstract 
The objective of this work was to reconstruct spatial heterogeneities based on observations 
made from growth and spatial localisation of Listeria monocytogenes and Lactococcus lactis, 
in dual-species biofilms under constant nutrient renewal, using an individual-based model 
(IBM).  The dynamics of biofilm formation of L. monocytogenes and L. lactis, in mono- and 
dual-species biofilms was first studied by performing cell counts at different growth intervals 
in mono-species as well as mixed-species biofilms. Then, for localization inside mixed 
biofilms, L. monocytogenes cells were tagged with green fluorescent protein and the 
dynamics of biofilm growth in mixed biofilms in the presence of L. lactis were investigated 
by the use of confocal laser scanning microscopy (CLSM). The proposed IBM simulates 
bacterial cell growth in a three dimensional space. It uses few parameters that can be easily 
estimated from broth experiments and for which variability is taken into account. It also uses 
a small number of properties compared to other IBMs. Experimental data obtained from cell-
count enumeration and in-situ time course CLSM observations in mono- and dual-species 
flow- cell grown biofilms, were compared with simulated data. We successfully reconstructed 
the spatial competition heterogeneities of individual cells constituting a dual-species biofilms 
and predicted cell counts results. Listeria cells at the bottom layers of the biofilm are literally 
“smothered” by their competitor and are forced into a survival lifestyle, rather than into a 
proliferation or colonization lifestyles. This competition takes place at the initial phases of 
biofilm formation. L. lactis had shorter generation time and lag time compared to L. 
monocytogenes. These parameters lead to the competitive advantage of L. lactis towards L. 
monocytogenes in our experimental setup.  
 
Keywords: biofilm, spatial competition, individual based model, dynamic flow conditions 

Introduction 
L. monocytogenes cells are well equipped to adhere, form biofilms and persist on food 
processing surfaces. Surfaces of industrial settings host resident biofilms that likely interact 
with L. monocytogenes attachment, growth and survival (Carpentier and Cerf 2011). In 
fermented food processing, resident biofilms can host technological flora such as lactic acid 
bacteria. Biofilms of Lactococcus lactis have been shown to be efficient in controlling the 
development of L. monocytogenes through competitive exclusion, synthesis of bacteriocins, 
as well as inhibition of initial settlement (Habimana et al. 2009). All these studies, describing 
L. monocytogenes biofilms interactions, were conducted under static conditions, and little is 
known about the behaviour of L. monocytogenes in mixed-species communities under flow 
conditions, where fresh medium is constantly renewed above the biofilm. 
The use of modelling tools has helped to better understand bacterial interactions inside 
biofilms. In recent years, individual based models (IBM) have proven  invaluable for studying 
the behaviour of single bacterial cells in mixed-species communities (e.g. Ferrer et al. 2008). 
Besides predicting biofilm structure, data provided by IBM can be rendered as a three 
dimensional spatial representation of a given biofilm population and can also simulate 
emerging patterns from interactions between individuals from two to several other 
populations. 
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The present study aims to investigate the interactions between L. monocytogenes and a 
competitive host resident model strain, L. lactis, during the initial stages of biofilm formation 
under constant renewal of nutrients.  

Materials and Methods 
Continuous flow-biofilm experiments 
The L. lactis MG1363, L. monocytogenes EGDe and LO28 strains were used in this study. 
Biofilms were cultivated at 25°C in disposable three-channel flowcells (Stovall®) with 
individual channel dimensions of 1 x 4 x 40 mm and a glass coverslip substratum. BHI broth 
medium supplemented with glucose (0.5%) was continuously pumped through flowcell 
channels at a rate of 1.5 ml/hour. To initiate biofilm growth, the flow of medium was stopped 
and the flow-chambers were inoculated by injecting lactococcal and/or L. monocytogenes 
cells into each flow channel using a small syringe. No flow conditions were maintained for 1h 
after inoculation to allow bacteria to attach. After this time, the flow was resumed and the 
bacteria were cultivated in the flow cell at 25°C. Biofilms were subsequently analyzed after 
0h, 24h, 48h, and 72 h. 

In-situ time course Confocal Laser Microscopy (CLSM) 
Biofilm growth development was visualized in-situ by means of confocal microscopy laser-
scanning microscopy. Stacks of horizontal plane images were acquired using a Leica SP2 
AOBS CLSM (Leica Microsystems, France) equipped with a 488-nm argon laser and a 633-
nm He-Ne laser at the MIMA2 microscopy platform (http://voxel.jouy.inra.fr/mima2). For 
localization inside mono- and dual-species biofilms, GFP-tagged L. monocytogenes strains 
carrying pNF8 plasmid were employed during experiments. 

A new simplified spatial individual-based model (IBM) 
The proposed spatial IBM simulates the behaviour of bacterial cells in a three dimensional 
space. This space has the following size (length, width, height): 1000 by 1000 by 50µm. We 
assumed that L. monocytogenes and L. lactis cells are of the same size. They were both 
represented as cubes of 1 µm3 in this model. At time t, each cell was characterized by two 
state variables: the first being its position in the three dimensional area, and the second, its 
generation time. We considered that bacterial cells were immotile and that there was no 
passive attachment and reattachment of cells onto the substratum. Time was discretized in 
constant 5 minutes steps. At t0, N0 cells were randomly positioned on the bottom plane of the  
x-y-z space. For each time step, sequential processes were performed based on the generation 
time for each individual cell. When generation time was reached, the ‘mother’ cell kept its 
position while the ‘daughter’ cell was randomly placed at any of the eight possible available 
positions on the same x-y plane next to the ‘mother’ cell. In the event of no available 
positions on the x-y plane, the ‘daughter’ cell was then randomly placed at any of the nine 
possible available positions on the upper x-y plane. An individual cell was considered as non-
growing, when found to be unable to divide onto an upper x-y plane.  
Doubling times (DT) of cells were considered to be variable within a population and were 
derived from values of lag time and growth rate obtained for planktonic cells in BHI. For the 
first generation (DT0, i.e. lag time), DT0 of L. monocytogenes cells were estimated from lag 
time in broth according to models of Guillier and Augustin (Guillier and Augustin 2006). For 
the following generations, the DT of both populations were derived from growth rate values 
obtained in broth. We considered that DT followed of normal distribution of mean ln(2)/µmax 
and a standard deviation of 10% of the mean as previous studies observed a coefficient of 
variation of DT close to 10% (e.g. Pin et al. 2006). The same parameters were used for the 
two L. monocytogenes strains. 
The results of the spatial IBM can be presented either as a classical kinetic growth curve, 
obtained by summing the cells of each population present at different times or as a three 
dimensional representation of a biofilm at a chosen time point. This model was implemented 
in Matlab 6.5 (The MathWorks Inc., Natick, MA, USA). 
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Table 1: Parameters used in the spatial individual based model. 
Parameters Listeria monocytogenes Lactococcus lactis Units 

First doubling time Extreme ValueIIb (-4.75,7.98) Uniform (0,74) minutes 
Doubling times Normal (114,11.4) Normal (74, 7.4) minutes 

N0 3000 5000 cells 

Results and Discussion  
Observed and predicted spatial development of biofilms 
Mixed inoculation of auto-fluorescent Listeria strains and non-fluorescent L. lactis strains 
allowed the visualization of the spatial localization of the pathogen inside mixed-species 
biofilms. L. monocytogenes in mixed-species biofilms was spatialized exclusively at the base 
of the biofilm, in contact with the substratum (Figure 1). 
 

 
Figure 1. Spatial distribution of GFP tagged L. monocytogenes in the absence or presence of 
L. lactis MG 1363 after 72 hours growth represented by vertical sections in the xz- plane (the 

lower side of the section corresponds to the substratum). 

The spatial development of L. monocytogenes in the presence of L. lactis in dual-species 
biofilms predicted by the IBM is presented on Figure 2. The competitive nature between L. 
monocytogenes and L. lactis best fits a ‘spatial’ competition type of interaction, governed 
mainly by the access of available nutrients. Listeria cells that find themselves at the bottom 
layers of the biofilm are literally ‘smothered’ by their competitor and are forced into a 
survival lifestyle. This type of competition takes place at the initial phases of biofilm 
formation, where growth parameters of the different strains in competition will determine 
which strain will have the upper hand. 

 
Figure 2: Fragment of spatial biofilm simulated with IBM. Growing and non-growing L. 

monocytogenes cells are represented as  and  cubes respectfully, while growing and non-
growing L. lactis cells are represented as   and   cubes respectfully.  

3h 8h 

12h 18h 
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Observed and predicted growth developments 
The predicted and measured growth counts of L. monocytogenes strains in mono-species 
biofilms or, in the presence of L. lactis are presented in Figure 3. In mixed-species biofilms,  
L. monocytogenes cells were greatly inhibited by the presence of L. lactis. For both strains 
observed cell counts were lower or equal to inoculum levels (Figure 3). Compared to 
measured values of L. monocytogenes, the spatial IBM predicted a population increase of 
about 1 log10. Probable reasons could be that our model did not take into account bacterial 
death that can occur inside microbial colonies (Theys et al. 2009). 
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Figure 3: (A) Measured growth of L. monocytogenes EGDe () and LO28 () in mono-

species biofilms. (B) Mixed-species biofilms composed of L. lactis () with EGDe () or of 
L. lactis () with LO28 (). Error bars represent 95% CI of bacterial counts. (−) L. 

monocytogenes and (--) L. lactis growth as predicted by the spatial individual based model. 

Conclusions  
By using a very simple IBM, we were able to demonstrate that the initial disparity in 
generation times between L. monocytogenes and L. lactis most likely explains the observed 
species spatialization inside dual-species biofilms, and hence the growth inhibition of the 
pathogen.  
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Abstract 
The water activity (aw) growth limits of Listeria monocytogenes individual cells were studied 
based on the method used by Koutsoumanis (2008). The results showed that the aw limits are 
a distribution varying from 0.937 to 0.997. In addition, the growth kinetics of L. 
monocytogenes on tryptone soy agar with aw adjusted to values ranging from 0.997 to 0.940 
was monitored. The growth data were fitted to the model of Baranyi and Roberts for the 
estimation of the “apparent lag”. In order to estimate the “physiological lag” of the growing 
fraction of the inoculum, the growth data were refitted to the model using as initial population 
level the number of cells that were able to grow and excluding the rest of the data during the 
lag. The results showed that for aw values ranging from 0.997 to 0.970 there was no difference 
between apparent and physiological lag. As the aw decreased from 0.970 to 0.940, however, 
the above difference increased significantly due to the increase of the ratio between non-
growing and growing cells. For the lower aw tested (0.940), the apparent and physiological lag 
were 23.2 and 10.1 h, respectively. In contrast to the apparent lag, a linear relation between 
physiological lag and aw was observed. Furthermore, the physiological state (h0) of the 
growing fraction of the inoculum was found to be independent by the growth environment (i.e 
aw). The data presented in this work show that the variability in the growth limits of 
individual cells can lead to a better understanding of the microbial behavior at conditions 
close to the boundary of growth, and stress the need for stochastic approaches in predictive 
microbiology. 
 
Keywords: Listeria monocytogenes, growth limits, individual cells 

Introduction 
Since the 1980s predictive microbiology has focused on the development of deterministic 
primary models to predict microbial behavior in foods as a function of storage time (growth 
and survival) and treatment time (inactivation). However, deterministic models are not 
effective in describing the behavior of small microbial populations since they ignore the 
variability among individual cells (Baranyi 1998). Considering that, in practice, 
contamination of foods with pathogens occurs at very low levels, it is becoming clear that the 
behavior of single cells should be taken into account through stochastic modelling approaches 
(Pin and Baranyi 2006). The importance of stochastic models which are able to deal with 
more “realistic” contamination events has been further increased after the recognition of risk 
assessment as the main tool in food safety management. 
In contrast to the increased number of studies on the lag and generation time of individual 
microbial cells, not many data are available on the growth limits of single cells. In recent 
years, however, the need for studying and modelling microbial growth limits has been 
increasingly recognized. Prediction of limits for pathogen growth can lead to accurate 
description of the conditions which can be applied to control a process or specify the product 
formulation for safer food production. Thus, data and information on the growth limits of 
pathogens at a single-cell level would be of great importance. 
Based on the observed variability of single-cell lag, and considering that the limit of growth 
for a microbial cell can be identified to a certain level of an environmental factor where lag 
becomes infinite, variability of the growth limits of individual cells would also be expected. 
The latter is supported by the findings of several studies which demonstrated that an increase 
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in the inoculum size of microbial populations results to a shift in the position of the growth 
boundary to more extreme inhibitory conditions. Koutsoumanis and Sofos (2005), attempting 
to explain the effect of inoculum size on the growth limits of Listeria monocytogenes 
populations, stated that as in the case of lag times, growth limits of individual cells in 
microbial populations should be better described by distributions rather than being uniform. 
This was confirmed by Koutsoumanis (2008) who described quantitatively the aw limits of 
Salmonella.  
The aim of this work was to study the aw growth limits of individual L. monocytogenes cells 
and to evaluate the effect of growth limit variability on the lag phase of microbial 
populations.  

Materials and Methods 
A L. monocytogenes strain, serotype 1/2a, was used in this study, kindly provided by Dr. 
Martin Wiedmann (Cornell University, Ithaca, NY, USA). The water activity (aw) growth 
limits of individual L. monocytogenes cells at 30 oC and pH 7.3 were studied based on the 
method used by Koutsoumanis (2008). About 200 cells of the pathogen were inoculated on 
tryptone soy agar plates with aw adjusted to values ranging from 0.997 to 0.937 After 
inoculation plates were covered with Parafilm to avoid dehydration and stored at 30 oC in 
high-precision temperature incubators. The distribution of aw growth limits of individual cells 
was estimated from the ratio between the average number of colonies formed at each aw 
increment and the average number of cells initially inoculated, based on the assumption that 
each colony was derived from a single cell. The inoculum size was estimated based on the 
number of colonies formed on agar plates with optimum conditions (aw=0.997). In addition, 
the growth kinetics of the pathogen on tryptone soy agar with aw adjusted to values ranging 
from 0.997 to 0.940 was monitored at 30 oC. The growth data were fitted to the model of 
Baranyi and Roberts (1994) for the estimation of the kinetic parameters. The growth curves in 
combination with the identification of the growing fraction of the population at each aw 
condition allowed for the calculation of the apparent and the physiological lag. Additional 
replicate experiments are still in progress. 

Results and Discussion  
The cumulative distribution of the water activity (aw) growth limits of individual L. 
monocytogenes cells is presented in Fig. 1. As it is shown, the aw limits varied from 0.937 to 
0.997. The observed variability in the growth limits of individual cells indicates that as the aw 
conditions approach the boundary of growth an increasing number of cells in the population 
are not able to grow. The presence of this non-growing fraction results in an additional lag of 
the population, which we have called “pseudo-lag” (Koutsoumanis 2008). Consequently, at 
conditions close to the boundary of growth the total apparent lag of the population is the sum 
of the pseudo-lag and the physiological lag of the growing cells.  
The objective of the present study was to estimate the apparent lag, the physiological lag and 
the pseudo-lag as affected by the growth environment. For this, the growth kinetics of L. 
monocytogenes on tryptone soy agar with aw adjusted to values ranging from 0.997 to 0.940 
was monitored.  
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Figure 1: Cumulative distribution of the water activity (aw) growth limits of L. monocytogenes 

individual cells 
 

The growth data were fitted to the model of Baranyi and Roberts (1994) for the estimation of 
the apparent lag. In order to estimate the physiological lag of the growing fraction of the 
inoculum, the growth data were refitted to the model using as initial population level the 
number of cells that were able to grow and excluding the rest of the data during the lag (Fig. 
2). The number of cells that were able to grow was estimated based on the colonies formed on 
the agar plates at the end of storage period. The pseudo-lag was estimated from the difference 
between the apparent and physiological lag.  
 

8

10

12

14

16

18

20

22

24

0 20 40 60 80 100 120 140 160

time (h)

Ln
C

Growing fraction
Total population

apparent lag

physiological lag

 
Figure 2: Fitting of the total population and the growing fraction of L. monocytogenes to the 

Baranyi and Roberts model and calculation of the apparent and physiological lag. 

 
The effect of aw on the apparent lag, the physiological lag and the pseudo-lag is presented in 
Fig. 3. The results showed that for aw values ranging from 0.997 to 0.970 there was no 
difference between apparent and physiological lag. As the aw decreased from 0.970 to 0.940, 
however, the above difference increased significantly. For example, for the lower aw tested 
(0.940) the apparent and physiological lag was 23.2 and 10.1 h, respectively. In contrast to the 
apparent lag, a linear relation between physiological lag and aw was observed. As shown in 
Fig. 3, the non-linearity of the apparent lag can be attributed to the increasing pseudo-lag as 
the aw approaches the boundary of growth which is a result of the increasing number of cells 
that are not able to grow. Furthermore, the physiological state (h0) of the growing fraction of 
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the inoculum was found to be independent of the growth environment (i.e aw). The above 
results indicate that the use of models for the apparent lag developed using high inoculum 
levels can lead to significant underpredictions of the lag and be fail-dangerous when applied 
for low inoculum levels.  
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Figure 3: Effect of aw on the apparent lag, physiological lag and pseudo-lag of L. 

monocytogenes  

Conclusions  
The water activity growth limits of individual L. monocytogenes individual cells vary 
significantly. This variability results in an increasing number of cells in the population which 
are not able to grow as the aw conditions approach the boundary of growth. At conditions 
close to the boundary of growth the total apparent lag of the population is the sum of the 
pseudo-lag and the physiological lag of the growing cells. For aw values ranging from 0.997 
to 0.970 there was no difference between apparent and physiological lag but as the aw 
decreased from 0.970 to 0.940 the above difference increased significantly. The data 
presented in this work show that the variability in the growth limits of individual cells can 
lead to a better understanding of the microbial behavior at conditions close to the boundary of 
growth, and stress the need for stochastic approaches in predictive microbiology. 
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How can we make the best use of predictive microbiology (PM) data 
and models in food safety risk assessments? 

David Vose 

Vose Software BVBA, Iepenstraat 98, 9000 Gent, Belgium 

Food safety risk assessment  
Food safety risk assessment is the analytical component of food safety risk management. It 
attempts to quantify the risk and uncertainty in a food safety-related problem to give 
managers a better understanding of the impact of the different decision options they have 
available. In order to provide a quantitative risk assessment we need a mathematical model 
that will be a simplified representation of how the system is assumed to behave both now and 
after any interventions under consideration. Simplified implies that our probability values are 
approximate, and assumed implies that the numbers generated would only be true if the list of 
assumptions all turned out to be correct. The more numerous and tentative the assumptions 
are, the less useful the numerical results will be, and often we have no good way of estimating 
the level of inaccuracy we are introducing by making assumptions. Then we have to add 
statistical uncertainty of the parameter estimates. From a risk assessor’s perspective, data 
quality translates into how few assumptions one has to make in using a data set, and how little 
statistical uncertainty it adds to the assessment. 

Designing a risk assessment and selecting PM data and models 
The design of a risk assessment model is, or at least should be, quite a creative process. The 
risk assessor should look at the questions being asked by the risk managers, the scope of a 
model that might be able to answer those questions, the data available that would populate the 
model, how robust the assumptions would be, what could be put together within the 
timeframe and budget, whether there are sufficient in-house skills to be able to write the 
model, and whether it will be mathematically tractable.  

I describe below two variations of the most common type of population-based food safety risk 
assessment model, the difficulties we face as modellers in using PM data is these models, and 
how the PM community could help make our models better. I acknowledge that there are 
plenty of other food safety-related areas in which PM can be used, for example in evaluating 
detection sampling plans or determining shelf-life.  

Simulation farm-to-fork models 
These models focus on a particular food animal species and a specific pathogen. The models 
attempt to represent the microbial load on a unit and the prevalence of contamination in a 
continuum beginning with the production of the animal at the farm, through slaughtering, 
processing of the meat, storage and handling in the retail, commercial restaurant and domestic 
settings, leading to an estimate of how often people in a population are exposed to the 
pathogen from this food type and how much they ingest. If we have some estimate of the 
dose-response relationship (the probability of infection or illness given a specific number of 
organisms ingested) we can end with an estimate the risk to the consuming population. A 
schematic of a typical model for Campylobacter in chicken is shown in Figure 1. Models for 
other food types that tend to remain as a single unit from production to consumption, like 
whole eggs or shellfish, have fewer components. 

61



 

Figure 1: Schematic of a typical farm-to-fork risk assessment model (from Christensen et 
al.2001). 

In order to make such a model one has to pare it down to the most essential components, 
which means trying to constrain the model to those pathogen strains and exposure routes that 
represent the greatest risk, including at a minimum those processes for which risk 
management decisions need to be made and modelling only the most common types of 
systems. The biggest problem a farm-to-fork model faces is the heterogeneity of the system. 
In reality, a system like that depicted in Figure 1 will vary greatly in size and style of 
operating between farms, slaughter and processing plants, food products and consumer 
behaviour. On top of it all is the heterogeneity of the bacterial populations. 

Moment-based models 
In 2010, we produced a Campylobacter food safety risk assessment model for EFSA that took 
a different mathematical approach to farm-to-fork risk assessment. The task was to develop a 
risk assessment model with a farm-to-fork scope that could be applied to any EU Member 
State provided there were data available for that Member State. The model was asked to 
address the effect of a wide number of interventions. The unique aspect of the problem was 
that the model needed to be anchored to the very large and harmonized EFSA baseline survey 
data related to microbial load and prevalence of Campylobacter at the post-chilling stage of 
poultry meat production, as well as anchoring to the observed illness rates in Member States. 
The usual Monte Carlo simulation methods used in farm-to-fork risk assessment simulate a 
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process from the farm onwards and are unable to anchor to observations further along the 
farm-to-fork continuum. 

If a food item has a microbial log-load defined by some distribution A and an intervention is 
being considered that reduces the load by B logs, where B follows a distribution, then one can 
estimate the raw moments of the remaining load  Z = A – B using standard equations.  The 
equation are also reversible so if we have data to estimate the log load Z after the intervention 
and we have data to estimate the log reduction effect of the intervention, then the moments of 
the original log load A before the intervention can be estimated.  

Data limitations 
Aside from essentially having to ignore heterogeneity, farm-to-fork models are hampered by 
lack of data. The data we have are usually at only a few points in the whole system. There are 
a number of areas that an improvement of reporting of PM models and data can be very 
helpful: 

Log load reduction for interventions 
For interventions that reduce the number of viable bacteria on a food product or carcass, 
experiments usually quote the mean and variance (or standard deviation) of log load before 
and after the intervention under a certain condition (temperature, pH, time, etc), so risk 
assessors have to interpret the information using a Normal distribution for the log load which 
could easily under- or over-estimate the tails of the distribution. The data are also often 
reported for pooled samples which are not useful for modelling load. Ideally, PM results 
would make the raw data readily available to the risk assessment community because this 
allows us to completely specify the distribution of change with attendant statistical 
uncertainty. At a minimum, quoting the skewness of the data would allow a more precise 
modelling of the load. 

A common assumption is that the log reduction that would be achieved is independent of (i.e. 
not correlated with) the initial log load. A related assumption is that the load in samples is 
representative of the whole food item or carcass. This is equivalent to saying that every 
bacterium present on the food item has the same probability of being attenuated by the 
intervention (or detected). It would be helpful to have data that allow us to support or refute 
this assumption. 

Changing prevalence 
An intervention may have an impact on the between/within flock/herd/batch prevalence. PM 
can help us evaluate the impact of within batch prevalence, e.g. what the effect would be of a 
change in processing on the fraction of a food product that would be contaminated. In risk 
assessment we are interested in the fraction of food items that are contaminated (true 
prevalence), not the fraction of food items that test positive (apparent prevalence). We can 
only be reasonably comfortable about using apparent prevalence as a surrogate for true 
prevalence provided that: 

• Statistically a lot more bacteria are required to cause infection than the test threshold ; 
• Bacteria are quite homogeneously distributed in the food item being tested; and  
• The bacteria are very unlikely to multiply between the point of testing and the 

exposure event that could cause human illness.  
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It is rare that all three conditions will be met, so we need to make a correction between 
apparent prevalence and true prevalence, which requires some statistical modelling that 
requires knowing the method of sampling, the distribution of microbial load in contaminated 
items and the performance of the test itself. 

Summary 
Precise PM data are of great value in manufacturing processes to optimise the quality and 
shelf-life of food products where the system is highly controllable and homogeneous. By 
contrast, food safety risk assessments attempt to model a highly variable and uncertain system 
so our PM data needs are different. We need: 

• Access to raw data or, at least, more comprehensive statistical descriptions of PM 
studies; 

• Corrections for detection thresholds and true prevalence estimates; 
• Analysis of whether log load increase or reduction are functions of the initial load; 
• Help with understanding how to translate the estimated load in a sample into the load 

on the food item as a whole, including sometimes the location of the pathogen; 
• Help with being able to make simple models for mixed pathogenic populations; 
• Help with rational arguments for determining how we can simplify our models 

without greatly reducing their accuracy. 
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General risk assessment for Salmonella in formulated dry foods 

D.W. Schaffner 
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Abstract 
Recent U.S. Salmonella outbreaks and recalls, including the Peanut Butter Corporation of 
America outbreak, the Plainview non-fat dry milk recall, and the Basic Food Flavors 
hydrolyzed vegetable protein recall have highlighted the importance of controlling 
Salmonella in Formulated Dry Foods. This risk assessment was undertaken to assist food 
companies in managing the risks associated with formulated dry food products that do not 
support the growth of Salmonella.  Specific model components include: serving size, weight 
of contaminated ingredient per serving, Salmonella cells per gram, the effect of negative test 
results on Salmonella prevalence, the effect of thermal processing on Salmonella in the dry 
state and the effect on storage time on Salmonella survival. A component of the model was 
also created to use the effect of environmental sampling test results to predict finished product 
risk. Estimated number of illnesses resulting from contaminated servings was calculated using 
the FAO/WHO beta-Poisson dose-response model for Salmonella. The risk model was 
developed using the Microsoft Excel add-in, @Risk (Palisade Corporation, Ithaca, NY).  
Results show that even when foods are contaminated with very low levels of Salmonella, 
when millions of servings are simulated, hundreds or thousands of illnesses are predicted to 
result.  Product manufactured with significantly (~1 year) older ingredients represent a 
measureable lower risk due to Salmonella die-off during storage. When hundreds of negative 
test results are obtained, the predicted risk is lower. Finally, when low water-activity foods 
are processed, Salmonella survival may present a significant risk unless very high 
temperatures and long times are used. 
 
Keywords: Salmonella, risk assessment, water activity, survival modeling  

Introduction 
Recent U.S. Salmonella outbreaks and recalls, including the Peanut Butter Corporation of 
America outbreak, the Plainview non-fat dry milk recall, and the Basic Food Flavors 
hydrolyzed vegetable protein recall have highlighted the importance of controlling 
Salmonella in Formulated Dry Foods. 
This paper was inspired by a series of risk assessments undertaken to assist food companies in 
managing the risks associated with formulated dry food products that do not support the 
growth of Salmonella. 

Materials and Methods 
Surface sanitation indicator data was provided in the form of a Microsoft Excel file. One 
years worth of data from a single food processing plant location, containing ~5700 data points 
was analysed.  Data were extracted from Excel, and converted to a format suitable for import 
into Microsoft Access. Access was used to extract and query the dataset, with subsequent 
analysis done in Excel. 
D-values for Salmonella were based on data provided in the “Annex to Control of Salmonella 
in Low-Moisture Foods”, published by GMA on February 4, 2009, specifically the data from 
Dega et al. (1972) – Table A-4 of the GMA report and McDonough and Hargrove (1968) – 
Table A-5 of the GMA report.  Data were extracted from these tables and used to construct a 
mathematical model. 
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These models were combined with other information including assumed Salmonella 
prevalence and concentration to construct a microbial risk assessment using the @risk add-in 
for Microsoft Excel. 

Results and Discussion  
Surface sanitation indicators 
Table 1 below shows surface contamination data taken from a single food processing plant in 
one year.  These data show the degree of correlation between indicator (Enterobacteriaceae) 
counts and Salmonella prevalence. 
 

Table 1: Summary of surface sampling for pathogens and indicators. 
 Enterobacteriaceae 
Salmonella Absent <100 >=100 TNTC Total 
Absent 4400 1000 40 200 5640 
Present 10 15 2 25 52 
Total 4410 1015 42 225 5692 

 
Table 2 shows an example calculation that can be performed with this data, using the concept 
of odds-ratio, common in epidemiology.  The first line shows the odds of Salmonella 
occurring (simply total Salmonella positives divided by the total samples tested).  The next 
line shows a similar calculation where it’s the odds of a very high Enterobacteriaceae (EB) 
count occurring.  The third line combines these two probabilities to estimate the theoretical 
odds of the joint occurrence, while the last line shows the actual odds based on the table 
above.  It’s clear that the actual odds are much higher (by about 10 times). 
  

Table 2: Odds ratios for pathogen and indicator occurrence. 
Odds of Salmonella occurring 52/5692 0.90% 
Odds of EB occurring at TNTC 225/5692 4.00% 
Calculated odds together 0.9*4.0 0.04% 
Actual odds together 24/5692 0.44%  

 
Table 3 below shows the relative risk, ranging from double (when any EB are present) to four 
times higher (when EB exceed 100), to ten times higher when the EB are too numerous to 
count. 
 

Table 3: Relative risk of pathogen occurrence 
depending on indicator level. 

Countable EB  Double the risk 
>=100 EB  Four times the risk 
TNTC  Ten times the risk 

 
Data on EB for food contact surfaces (where Salmonella tests are not typically performed) 
can be used in conjunction with the other risk calculations that follow, but only when two 
additional critical pieces of information are known: the concentration of Salmonella when 
they are present and the cross contamination rate from surface to food. 
No information in the published literature for either of these two important data gaps were 
located, however levels are likely to be low when Salmonella are present (based on anecdotal 
information), and cross contamination rates very low (based on typical cross contamination 
rates of 1% when surfaces are wet – Chen et al. 2001) since moisture is known to facilitate 
transfer.  
D-values for Salmonella were based on data provided in the “Annex to Control of Salmonella 
in Low-Moisture Foods”, published by GMA on February 4, 2009, specifically the data from 
Dega et al. (1972) – Table A-4 of the GMA report and McDonough and Hargrove (1968) – 
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Table A-5 of the GMA report. These data were used to create a mathematical model used to 
interpolate between the highest moisture in the Dega report (49% moisture) and the moisture 
in the McDonough and Hargrove report (4%).  This model is shown in the Figure below, 
where each colored line corresponds to a different solids/moisture ratio. 

 
 
Table 4 below shows an excerpt from the @risk-based Excel spreadsheet.  The first column is 
a description of the information found in each row.  The next column shows an example of 
the value that might be found at any point in time in the simulation.  The next column 
contains a cell number, which corresponds to the cell in the excel spreadsheet where the value 
can be found.  This is important to understand how the formula, found in the next column 
works to perform the calculations.  The formula column either contains the excel formula that 
shows how the contents of different cells are combined or indicated that the contents of the 
cell come from user input.  Formulas can either be strictly mathematical (i.e. B7: 
=B6*B2*B5) or they can contain @risk functions.  The two @risk functions currently 
implemented in the spreadsheet are the RiskBeta function, used the calculate the probability 
that a pathogen is present, or the RiskTriang function, used to calculate the expected log 
reduction due to the application of heat. 
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Table 4: Example results from risk assessment showing calculations. 
Description Value Cell Formula 
Cells per gram 1 B 2 user input 
Positive tests 0 B 3 user input 
Negative tests 21 B 4 user input 
Probability of positive 0.043478261 B 5 =RiskBeta(1+B3,1+B4) 
Grams per serving 25 B 6 user input 
Cells per serving (pre) 1.09 B 7 =B6*B2*B5 
Log cells per serving (pre) 0.036212174 B 8 =LOG(B7) 
Log reduction by process 1 0.63 B 9 =RiskTriang(C9,D9,E9) 
Log reduction by process 2 0.34 B 10 =RiskTriang(C10,D10,E10) 
Log cells per serving (post) -0.93 B 11 =B8-B9-B10 
Cells per serving (post) 0.1165 B 12 =10^B11 
Risk per serving 0.0003 B 13 =1-(1+B12/51)^-0.13 

 
Finally, in addition the analysis shown here, another factor which serves to mitigate 
Salmonella risk is dried products is the fact that Salmonella is known to die off slowly in such 
foods.  One of the most comprehensive datasets on this topic can be found in Tamminga, et 
al. (1976) where the researchers studied the survival of Salmonella in chocolate.  These data 
show that Salmonella dies at a rate of about 0.25 log CFU per month.  While this may seem 
very low, considering many dried ingredients may be held for a year or more before use, the 
net effect on risk may be significant. 

Conclusions  
In summary, (a) indicator organisms can be useful in assessing risk, although significant data 
gaps are still needed to make a direct connection to risk. (b) When low water-activity foods 
are processed, Salmonella may survive unless high temperatures and long times are used.  (c) 
When foods are contaminated with very low levels of Salmonella many illnesses may still 
result, when millions of servings are simulated. (d) Negative test results can be used in risk 
assessment to demonstrate lower risk. (e) Product manufactured with older ingredients 
represent a measurably lower risk.  All of the above factors can be integrated into a 
comprehensive risk assessment to aid food processors in managing Salmonella risk in dried 
foods.  
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Abstract 
Contamination of egg products by Salmonella Enteritidis has emerged as a one of the main 
causes of salmonellosis in Europe. At the same time, the performance of microbiological 
criteria (MC) and risk-based metrics provides a substantial improvement in microbial 
assessment schemes. In the present work, the efficacy of the implementation of Performance 
Objectives (PO) at different contamination levels of S. Enteritidis in shell and liquid 
pasteurized egg products (before pasteurization) was studied. Growth/inactivation kinetics 
were estimated at various stages in the food chain to determine the exposure level of S. 
Enteritidis in the final products. Statistical techniques and distribution fitting was performed 
in ModelRisk v3.0. Log increase after storage in shell eggs and final concentration of S. 
Enteritidis after pasteurization in liquid egg products were evaluated as risk outputs. The 
results obtained in shell eggs showed that, under appropriate storage conditions, S. Enteritidis 
did not grow in 72.1% of the cases, while in 83% of the cases; growth increase was lower 
than 1 log cfu/g, since low temperatures delayed yolk membrane disruption. The developed 
MC in shell eggs (lot mean = 1.13 log cfu/g; s.d. = 0.56; n = 35; m = absence in 25g; c = 0 
and PO = 0.35 log cfu/g) increased the percentage of no-growth cases up to 88.8% of cases, 
and reduced the extreme values of the log increase distribution from 9.23 to 6.93 log cfu/g. 
On the other hand, the establishment of POs in liquid eggs before pasteurization (PO = 0.22 
log cfu/ml) produced a substantial reduction in the mean values of the concentration of S. 
Enteritidis after pasteurization (from -0.71 to -2.34 log cfu/ml). These results are of great 
importance for risk managers in order to set risk-based control strategies in shell eggs and egg 
products. 
 
Keywords: S. Enteritidis, Performance Objectives, Microbiological Criteria, Risk assessment, 
growth/inactivation models 

Introduction 
Salmonella is a well-known foodborne pathogen which is present in a wide variety range of 
foods. Eggs and egg products are found as the food commodities where most of the outbreaks 
are reported in Europe (EFSA/ECDC 2011).  Although the salmonellosis cases in humans 
have decreased by 17.4% compared to 2008 thanks in part to the implementation of national 
control programmes, additional measures are required since data regarding storage conditions 
and consumer practices are still scarce and highly variable. On the other hand, risk-based 
metrics (such as Performance Objectives [PO], Food Safety Objectives [FSO]) have emerged 
as risk management measures to be implemented throughout the food chain that can help to 
set public health goals. In this context, microbiological criteria (MC) based on within-lot 
testing are defined to provide a statistically-designed approach for determining POs and FSO 
(van Schothorst et al. 2009). 
In this work, an exposure assessment model was built for determining as risks outputs: (i) the 
growth increase of Salmonella Enteritidis in shell eggs after processing and storage 
conditions, as well as (ii) the final concentration in liquid pasteurized eggs. Subsequently, 
different values of the prevalence distribution of contaminated eggs were taken to determine 
potential POs. Finally MC were implemented (assuming log-normal distributions for the 
Salmonella concentration) and their impact on risk outputs were evaluated in order to give an 
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example of potential risk management measures within the farm-to-fork chain of eggs and 
egg products.   

Materials and Methods 
An exposure assessment model was implemented in an Excel spreadsheet. The most 
representative variables in the model together with their corresponding distributions and 
values are represented in Table 1.  

Prevalence and concentration data 
Prevalence and concentration distributions in shell eggs were obtained from the studies of 
Chemaly et al. (2009) and from the risk assessment of S. Enteritidis performed by 
USDA/FSIS (2005). We considered contamination per individual shell egg coming from the 
same flock. Subsequently, during the cracking process of contaminated eggs, S. Enteritidis 
was assumed to be transferred from the shell to the egg yolk (being initially negative for S. 
Enteritidis) with a probability of 0.639, basing on the data obtained by Rivoal et al. (2009).   

Modelling growth/inactivation of S. Enteritidis in shell and liquid eggs 
The Baranyi model was used to determine growth of Salmonella at various steps in the food 
chain, while a secondary Gamma model was used to calculate maximum growth rate (µmax, h-

1) as a function of temperature and pH conditions (µopt = 2.34 h-1; Tmin = 5.2ºC; Topt = Uniform 
(35,43); Tmax = 46.2; pHmin = 3.8; pHopt = Uniform (7,7.5); pHmax = 8.8).  
Time and temperature distributions of eggs in farm and during processing and storage 
conditions were obtained from Latimer et al. (2002). Growth of S. Enteritidis was assumed to 
occur once the pathogen has penetrated into the yolk. Therefore, the loss of membrane 
integrity (LIYM) was considered in the growth model (USDA/FSIS 2005). The equation used 
was: 
 

                                                              Eq.1, where T represents the internal egg   
temperature (ºC) 

 
The inactivation model of Jordan et al. (2010) was used to calculate the number reductions 
(log) of S. Enteritidis in liquid eggs due to pasteurization treatment (61.5ºC-3 min). 
A MonteCarlo simulation was run in ModelRisk v 3.0 (Vose Consulting, Belgium) with 
10,000 iterations to characterize variability in the parameters. Additionally, a crude sensitivity 
analysis through the calculation of rank correlation coefficients was carried out in order to 
evaluate the effect of each input on final risk outputs. Finally, the log increase of S. Enteritidis 
in shell eggs and the final concentration after pasteurization in liquid eggs were calculated as 
model outputs.  

Implementation of POs and MC 
MC were established assuming log normal distributions for the concentration of S. Enteritidis 
in eggs. Knowledge of the mean value together with the standard deviation served to develop 
a MC. The safety limit required (maximum frequency of the hazard) and its relationship with 
the lot mean, was determined by taking different percentiles of the prevalence distributions of 
S. Enteritidis in shell eggs and unpasteurized liquid eggs. The acceptability of the food lot was 
described through a two-class sampling plan (n, c, m). A consumer acceptable level of safety 
(ALS) of 95% was assumed.  

Results and Discussion  
The exposure assessment model considered that all contaminated units belonged to shell eggs. 
Contamination to liquid eggs was assumed to be originated through penetration of Salmonella 
to the egg yolk because of the loss of integrity of yolk membrane (LIYM). The disruption of 
the yolk membrane might be dependent on the internal egg temperature and the exposure 
(USDA/FSIS 05). Results obtained indicated that there was no growth of S. Enteritidis in 
72.1% of the cases from contaminated shell eggs mainly due to appropriate handling 
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conditions and integrity of yolk membrane were most likely to occur. Besides, growth was 
limited since in 83% of cases was lower than 1 log. The maintenance of refrigerated storage 
temperatures (10.73±3.29ºC) after egg processing reduced significantly the probability of 
growth of S. Enteritidis within contaminated eggs. In the sensitivity analysis performed, rank 
correlation values (r) were highest for storage temperature after processing (r = 0.643) and 
storage time (r = 0.365), thus, they were identified as the most relevant inputs on the log 
increase in shell eggs.  
Using statistical methods described in van Schothorst et al. (2009) the log normal 
concentration distributions together with prevalence distributions of S. Enteritidis were used 
to determine POs and safety limits, respectively. By taking the 95th percentile of the 
prevalence distribution (safety limit of 8.2%) as a worst-case scenario, the developed MC in 
shell eggs was: lot mean = 1.13 log cfu/g; s.d. = 0.56; n = 35; m = absence in 25g; c = 0 and 
PO = 0.35 log cfu/g.  With this new MC, S. Enteritidis did not grow in 88.8% of the cases, 
and the extreme values of the log increase distribution in shell eggs were reduced from 9.23 to 
6.93 log cfu/g. 

Table 1: Variables considered in the probabilistic model of S. Enteritidis in shell and liquid 
pasteurized eggs. 

Parameters Notation Description 

Prevalence shell egg Pshell egg 
Cumulative[(0.006, 0.08), (0.006, 

0.01; 0.026, 0.06, 0.08),(0.11, 0.20, 
0.29, 0.70, 0.99)] 

Prevalence liquid egg  P-liquid egg  0.639 x Pshell egg 

Initial concentration egg (log cfu/g) N0 LogNormal(1.13,0.56) 

Growth of S. Enteritidis G-egg Baranyi primary model 

Storage time/temperature farm (ºC) tfarm/Tfarm Uniform 
(0,0.033)/Uniform(26.67,40.56) 

Storage time processing (d) tproc 
Triangle(0.04,0.25,1) +                
Triangle(0.004,0.1,0.25) 

Storage temperature processing (ºC) Tproc Triangle(7.22,15.56,32.22) 

Storage time/temperature after processing (ºC) taf proc/Taf 

proc 
Triangle(0.04,2,3)/Triangle(5,7.22,3

2.22) 
Loss of integrity of yolk membrane (h) LIYM Eq 1. 

Maximum growth rate (h-1) µmax Gamma model: µopt γ(T) γ(pH) 

Lag time (h) lag Ln[1+(1/0.03)/µmax] 

Maximum population density Nmax Lognormal(9.64, 0.05) 

Pasteurization treatment Tpast/tpast 61.5ºC-3 min 

Log of decimal reductions (min) LogD Inactivation model (Jordan et al. 
2010) 

Inactivation rate (min-1) k 1/10logD 
Final concentration in liquid pasteurized egg (log 

cfu/ml) C-liquid egg N0 - Logred + G-egg 

Log Increase of S. Enteritidis in shell eggs (log cfu) LogInc N0 + G-egg 

Pasteurization treatments in liquid eggs (3 minutes) have shown to be effective in the 
inhibition of S. Enteritidis. At 61.5ºC, the log reduction achieved was 3.43 log cfu/ml, while 
at temperatures above 62ºC, Salmonella is inactivated in more than 4.6 log cfu/ml.  
Storage temperature after processing (r = 0.814) and time to yolk membrane disruption (r = -
0.654) influenced the most on the final concentration of S. Enteritidis in liquid pasteurized 
eggs. 
Besides, the impact of the application of the proposed PO (0.22 log cfu/ml) in liquid 
unpasteurized eggs (n = 56, c = 0) was high since a substantial reduction in the mean value of 
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the distribution of the final concentration of S. 
Enteritidis was obtained, from -0.71 to -2.34 log 
cfu/ml (Figure 1).  

Figure 2 shows the number of samples required 
as a function of different safety limits 
(percentiles of prevalence distributions) in shell 
and liquid unpasteurized eggs.  
It can be seen that a higher number of samples 
is required if low percentiles of the prevalence 
distributions are taken. 

 
Figure 1: Distributions of the final concentration of S. Enteritidis in liquid pasteurized eggs 

before and after the implementation of the proposed PO. 

It is demonstrated that microbiological criteria 
is one of the potential control measures to 
reduce risk (van Schothorst et al. 2009). 
Although log normal distributions were 
assumed in this study, other approaches should 
be evaluated especially when contamination is 
present at very low levels (Poisson-log normal 
or Poisson-Gamma). 
These results are of great importance for risk 
managers in order to set risk-based control 
strategies in shell eggs and egg products. 

 
Figure 2: Relation between the required number of samples in shell and unpasteurized liquid 

eggs and the percentile of the prevalence distributions. 
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Abstract 
Meta-analysis is an emerging approach in the food microbiology area to quantitatively 
integrate the findings of individual studies on kinetic parameters of interest. Meta-analyses 
provide global estimates of parameters with their variabilities, and give insight into the main 
influencing factors on microbiological kinetics. This paper discusses the opportunities of 
meta-analysis to generate sufficiently generic parameters − with their variability − for 
quantitative microbiological risk assessments, and demonstrates how the output of a meta-
analysis can be used to benchmark future studies in order to position new data in perspective. 
 
Keywords: QMRA, kinetics, global parameter estimates, variability, benchmarking   

Introduction 
Quantitative microbiological risk assessments (QMRAs) aim to quantify the risk related to the 
consumption of food products and include the assessment of the severity of a microbiological 
hazard (pathogens and/or toxins) and its likelihood of appearance (i.e. prevalence and 
concentration) (Lammerding, 1997). The four cornerstones of a QMRA are hazard 
identification, exposure assessment, hazard characterization, and risk characterization. During 
the exposure assessment a farm-to-fork approach can be applied, meaning that all steps of a 
food supply chain are quantitatively described in order to estimate the number of pathogens or 
the concentration of toxins at the moment of consumption. QMRAs are more and more used 
to set microbiological criteria and specifications in different steps of the food chain, to justify 
measures, to predict the effects of interventions, for food safety legislation, and to obtain 
insight into the most important phenomena responsible for the risks of foodborne diseases. 
One of the main practical difficulties of QMRAs is the need for an enormous amount of data 
for a wide range of kinetic parameters including their averages, variabilities and distributions. 
An emerging approach to gather global estimates of kinetic parameters with their associated 
variability is meta-analysis. A meta-analysis is a systematic analysis of a large collection of 
data from individual studies aiming to integrate the findings and to produce a global estimate 
of the effect of a particular intervention or treatment (Gonzales-Barron and Butler, 2011). 
Because a meta-analysis provides a quantitative summary of results over a broad range of 
individual studies, it allows not only to produce a global estimate of a parameter, but it also 
gives information about its variability and the sources of heterogeneity among the data of the 
individual studies. Moreover, the output of a meta-analysis can be used to benchmark future 
studies in order to position new data in perspective.  

Materials and Methods 
The meta-analysis approach can be used to address various questions where a reasonable 
amount of data exists. For several parameters needed to describe microbial behaviour, a 
literature search was performed and freely accessible data bases were searched. All 
quantitative data was structurally organized in databases on the question or parameter of 
interest to include quantitative and qualitative information of the individual studies. The data 
were then analysed for main explanatory factors and clustered to obtain global parameters 
(with their variability) and more specific parameters (with their variability). Furthermore the 
data bases were used to compare newly gathered data under specific conditions, to investigate 
the relevance of the effect of these conditions (benchmarking). 
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Results and Discussion  
From a global to a product-specific parameter estimate 
Large data sets for irradiation parameter D10 (Van Gerwen et al. 1999), concentration of 
contaminants in air in factory environments (Den Aantrekker et al. 2003), sedimentation 
velocities of micro-organisms (Den Aantrekker et al. 2003), heat inactivation parameters 
(Van Asselt and Zwietering, 2006), and high hydrostatic pressure inactivation parameters 
(Santillana-Farakos and Zwietering, 2011) were successfully gathered previously in our 
laboratory and evaluated. Main influencing factors could be identified and global and more 
specific estimations of the parameters with their attendant variabilities were estimated. The 
quantitative evaluation of the collated heat inactivation data resulted in global estimations of 
D-values and z-values for various foodborne pathogens. Many effects of factors reported to 
affect the D-value, such as pH and water activity (aw) of the food product, species and strain 
variability, were shown to be smaller in comparison with the variability of published D-
values. Only a limited number of factors, including temperature, did have a significant effect 
on the D-values. For Listeria monocytogenes 967 D-values were extracted from 14 individual 
studies and only the presence of salt (10% w/v, or aw < 0.92) resulted in a significantly higher 
heat resistance. The upper limit of the 95% prediction interval (PI) of the D-values, estimated 
by integrating the data of all products excluding those with a low water activity (940 D-
values), was used as a conservative estimation of the D-value (Table 1).  

Table 1: D-values (Dref) at reference temperature (Tref) for Listeria monocytogenes in a wide 
variety of products (all products), and for a more specific product group (dairy) and product 

type (milk) 
Product group Dref (min) a Tref (ºC) z (ºC) 
All products 0.273 (0.045) 72 7 
Dairy 0.104 (0.027) 72 6.4 
Milk 0.091 (0.024) 72 6.2 

a Raw data were derived from the data set published by Van Asselt and Zwietering (2006) and represent 
the upper 95% prediction interval D-values, and the mean D-values between brackets. 
 
When a large data base is available for a specific product or product group, then one can 
progress to a less conservative estimate which is based on a still sufficiently generic data set. 
The data set of Van Asselt and Zwietering (2006) included 280 D-values obtained in dairy-
related products including 226 from milk. These data were further analysed to derive global 
D-value estimates for dairy products and more specific also for milk (Table 1). The lower 
variability between individual studies resulted in smaller 95% prediction intervals. 
Segregation by product type requires ample data sets to include variability between individual 
studies that can be attributed to factors such as experimental design, strain, laboratory, etc. 
When these data sets are available, then global estimates of parameters (with their variability) 
can be obtained for specific product groups.  

Benchmarking new data 
Both for heat inactivation and high hydrostatic pressure inactivation data, new literature 
information could be easily benchmarked using the data in the databases, showing the 
relevance of the studied effects in these studies. Van Asselt and Zwietering (2006) showed 
that the heat resistance of Salmonella species was neither significantly affected by product 
types or media nor by stain variability, pH and aw (1141 data extracted from literature). Only 
chocolate had a significant protective effect on Salmonella as inactivation in this product type 
resulted in remarkably high D-values and z-value (Figure 1).  
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Figure 1: Heat resistance of Salmonella species in various food products and media (), and 
in chocolate () as published by Van Asselt and Zwietering (2006). The solid line represents 
the linear regression of log D on the temperature and the dotted line represents the upper 95% 
prediction level. And the heat resistance of outbreak-associated Salmonella strains () and 
Salmonella strains obtained from other sources ()  in peanut butter as published by Ma et al. 
(2009). 
 
This knowledge can be used to benchmark new published information. A recent publication 
reported the heat resistance of three sets of Salmonella strains in peanut butter, including 
strains isolated from patients associated with a peanut butter outbreak, culture collection 
strains and clinical isolates from sporadic cases (Ma et al. 2009). The heat resistance of the 
outbreak-associated strains were found to be more heat resistant at 90ºC than the other 
Salmonella strains. However, when the D-values in peanut butter of the three different sets of 
strains were combined with the data set of Van Asselt and Zwietering (2006), then the heat 
resistance differences between the three sets of strains became – although significant – less 
obtrusive (Figure 1). The heat resistance of Salmonella in peanut butter was lower than those 
in chocolate as reported by Van Asselt and Zwietering (2006), but noticeably higher 
compared to inactivation in other product types. The product characteristics of peanut butter 
and chocolate – both high in fat content and low aw – might have contributed to the protective 
effect during heat inactivation in these product types. Because inactivation of Salmonella in 
both peanut butter and chocolate resulted in remarkably high D-values, it strengthened the 
separation of these product types from others, although these separative conclusions were 
based on a rather limited number of data collected for peanut butter (12 D-values) and for 
chocolate (20 D-values). The integration of new published data in an existing database can 
put new data in perspective, and highlights the prospects of meta-analysis to evaluate new 
data. 

Conclusions  
Meta-analysis is an emerging methodology in the area of food microbiology to systematically 
and critically collate a large number of individual studies and to quantitatively integrate their 
findings. When compiling comprehensive microbiological data from individual studies of 
different laboratories, several issues will be encountered. The overlap between individual 
studies can be rather limited as many differences can occur in the experimental set ups of 
individual studies, such as the strain(s) of choice and the intrinsic and extrinsic factors of the 
experiments. Therefore, often more than one variable has been changed between different 
studies, which make it unfeasible to quantify the effect of a single variable and urging to 
firstly focus on global estimation of parameters. Meta-analysis allows to quantitatively 
synthesize information and translate this into global parameter estimates and their 
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corresponding variabilities. The differences between individual studies can contribute to 
rather high variabilities of parameter estimates, allowing to make conclusive separations of 
main effects. When ample data sets are available for a specific product types or effects, then 
progressing to a more detailed segregation level provides opportunities for less conservative 
estimations of parameters without forfeiting safety margins. The generation of sufficiently 
generic information, with its variability, is of importance to supply QMRAs with relevant 
data. Database building on the reviewed question or parameter reveals also a clear picture of 
the present knowledge, and can highlight areas where there is insufficient or an absence of 
information on factors that might affect the parameter of interest, and can therefore provide 
direction for future research. Moreover, systematically structured data bases on parameters 
give prospects to evaluate new published data, allowing to evaluate new findings and position 
them in perspective. 
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Abstract 
A stochastic risk assessment model was developed to evaluate the public health risks 
associated with consumption of ground beef and beef cuts contaminated with Escherichia coli 
O157:H7 in households in Canada. Rather than considering efficacy of all interventions at 
primary production and processing as default values, the model incorporated findings from 
critical systematic review and meta-analysis of published literature. The objectives of this 
work included the baseline estimation of the prevalence and concentration of E. coli O157:H7 
in ground beef and beef cuts, the impact of specific interventions on public health outcomes, 
and development of a model in which the cost-effectiveness of various management options 
can be incorporated. Canadian E. coli O157:H7 data were used as primary inputs for the 
model. Pathogen prevalence and concentration transfer from faeces to hide, and hide to 
carcass, as well as behaviour were modelled, allowing for the evaluation of specific 
interventions targeted at cattle faeces, hides, and carcasses. Growth throughout retail and 
home storage modules was predicted using a modified Gompertz equation. Predictions from 
the exposure assessment were used as inputs for a Beta-Binomial dose-response model, 
assuming a non-threshold level of illness. The model was populated with intervention 
efficacy data obtained from the literature following data analysis by systematic review and/or 
meta-analysis. Public health risks, expressed as various metrics including probability of 
illness per serving, were reduced by up to two to three orders of magnitude depending on the 
intervention(s) evaluated. Combinations of interventions applied at the farm-level and 
throughout processing resulted in the greatest risk reduction. The use of systematic review 
methodology to critically assess the results of scientific studies before use of the data in risk 
modelling enhances the confidence in risk predictions, and provides a more evidenced-based 
model for subsequent public health and cost-effectiveness analyses.  

Keywords: VTEC, EHEC, risk model, probabilistic model, E. coli, beef 

Introduction 
Escherichia coli O157:H7 is considered the most important of the verotoxigenic E. coli 
(VTEC) serotypes from a public health perspective in Canada. Ruminants are considered to 
be one of the main vehicles of the pathogen, and numerous outbreaks have been linked to the 
consumption of beef products. E. coli O157:H7 can cause serious illness when ingested by 
humans; children and the elderly are particularly susceptible to developing haemolytic 
ureamic syndrome (HUS), a life-threatening sequelae that usually requires blood transfusions 
and dialysis.   
Canadian VTEC infections are captured through the National Notifiable Database (NND) by 
the Public Health Agency of Canada. An incidence rate of 4.0 cases/100,000 population per 
year was estimated following analysis of this database (Ruzante et al., 2010); however, the 
true incidence rate is likely 10 to 47 times greater (Thomas et al. 2006) because the majority 
of cases of VTEC infections are not reported and therefore not identified in national 
databases. It is expected that a significant portion of VTEC infections are caused by E. coli 
O157:H7 in ground beef products, and, to a lesser extent, E. coli O157:H7 in beef cuts. Beef 
cuts can be classified as either non-intact or intact. Non-intact cuts are portions of beef 
subjected to blade or needle tenderization, a process where small blades or needles pierce the 
cuts to increase perceived tenderness. Blade or needle tenderization can internally 
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contaminate beef pieces; therefore it is expected that non-intact beef cuts pose a greater public 
health risk than intact beef cuts (i.e., non-tenderized). 
A stochastic risk assessment model was developed to evaluate the public health risks 
associated with consumption of ground beef and beef cuts contaminated with E. coli O157:H7 
in households in Canada. Rather than considering efficacy of all interventions at primary 
production and processing as default values, the model incorporated findings from critical 
systematic review and meta-analysis of published literature. Systematic review follows a 
structured research protocol to reduce sources of bias and evaluate study quality, and 
therefore differs from traditional narrative reviews to provide a clear picture of the state of 
knowledge (Sargeant et al. 2006). A description of considerations during model development, 
methodologies, and preliminary results of the relative efficacies of categories of interventions 
are presented herein. 

Materials and Methods 
A Monte Carlo simulation model using Latin Hypercube Sampling was constructed in 
Microsoft Excel 2003 with the add-on package @Risk (version 5.5.0, Palisade Corporation, 
New York, USA) to describe prevalence, concentration, and behaviour of E. coli O157:H7 
through the agri-food beef chain and the public health risks from consumption of 
contaminated ground beef, non-intact beef cuts, and intact beef cuts. The conceptual model 
developed upon which the mathematical model was based is shown in Figure 1. Growth 
throughout retail and home storage modules was predicted using a modified Gompertz 
equation (Cassin et al. 1998), allowing for freezing of product. Predictions from the exposure 
assessment were used as inputs for a Beta-Binomial dose-response model, assuming a non-
threshold level of illness (Cassin et al. 1998). Data obtained from the literature were used for 
the development of the model; Canadian data were used where possible. Simulations of the 
model representing different intervention application scenarios were run with 25,000 
iterations each to generate the results presented herein.  

Prevalence and Concentration in Faeces 
Data describing the prevalence of E. coli O157:H7 in Canadian cattle faeces are available 
from several peer-reviewed sources for input into the model. Reported prevalence of 
E. coli O157:H7 in faeces of cattle after adjusting for test sensitivities ranged from 0% to 
82% (Van Donkersgoed et al. 1999; Lejeune et al. 2004; Vidovic and Korber 2006; Stephens 
et al. 2009; Van Donkersgoed et al. 2009). A mean prevalence of 17.2% was derived from the 
beta distribution used to describe the prevalence of E. coli O157:H7.  
A cumulative distribution of the concentration of E. coli O157:H7 in cattle faeces was 
constructed based on data reported by Stephens et al. (2009); these authors reported 
concentrations of E. coli O157:H7 in faeces of cattle of up to 9.29 log CFU/g (Figure 2). 
Therefore, the model accounted for a proportion of super-shedders, that is, cattle that for a 
period of time yield high levels of E. coli O157:H7 in faeces [i.e., greater than approximately 
4 log CFU/g (Stephens et al. 2009)]. This is a central distinction from previous work for 
E. coli O157:H7 in ground beef because importance analysis demonstrated that probability of 
illness is highly dependent upon the concentration in faeces; however, the maximum faeces 
concentration used in that model was 5 log CFU/g, and a low proportion of cattle were 
considered super-shedders (Cassin et al. 1998).  

Interventions 
Data describing the efficacy of various on-farm interventions intended to decrease prevalence 
and/or concentrations of E. coli O157:H7 in faeces were applied during different simulations 
of the model. These data were obtained from systematic reviews and meta-analyses.  
Systematic reviews and meta-analyses considered all types of primary studies irrespective of 
study design (e.g., challenge trials, observational studies, etc.) and identified those that met or 
exceeded screening criteria for quality of methodology. Sargeant et al. (2007) performed a 
systematic review of the literature and summarized data for quantifying the impacts of on-
farm interventions including: probiotics, sodium chlorate in feed and water, and vaccination.  
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Figure 1: Flow diagram of the mathematical model for E. coli O157:H7 in ground beef and 
intact and non-intact beef cuts. Dashed boxes indicate points along the farm-to-fork 

continuum where interventions identified through systematic review and meta-analysis are 
evaluated in the model. Bolded boxes indicate key model outputs. FGB = fresh ground beef. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Distribution of E. coli O157:H7 in faeces of Canadian cattle (Stephens et al. 2009). 
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These data were used to construct distributions representing efficacies of the on- farm 
interventions. To quantify the impacts of various interventions applied at processing on 
concentrations of generic E. coli of cattle carcasses, data from a concurrent in-house 
systematic review and meta-analysis of published literature were used (Greig 2011, personal 
communications). The efficacies of washing, steam pasteurization, and spray chilling 
interventions were evaluated in the risk assessment model using triangular distributions 
defined by the parameters of the meta-analysis outputs. 
The model allows for the quantification of impacts to public health from application of 
interventions targeted at reducing prevalence and/or concentrations of E. coli O157:H7 on 
hides of cattle. However, no systematic reviews of such interventions were identified and they 
were not evaluated herein. 

Results and Discussion  
Several intervention scenarios were applied to evaluate single on-farm or processing 
interventions, combinations of on-farm interventions and processing interventions, or 
multiple processing interventions. All interventions reduced the mean probability of illness 
from consumption of ground beef, non-intact beef cuts, or intact beef cuts contaminated with 
E. coli O157:H7, relative to the modelled probability of illness in a reference scenario where 
no interventions are applied throughout the entire farm-to-fork continuum. Note that this 
scenario is not a true representation of current practices in Canada (i.e., interventions are 
applied in Canadian processing facilities whereas this scenario assumes that no interventions 
are applied), but was used as a reference point for demonstrating relative risk reductions.  
Mean probabilities of illness from consumption of ground beef, non-intact beef cuts, and 
intact beef cuts, following application of single on-farm interventions were reduced by 
average factors of 1.8-5.4, 1.9-3.9, and 1.8-2.8, respectively. Solitary processing interventions 
applied at a single point during processing decreased the mean probability of illness from 
consumption of ground beef, non-intact beef cuts, and intact beef cuts by average factors of 
1.1-7.3, 1.1-5.9, and 1.1-4.4, respectively. Combinations of interventions had the greatest 
impacts, and reduced the mean probabilities of illness from consumption of ground beef, non-
intact beef cuts, and intact beef cuts by factors of 2.7-478, 2.2-6,330, and 2.2-1,090, 
respectively. 
Caution must be exercised when interpreting the results of each intervention scenario, 
because data were derived from multiple studies using different study designs. Data 
quantifying some on-farm interventions used in the model were based on challenge trials 
where cattle were exposed to high doses of E. coli O157:H7 in order to measure the decrease 
in levels following application of the intervention, as opposed to non-randomized or 
randomized controlled trials and observational studies. The results of challenge trials might 
not adequately represent real-world phenomena where expected levels of E. coli O157:H7 are 
generally lower than those artificially achieved in challenge trials, and may overestimate the 
efficacy of interventions; however, these were the only quality data identified in the extensive 
systematic reviews studies. In contrast, all data used to evaluate the effects of processing 
interventions were based on non-randomized and/or randomized controlled trials.  

Conclusions  
A systems model to determine the prevalence and concentration of E. coli O157:H7 on cattle 
through the farm-to-fork continuum can be used to determine the public health risks to a 
population, in this case residents of Canada, using country-specific data inputs from 
consumption of ground beef and non-intact and intact beef cuts. Results provide an indication 
of relative efficacies of different interventions applied at the farm and processing level. The 
use of systematic review methodology to critically assess the results of scientific studies 
before use of the data in risk modelling enhances the confidence in relative risk predictions. 
However, the use of challenge trials as sole predictors of intervention efficacy could be 
problematic, and future studies should compare the relative power of data derived from 
challenge trails versus other study designs. Nevertheless, the most effective strategy for 
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E. coli O157:H7 management appears to be one that includes interventions at several stages 
along the agri-food beef chain. 
The next stage of this assessment, integration of economic modules, permits the calculation of 
cost-of-illness from E. coli O157:H7 infections in beef products, and the cost-utility of 
applying different on-farm and/or processing interventions in Canada. The use of systematic 
review data to quantify the impact of various interventions provides a more evidenced-based 
model for subsequent public health and cost-utility analysis. 
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Abstract 
Published data on distribution of germination (tgerm), outgrowth (t1 – tgerm ) and time to first 
doubling (t2 –t1) of spores of non proteolytic Clostridium botulinum were further analysed. 
Most distributions could be described as lognormal distributions. Also the total development 
times from phase bright spores to doubling cells could be fitted as lognormal distributions. 
The latter distributions could serve for development of a model that predicts the distributions 
at all temperatures within the range between 8 and 22 °C. Combined with a distribution of 
temperatures in domestic refrigerators the probability of outgrowing C. botulinum spores 
could be estimated with a Monte Carlo simulation. Apart from the development of this model, 
detailed observations were made on the distributions of the various stages. No significant 
correlation (P> 0.05) was observed between the time lengths of the various stages. When 
spores were severely heat damaged an entirely different germination pattern was observed. 
 
Keywords: Clostridium spores, lognormal, risk assessment, heat damage  

Introduction 
To apply quantitative microbiological risk assessment (QMRA) growth and inactivation 
models of pathogens are badly needed. They are particularly valuable for assessing the risk of 
toxigenic bacterial spores. Most models are limited by the fact that they are based on 
observations of whole cell populations. Apart from infant botulism, C. botulinum spores are 
harmless as long as they cannot grow out. An important element is knowledge of the various 
stages of development of the bacterial spore to a growing population of vegetative cells. The 
acceptable stage of development depends on the type of microorganism. Strict criteria are 
necessary for Clostridium botulinum with respect to the development of the spore. Growth is 
certainly not allowed and it is even questionable whether full development of the spore to the 
first doubling of the emerging vegetative cells can be tolerated. Time to the first doubling was 
taken here as the limiting time. On the other extreme, a relatively high concentration of 
vegetative cells (e.g. 100/ml) can be tolerated for relatively harmless pathogens such as 
Bacillus cereus and Clostridium perfringens. Ideally, the development of each spore in a 
population should be known to estimate the probability of development to a certain stage. To 
this purpose published data have been selected (Stringer et al. 2009). Here we describe a 
model that describes the distributions of times to doubling combined with distributions of 
refrigerator temperatures to estimate the probability of a potentially hazardous situation. 
Besides the distributions of the separate stages was analysed and these data might be used in a 
later stage to a refine the risk assessment.  

Materials and Methods 

All distributions were fitted with the Excel solver and a final check was done in SPSS to 
establish more detailed data of the model. All distributions (distributions of germination, of 
subsequent outgrowth and of subsequent time to doubling and the sum of these 3 stages) were 
fitted as a normal, lognormal and a Weibull distribution. The correlation between all stages 
was calculated. A secondary model was developed by modelling the effect of temperature on 
the parameters of the individual distributions of ‘time to doubling’ at 8, 10, 15 and 20 C. 
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Finally a whole model was obtained that describes the effect of temperatures between 8 and 
22 °C. To fit lower probabilities relatively better log probabilities were fitted instead of 
probabilities. Data on distribution of refrigerator temperatures (Laguerre et al. 2002) was 
combined with the model by a Monte Carlo simulation to establish the risk. Apart from this 
risk model spore populations were divided into two groups: those that could develop to 
doubling cells and those that could only germinate. Special attention was paid to heated 
spores.  

Results and Discussion  
Modelling total time to doubling  
The distribution of transition times from phase bright to first doubling could be best fitted as 
lognormal fit. The relation between µ of the lognormal distributions at individual 
temperatures could be described as linear. There was not a clear correlation between 
temperature and the variances. Hence it was decided to pool the variances. A total model was 
obtained by fitting the two parameters of the linear relation generating the mean doubling 
time dependence on temperature.The following parameters were estimated: 
 
Td = 10(1.7637 – 0.0397*T)  

 
Td = mean time (µ of lognormal distribution) to first doubling; T = temperature (°C)  
pooled standard deviation (σ of lognormal distribution) = 0.10492 
As shown in Fig. 1 a reasonable fit was obtained. 
 

 
Figure 1: Distribution of 'total times to double' of non proteolytic C. botulinum spores at 

various temperatures (predictions are made by the general secondary model). 
 
Non proteolytic C. botulinum can pose a particular problem at refrigerator temperatures.  The 
temperature distribution in domestic refrigerators followed a normal distribution with a mean 
of 6.57ºC and a standard deviation of 2.23. The model developed here was combined with this 
temperature distribution and  the final probability of development of a non proteolytic spore 
under refrigeration conditions was estimated by a Monte Carlo simulation resulting in a 
normal distribution with µ = 46.6 and σ = 8.42. 

Distributions of various stages (germination, outgrowth and doubling) 
No correlation was found between the time lengths of the various stages if the germinated 
spores could develop further. Fig. 2 shows an addition of randomised values of germination 
time (tgerm), outgrowth times (t1 – tgerm) and doubling times (t2-t1), illustrated by comparing the 
observed ‘total time to doubling (t2). As no correlation was found it is to be expected that the 
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randomised data were quite similar to the observed data on complete development from phase 
bright spore to doubling cell. An example is shown in Fig 2 for 15 °C and similar fittings 
were obtained with the other temperatures (8, 10 and 22 °C). A small deviation was observed  
between random addition and t2 when heated spores were incubated at 22 °C 

Fig
ure 2: Comparison of observed total time to doubling at 15 °C and addition of randomised 

stages 
 
In Figs 3 and 4 examples are given that show the transition from germination to the first 
doubling. Whereas the outgrowth time is always the longest in the process of development 
when spores were not heat damaged (results for 8, 10 and 15 °C not shown, but a similar 
pattern as for unheated spores incubated at 22 °C), the germination time was relatively long 
when cells were heat damaged.  
 
 
 
 
 
 
 
 
    
Figures 3a an 3b: Germination, outgrowth and doubling of heat damaged spores (a) and intact  

spores (b) both incubated at 22°C. 

a b

 
Spores could be divided into those that could develop further and those that could not. There 
was a significant (P < 0.01) difference between germination times of spores that could 
germinate and that could not. The distribution of germination times of spores that could not 
develop was always wider with a longer average generation time than those of spores that 
could develop further. A different pattern was observed when cells were heated. In Fig 4.the 
difference in germination pattern is illustrated. Whereas the cells that could develop were 
normally (but not log normally!) distributed, the germinated cells that could not develop 
further showed a bimodal distribution that could be fitted as a mixture of two distributions 
The curves could be fitted as a normal distribution (outgrowing spores) or as mixed 
distribution consisting of a Weibull distribution and a normal distribution. (germinated spores 
that did not develop further). The parameters were µ = 12.89 and σ = 4.157679 (spores that 
could develop to dividing cells)  or µ  = 19.2903 and σ = 4.0538  + α = 0.783 and  β =  2.4643 
and  γ = 0.336. The parameters µ and σ are parameters of normal distributions and α and β are 
Weibull parameters a, whereas γ is the parameters representing the Weibull fraction and 1 – γ 
representing the normal fraction. 
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The germination of spores of non proteolytic C. botulinum was here described as log normal 
distribution, whereas there are several observations of Bacilli that showed that the 
germination pattern followed a the Weibull distribution (Collado et al. 2006, Smelt et al. 
2008). It should be borne in mind that compared to Bacillus spores, intact spores of non 
proteolytic C. botulinum can easily germinate. That might have consequences for the shape of 
the distribution.  
Particularly the germination pattern of heated cells is remarkable and should be further 
studied. Coleman et al. (2006) could separate heated spores of Bacillus by density 
centrifugation into two fractions one was hardly viable and lacked dipicolinic acid, whereas 
the other fraction was fully viable. It might be possible that the fast germinating fraction that 
could not develop further represents a similar fraction as was observed by Coleman et al. 
(2010) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Distribution of germination times of heated damaged spores subsequently incubated 

at 22°C. 

Conclusions  

The analysis of the above mentioned data shows that these data cannot only serve as an input 
for quantitative risk assessment but also can lead to a better understanding of the mechanism 
of heat injury of bacterial spores. 
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Abstract 
The spatial distribution of pathogenic microorganisms within a batch of food will influence 
the results of sampling for microbiological testing and will also influence the public health 
risk. However, knowledge about how microorganisms are actually spatially distributed in 
foods is scarce. This study investigates how Cronobacter spp. are distributed on batch-scale 
throughout a recalled batch of powdered infant formula (PIF) and it investigates on local-
scale the occurrence of clusters of Cronobacter cells. Additionally, the performance of typical 
sampling plans and strategies are investigated. The concentration of Cronobacter spp. was 
assessed in the course of the filling time by taking samples of 333 g using the most probable 
number (MPN) enrichment technique. Since estimating concentrations by enrichment does 
not distinguish between a single cell or clusters of cells, the occurrence of clusters of 
Cronobacter spp. cells was investigated by plate counting 2290 samples of 1 g. In the recalled 
batch 415 MPN samples were drawn and in 58% the concentrations were estimated to be 
below the detection limit of -2.52 log CFU/g. Cronobacter spp. were heterogeneously 
distributed throughout the batch with parts with no detectable contamination and parts with 
concentrations between -2.52 and 2.75 log CFU/g. Clusters of cells occurred sporadically in 8 
out of 2290 samples. The two largest clusters contained 123 (2.10 log CFU/g) and 560 (2.75 
log CFU/g) cells. The concentration in the reference batch was -4.4 log CFU/g, 99% of the 93 
samples were below the detection limit. Various sampling plans were evaluated for the 
contamination data from the recalled batch. Taking more and smaller samples and keeping the 
total sampling weight constant, improved the performance of the sampling plans to detect 
such a type of contaminated batch.  
 
Keywords: recalled batch, heterogeneity, probability, sampling plan, lot  

Introduction 
There is little known about how microorganisms are actually spatially distributed in foods. In 
many cases, generalising or default assumptions are made regarding the spatial distribution 
and appropriate sampling strategies. According to Kilsby and Baird-Parker (1983), the total 
viable counts from batches including frozen meat, frozen vegetable, and frozen dairy products 
appeared to be lognormally distributed in 92% of the batches; in 8% of the batches the total 
viable count appeared to be not lognormally, with a maximum of 13% for powdered products. 
Based on studies including the findings of Kilsby and Baird-Parker, the International 
Commission on Microbiological Specification for Foods (ICMSF 2002) assumed a 
Lognormal distribution in order to evaluate the performance of attribute sampling plans. 
According to the ICMSF (2002), a standard deviation of 0.8 log CFU/g was chosen based on 
data derived from the meat industry (Greenberg et al. 1966) and similar observations in other 
food products. Assuming a lognormally distributed contamination, also the size of the 
standard deviation will affect the performance of a sampling plan (Legan et al. 2001). 
Habraken et al. (1986) established that substantial clustering of contamination occurs in dried 
milk products, with parts of the batch containing microorganisms and other parts containing 
no microorganisms at all. This clustering or heterogeneity will make the interpretation of the 
sampling results difficult. Besides heterogeneity on batch-scale, heterogeneity on local-scale 
is possible within the food product. One could speculate that bacteria may grow overnight to 
levels of 109 cells/mL in a droplet of water and powder. This may result in clusters of cells 
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with high concentrations, which may influence both risk assessments and public health. In 
order to investigate the spatial distribution of microorganisms in a batch of food and its 
impact on various sampling approaches, powdered infant formula (PIF) was chosen as 
product and Cronobacter spp. as target microorganism.  
 Powdered infant formulae (PIF) given to infants during the first months of life needs 
to be manufactured according to very stringent hygiene measures, since PIF has been linked 
to outbreaks related to the presence of Cronobacter spp. (FAO/WHO 2006; CAC 2008; 
Cordier 2008). Currently every batch of PIF has to be tested for Cronobacter spp. by drawing 
30 samples of 10 g according direct sampling plans (CEC 2007). In a recent FAO/WHO risk 
assessment (FAO/WHO 2006) the mean concentration and standard deviation of Cronobacter 
spp. in batches of powdered infant formula have been estimated from prevalence data to be 
respectively, -3.8 log CFU/g and 0.7 log CFU/g. 

This study investigated the distribution of Cronobacter spp. within a batch of PIF, 
that had been recalled after Cronobacter spp. had been detected. For comparison a reference 
batch produced in the same factory was investigated in detail as well. Estimating low 
microbial concentrations with the most probable number (MPN) technique by enrichment 
does not distinguish between a single cell or clusters of cells. Therefore, additionally on local-
scale the occurrence of clusters of Cronobacter spp. cells was investigated by plate counting 
many small samples. Thereafter, the performances of various sampling plans were calculated. 

Materials and Methods 
Investigating batches of powdered infant formula 
To assess the distribution of Cronobacter spp. in batches PIF, 415 samples of 333 g from the 
recalled batch and 93 samples from the reference batch were investigated. The concentration 
of Cronobacter spp. was estimated in samples of 333 g using the Most Probable Number 
(MPN) technique (3 x 100 g, 3 x 10 g , and 3 x 1 g) and the screening method as published by 
Iversen et al. (2008). To investigate the presence of local clusters of cells, 28 bags were 
chosen with high concentrations or concentrations below the detection limit of -2.52 log 
CFU/g (0.003 CFU/g). The remaining powder was divided in samples of 1 gram and all 
samples were diluted in 9 ml of PPS and 3 ml of the suspension was pour plated in Trypton 
Soy Agar with sodium pyruvate at a concentration of 0.1 % (wt/vol) (TSAP) and a top layer 
of TSAP. Sodium pyruvate was added in order to enhance the resuscitation of stressed 
Cronobacter spp. cells during plating (Gurtler and Beuchat 2005). Since 3 ml of the -1 
dilution was plated, the lower detection limit was 3.3 CFU/g for a sample size of 1 g, 

Random sampling  
By randomly drawing a number of samples (n) with a specific sample size from the data set, 
the probability that the sampling scheme includes one or more positive samples ( )0Pr >+n  
can be calculated as follows:   

( ) n
rand sn )1(10Pr ++ −−=>       (1)  

with: n: number of samples; +n : number of positive samples; +s : fraction of positive samples 
of a specific sample size. Since the data set contained information on triplicate samples of 
100, 10, and 1 g, it was also possible to assess fractions of positive samples for sample sizes 
of  300, 30, and 3 g.  

Results and Discussion  
Distribution of Cronobacter spp. in PIF  
On batch-scale, the distribution of Cronobacter spp. cells throughout a recalled and a 
reference batch was investigated by relating concentrations to the time that the bag is actually 
filled. Nearly 60 % of the MPNs had an MPN code of 0,0,0 and the concentration was 
estimated below the detection limit of -2.52 log CFU/g (0.003 CFU/g). Two samples had a 
concentration estimated above the upper detection limit of 0.041 log CFU/g (1.1 CFU/g) for 
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an MPN of 333 g. Figure 1 shows the empirical cumulative distribution function (ECDF) of 
the samples drawn from the recalled and reference batch.  
 
 

 
 

Figure 1 Empirical cumulative distribution functions of the concentrations of Cronobacter 
spp. (log CFU/g) in MPNs of 333 g drawn from the (▲) reference and (●) recalled batch. The 

grey curve represents a Normal distribution with a mean -1.779 log CFU/g and standard 
deviation 0.675 log CFU/g of the positive samples (y = 0.42 x Normal (-1.779, 0.675) + 

0.58). The dotted vertical lines indicate the lower (-2.52 log CFU/g) and the upper (0.041 log 
CFU/g) detection limits.  

On local-scale 2272 samples of 1 g were below the detection limit of 3.3CFU/g and 8 samples 
varied between 3.3 and 560 CFU/g and two concentrations peaked at 123.3 and 560 CFU/g. 

The probability that the sampling scheme includes one or more positive samples by 
random ( ( )0Pr >+nrand ) sampling 

Table 1 shows ( )0Pr >+nrand , the probability that the sampling scheme includes one or more 
positive samples, by drawing random samples from the recalled and reference batch. Eq. 1 
and the fractions of positive samples were used to calculate ( )0Pr >+nrand . Table 1 shows 
that keeping the total sample weight constant at 300 g and increasing the number of samples 
from 1 to 30, increases ( )0Pr >+nrand  from 0.378 till 0.999. 

Table 1: The probability ( ( )0Pr >+nrand ) that the entire sampling scheme contains one or more 
positive samples by sampling randomly with various numbers of samples and sample sizes 

from the recalled and the reference batch. ( )0Pr >+nrand  was calculated with Eq. 1 

Total sample 
weight (g) 

Number of 
samples 

Sample 
size (g) 

Recalled 
batch 
( )0Pr >+n  

Reference 
batch 
( )0Pr >+n  

300 1 300 0.378 0.0118 
300 3 100 0.612 0.011 
300 10 30 0.896 -a 
300 30 10 0.969 -a 
300 100 3 0.999 -a 

a No positive sample available with this sample size 
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Conclusions  
Thorough investigation of the recalled batch showed that Cronobacter spp. were 
heterogeneously distributed throughout the batch containing parts with no detectable 
contamination and parts with concentrations varying between -2.52 and 2.75 log CFU/g. 
Clusters of cells occurred sporadically in 8 out of 2290 samples of 1 g. The two largest 
clusters contained 123 (2.10 log CFU/g) and 560 (2.75 log CFU/g) cells. Taking more and 
smaller samples and keeping the total sampling weight constant, improved the performance of 
the sampling plans to detect such a type of contaminated batch.  
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Abstract 
The Central Limit Theorem (CLT) is proposed as a means of understanding microbial risk in 
foods from a Public Health perspective. On the basis of the CLT, the hypothesis introduced 
by this paper states that the coefficient of variation (CV) of the annual number of foodborne 
illness cases decreases as result of larger number of exposures (or servings) (n). Second-order 
Monte-Carlo analysis and Classical statistic were used to prove the hypothesis, based on 
existing risk models on L. monocytogenes in deli meats products focused on elderly people in 
United States. Likewise, the hypothesis was tested on epidemiological data of annual 
incidence of  Listeriosis in different countries (i.e. different n). Although different sources of 
error affected the accuracy of results, both the Monte-Carlo analysis (in silico) and 
epidemiological data (in vivo) demonstrated that the CV of the annual number of cases 
decreased as n increased as stated by the CLT. Furthermore, results from this work showed 
that classical statistical methods can be helpful to provide reliable risk estimations based on 
simple and well-established statistical principles. 
 
Keywords: quantitative risk analysis, predictive microbiology, Central Limit Theorem, Public 
Health, Monte-Carlo analysis, Food-borne diseases 

Introduction 
Public Health Surveillance systems are intended to record the occurrence of diseases or 
intoxication as caused by pathogens and toxicants present in foods, to analyze 
epidemiological data and to disseminate information. The information provided by 
surveillance systems is crucial to design and implement strategies and/or interventions to 
minimize food-borne illness. However, burden-of-illness estimates often pose uncertainty due 
to several important limitations: test sensitivity, underreported cases, deficiencies in reporting 
systems, scarce human resources, etc. Despite these important sources of uncertainty, 
variations in the number of annual cases still remains small in comparison to the variation in 
pathogen doses which in most cases can span several orders of magnitude. In this work, we 
aimed to introduce the idea that although there may be considerable variation between 
individual risks, the annual variation of the total risk (number of cases) will be small as a 
result of the Central Limit Theorem (CLT) of probability theory. The CLT can be thought of 
as the cornerstone for understanding collective phenomena (Sornette et al. 2003). Based on 
the CLT and properties of variance and mean, it could be stated that the higher number of 
exposures (doses) to the pathogenic microorganism, the lower uncertainty on the number of 
attendant annual cases. From that, it could be expected that pathogenic microorganisms with 
high prevalence in foods such as Listeria monocytogenes showed a decreasing trend in the 
illness incidence variability as population size increases (related to number of exposures). 
This hypothesis was demonstrated on epidemiological data, analytical calculation and Monte-
Carlo analysis. 

Materials and Methods 
Burden-of-illness explained by Central Limit Theorem  
From a probabilistic view, the overall risk distribution can be seen as the sum of n individual 
risk distributions, being n the number of doses or exposures in a certain population. If n is 
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sufficiently great and none of those distributions (e.g., individual risk distributions) dominate 
the resultant distribution (e.g. the overall risk distribution), the CLT can be applied. The CLT 
states that as the number of variables increases (infinite), the sum of those variables 
approximates (asymptotically) to a normal distribution with parameters n*μ and √n*σ. The 
CLT applied to the sum of variables uses the properties of variance and mean to estimate μ 
and σ of the resultant normal distribution. It is important to note that although CLT conditions 
can not be reached exactly, a reasonable good approximation will be expected in a certain 
region around the mean whose accuracy will depend on how large the deviation from CLT is.  
 
Based on the properties of variance and mean and CLT, it can be obtained that the coefficient 
of variance (CV) of the sum of variables follows the linear function: 
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Estimating Burden-of-illness by using Monte-Carlo Analysis (in silico) 
Concentration at retail taken from Chen et al. (2003) was the initial input in the exposure 
assessment model previously developed by Perez-Rodriguez et al. (2007).  After simulation, 
concentration at consumption in contaminated servings, i.e. doses, was obtained.  The dose-
response model modified by Perez-Rodriguez et al. (2007) was applied in the linear region (r 
= 1.85·10-14) and probability of getting ill (Pill) was estimated by using concentration at 
consumption (doses) and a point-estimate value of serving size which corresponded to the 
mean value (64 g). To estimate the number of annual cases (i.e., overall risk), resultant 
distribution of individual probabilities of getting ill (individual risk) were summed n times by 
an iterative process (using Monte-Carlo analysis) being n the number of exposures 
corresponding with contaminated servings consumed by elderly population in the US which 
corresponded to 5.11·107 servings. 
 
Estimating Burden-of-illness by applying the Central Limit Theorem 
The initial input was the doses distribution taken from Monte-Carlo Analysis. Doses 
distribution (log10 cfu/serving) was described by a normal distribution with parameters σlogD 
and  μlogD .  The dose-response model was defined by a straight-line (r = 1.85 10-14), therefore 
calculations of the probability of getting ill could be performed by applying the properties of 
variance and mean on the normal distribution of doses. If the logarithm is applied to dose-
response model, then: 
                                           log10 (Pill) = log10(r) + log10(Dose)     (2) 
 
Since variance does not change when a scalar value is summed, the distribution of log10 (Pill) 
denoted by F(Log (Pill)) can be estimated according to the following expression: 
 
                                      F(log10 (Pill)) = N(μlogD + log10(r), σlogD)         (3) 
 
Finally, based on CLT, the distribution of the number of cases of listeriosis can be 
approximated as the sum of n N(μD , σD), being n, the number of exposures ( i.e. 
contaminated servings). The value for n was the same to that used by Monte-Carlo analysis 
(n=5.11·107):                                           
                                       F(cases/year) = N(n· μD , √n ·σD)     (4) 
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Epidemiological data analysis (in vivo) 
Incidence data of food-borne diseases by L. monocytogenes in different countries around the 
world were collected from international and national surveillance system databases. The 
selection of countries was based on criteria of population size (~107-108) and reliability of the 
surveillance system. When possible, data were taken from the same source in order to avoid 
additional variation sources. Incidence data were expressed as confirmed number of cases per 
year. The CV was calculated for each country in the period 2002-2007 based the mean 
population in that same period.  

Results and Discussion  
Monte Carlo analysis resulted in a mean estimation of 29 annual cases of listeriosis with 95th 
percentile of 49 cases. On the other hand, analytical method based on the CLT obtained a 
lower number of cases with a mean and 95th percentile of 7 and 23 cases/year.  Table 1 shows 
main statistics for the estimated number of listeriosis cases at a different number of exposures 
(n) for both approaches. Data revealed that both approaches converged to similar values as n 
increased. Mean values presented major similarity between both approaches at lower n. 
However, standard deviation and 95th values required a higher number of exposures (n) to 
converge.  Results indicated that both approaches could be equivalent to estimate risk 
provided some requirements be met such as linearity in dose-response model and normality in 
the microbial concentration distribution as given in this example. 

Table 1: Comparison between Monte-Carlo analysis and central Limit Theorem (CLT) for 
number of listeriosis cases at different number of contaminated servings or exposures (n) 

 
  

Standard Deviation 95thn Mean Coefficient of Variance     

MC CLT 
 

MC CLT MC CLT MC CLT 
 

10 4.59 ·10-6 1.47·10-6 
 

2.39·10-4 4.13·10-3 1.68·10-3 6.80·10-3 5.21·10 2.80·103 

102 6.98· 10-5 1.47·10-5 
 

3.94·10-3 1.31·10-2 2.68·10-4 2.15·10-2 5.65·10 8.87·102 

103 4.72·10-4 1.47·10-4 
 

8.71·10-3 4.13·10-2 2.23·10-3 6.81·10-2 1.85·10 2.80·102 

104 4.91·10-3 1.47·10-3 
 

4.22·10-2 1.31·10-1 1.71·10-1 2.16·10-1 8.58 8.87·10 

105 5.34·10-2 1.47·10-2 
 

4.20·10-1 4.13·10-1 1.19·10-1 6.94·10-1 7.86 2.80·10 

106 5.50·10-1 1.47·10-1 
 

1.66 1.31 1.11 2.30 3.02 8.87 

107 5.66 1.47 
 

8.27 4.13 9.64 8.27 1.46 2.80 
*5.11·107 2.83·10 7.53 

 
4.22·10 9.34 4.92·10 2.29·10 1.66 1.24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Due to computational restrictions, total number of cases for n = 5.11·107 were estimated by extrapolation based on the trend 
shown by each statistic parameter (e.g. the mean number of cases  was estimated by multiplying by 5.11). 
 
Overall, when different numbers of exposures (n) were studied by Monte-Carlo analysis, CV 
(log) reduced as n becomes higher (Figure 1) except for very low numbers of exposures (10-
100) which did not show a clear decrease trend. Monte-Carlo analysis does not yield reliable 
estimations when low numbers of samples are simulated since standard deviation of the 
simulated distribution is not yet stabilized. Nevertheless, the discrepancies observed between 
CLT and Monte-Carlo analysis were progressively reduced as the number of exposures was 
increasing (n ≥ 106). Convergence between both approaches is not a fact which can be 
observed at relatively low number of exposures because of, according to CLT, normality for 
sum of variables is met when n approximates to infinite, i.e. n becomes enormously high. 
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The regression analysis applied on Monte-
Carlo analysis and Epidemiological data did 
not derive the exact mathematical equation 
given by the CLT (eq. 1). Nevertheless, 
regression analysis confidence intervals 
indicated a reasonable convergence to The 
Central Limit Theorem (Table 2). Probably, 
additional sources of uncertainty coming from 
the Random Number Generator seed variation 
and the high-dependency of Monte-Carlo 
analysis on the number of iterations together 
with the expected uncertainty derived from 
food-borne outbreaks reporting systems could 
be responsible for the lack of accuracy and 
precision in data. 

Table 2: Regression Parameters and statistics describing log-linear decrease of the coefficient 
of variance (eq. 1) fitted to data obtained from Monte-Carlo analysis and epidemiological data 

at different number of exposures (n). 

Illness Data m Standard Error p-value Lower 95% Upper 95% R2  R2(m=-0.5) 

Listeriosis Monte-Carlo -0.37 0.06 <0.01 -0.51 -0.22 0.81 0.61 

Listeriosis Epidemiological -0.20 0.07 0.11 -0.56 0.15 0.38 0.00 

 
Figure 1: Representation on logarithmic scale of 
coefficient of variance (CV) of annual burden-of-
illness obtained by Monte-Carlo analysis at different 
number of exposures (n).  Solid line corresponded to 
the CV trend based on Central Limit Theorem (CLT) 
and dashed line represents the fitted eq. (1) to Monte-
Carlo analysis data in range n=105-107. 

Conclusions   
In many areas, the Central Limit Theorem is used as a first approach to understanding 
phenomena from a global perspective (e.g. economic sciences).  Interpretation about reality is 
always complex and general rules can be helpful to extract basic and useful information. This 
was the main purpose in this work in which an attempt was made to study Microbiological 
Risk Assessment aspects from an angle of Public Health. The hypothesis suggested in this 
work was that “annual variation in number of food-borne illness cases is reduced as result of 
major exposure intensity (n)”.  Results did show a clear decreasing trend in the coefficient of 
variance of number of annual cases as n increases. Furthermore, the present study shows that 
classical statistical methods can be helpful to provide sound probabilistic risk estimation 
based on simple and well-established statistical principles. 
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Abstract 
In quantitative microbial risk assessment (QMRA), risk estimates are a function of the 
variability in concentrations of the bacterial pathogen in the food product concerned and the 
dose-response relationship. The choice of the probability distribution describing the pathogen 
variability may therefore be important. The lognormal distribution is a common choice, which 
is however complicated by the observation of relatively high proportions of zeros and low 
numbers in microbial counts. Discrete distributions have been indicated as alternatives to 
model counts with a considerable amount of low numbers, and their zero-inflations 
counterparts are considered appropriate to model counts with many zeros. In this study, we 
analysed the effect of the use of different distributions fitted to artificial data on the risk 
estimates in QMRA, using an existing QMRA model. A distribution of Campylobacter jejuni 
counts in chicken at retail was simulated and 9 data sets of 500 microbial counts were 
constructed, with 9 different proportions of zeros (10 to 90%). The outcome of fitting a 
negative binomial (NB), a zero-inflated NB (ziNB), a lognormal (LN) and a zero-inflated 
lognormal (ziLN) distribution to each of those samples was assessed, as well as the resulting 
estimates for the probability of illness (Pill). The ziNB distribution showed a good fit to the 
data and Pill estimates close to the expected Pill in all cases. The NB overestimated the Pill at 
high proportions of zero and the continuous distributions (LN and ziLN) underestimated the 
Pill at low proportions of zero. These results showed that the choice of the distribution fitted 
through count data may have an important impact on the risk estimate.  
 
Keywords: microbial counts, frequency distributions, risk estimates, QMRA 

Introduction 
Quantitative microbial risk assessment (QMRA) depends extensively on consistent 
descriptions of pathogen concentrations in food products (Busschaert et al. 2010). Numerous 
factors may have an impact on the collected data and on the frequency distribution used to 
describe it.  
At the data assembly level, the existence of limits of quantification in the enumeration 
methods often leads to the gathering of semi-quantitative results (Busschaert et al. 2010). 
Recently, a maximum likelihood estimation (MLE) to represent censored results with 
parametric distributions has been proposed by many authors (Busschaert et al. 2010; 
Delignette-Muller et al. 2010; Lorimer and Kiermeier 2007). Microbial counts are often 
considered to follow a lognormal frequency distribution, which may be an acceptable 
assumption for high bacterial loads with negligible probability of zeros. However, the 
analysis of foodborne pathogen counts poses a challenge to this approach. The frequency 
distribution of pathogens in foods is characterized by a high probability of zero 
microorganisms and a high probability of low numbers. These characteristics complicate the 
fulfilment of log normality, as the lognormal distribution does not allow zero as an outcome 
and assigns probability to fractional numbers, which is not realistic at the low count level, 
where the difference between successive integers is high (ILSI 2010). Recently, many 
alternatives to the lognormal distribution have been discussed and proposed to represent 
bacterial data with low prevalence and low counts more appropriately (ILSI 2010; Gonzales-
Barron et al. 2010).  Discrete distributions, particularly generalizations of the Poisson 
distribution (negative binomial and Poisson-lognormal), have been indicated as better 
alternatives to model counts with a considerable amount of low numbers due to their ability to 
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model count data with over-dispersion (variance higher than the mean).  Zero-inflated 
distributions were considered appropriate to model counts with a substantial amount of zeros 
as they are more adapted to extra zero-counts than the simple count distributions. However, 
there is little evidence available in the literature of the advantage of zero-inflated distributions 
over their non-zero-inflated counterparts. Recently, Gonzales-Barron et al. (2010) observed 
that for a data set with 42% zeros, the zero-inflated negative binomial distribution was 
comparable to the simpler negative binomial. 
So far, most research on fitting distributions to microbial count data has focussed on the best 
statistical fits of the model to the data. In this study, we took it one step further and 
investigated the impact of the choice of the distribution fitted through bacterial count data on 
QMRA risk estimates. This was done by studying the effect of fitting artificially generated 
bacterial counts to either a discrete (negative binomial) or a continuous (lognormal) count 
distribution, or to their zero-inflated equivalents (zero-inflated negative binomial and zero-
inflated lognormal), at different probabilities of zero counts. The effects were measured in 
terms of risk by using each distribution as the input for an existing QMRA model for 
Campylobacter in broiler meat. 

Materials and Methods 
Based on existing Danish retail data, a set of 500 count data of Campylobacter jejuni in 
poultry meat at retail was simulated, by sampling from a negative binomial (NB) distribution 
with mean concentration µ=8100 CFU/g and standard deviation σ=8100.  Nine alternative 
sets of count data were constructed by randomly substituting 10% to 90% of the results by 
zeros.   
Four types of frequency distributions were fit to each data set: a negative binomial (NB), a 
lognormal (LN) and their respective zero-inflated counterparts. The NB and the zero-inflated 
negative binomial (ziNB) were fit through null regression using STATA. The LN distribution 
was fit with a MLE method for censored data using the software R and the package 
“fitdistrplus” (Delignette-Muller et al. 2010). The zero counts were treated as being censored 
between -∞ and -1 log CFU and the remaining results were treated as quantitative. The zero-
inflated lognormal (ziLN) distribution was fit by MLE in Excel, with data arranged in semi-
quantitative intervals.    
To compare the impact of these different distributions on risk estimates, each frequency 
distribution was used as an input in an existing Consumer Phase Model (CPM) (Nauta et al. 
2008) for broiler meat, combined with a dose response model (Nauta and Christensen 2011) 
to obtain estimates for the probability of illness (Pill). A serving size of 100 g was assumed as 
standard in the model.  
The different estimates of Pill were visually compared with the expected Pill for each data set. 
The expected Pill was derived from the mean Pill obtained with the initial NB distribution. Its 
value decreased in the same proportion as the probability of zeros present in the data set 
increased.   
 
Results and Discussion  
The estimates of the Pill were obtained for each distribution and were compared with the 
expected Pill (Fig. 1). The ziNB showed the best performance among all the candidate 
distributions, providing Pill estimates that matched the expected values in all scenarios 
(different probabilities of zero CFU/g). This was not surprising, because the fitted count data 
were sampled from a ziNB distribution. For a data set without zeros, the expected Pill was 
approximated by the Pill estimates from the discrete NB and ziNB and underestimated with 
the use of the LN or ziLN as frequency distributions. When the probability of non-detects in 
the data increased, the two continuous distributions tended to approximate the expected Pill, 
whereas the discrete NB increasingly overestimated it.  
For increasing percentages of zeros, the difference between the non-zero-inflated distribution 
and its zero-inflated counterpart increased for the negative binomial distribution. 
Alternatively, the Pill estimates showed smaller differences between LN and ziLN 
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distributions, where the LN provided even better estimates compared to its zero-inflated 
counterpart. The LN distribution has been indicated as appropriate to model high counts with 
a negligible probability of non-detects (ILSI, 2010). The poor fit that that distribution showed 
to a data set with 10% of zeros and its better fit to samples with higher probabilities may be 
related to the fact that the data in question was not made of high counts.  
 

 
Figure 1: Expected probability of illness (Pill) and estimates of Pill obtained with four different 

frequency distributions, for data sets with various probabilities of zero CFU/g.   

The difference between a Pill estimate and the expected Pill was apparently related to the fit of 
the frequency distribution to the data, especially at low count levels. Distributions that 
overestimated the probabilities of low counts, underestimated the Pill. This was observed with 
the continuous distributions in data sets with low proportions of zeros (Fig. 2). Oppositely, 
when the probability of low counts was underestimated, as with the use of the NB with a 90% 
zero data set, the Pill was overestimated. These results showed that the impact of a poor fit at 
low counts was higher than that of a poor fit at high count levels. The explanation for this fact 
lies in the dose-response curve. The slope of that curve is steeper for lower Campylobacter 
concentrations (Fig. 3), therefore, at that level of CFU counts, a misleading concentration 
frequency results in an amplified deviation from the expected Pill.  

Figure 2: Cumulative density function of the data (sample) and the four fitted distributions, 
for a data set with 10% (left) and 90% probability of zero CFU/g (right). 
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Figure 3: Dose-response relationship for Campylobacter. 

Conclusions  

We showed that the selection of the count distribution that describes the variability in the 
pathogen concentration has an impact in the risk estimate of a QMRA model.  
Among the four distributions used in this study, the zero-inflated negative binomial showed a 
good fit and reliable Pill estimates with all the data sets, independently of the proportion of 
non-detects. This result was expected due to the nature of the simulated data. The 
performance of the NB, LN and ziLN varied for data sets with different proportions of zero 
and, according to either an overestimation or underestimation of the probability of low counts 
they either underestimated or overestimated the Pill, respectively. This effect was also 
associated with the specific dose-response curve used in the QMRA model.    
The LN and ziLN distributions were not appropriate to model the data sets with low 
proportions of zero, contrarily to what was expected (ILSI 2010). This was probably due to 
the fact that the CFU numbers in the samples were not high enough to allow for the use of 
continuous distributions. However, further studies are needed to check this hypothesis. 
Specifically, it is important to investigate the reproducibility of the present results in a 
situation where data is generated from a continuous distribution.  
We conclude that the estimated probability of illness can be highly influenced by the count 
distribution used to describe the pathogen concentration, in combination with the 
characteristics of the sample and the dose-response relationship. As fitting data with an 
inappropriate distribution may lead to an incorrect risk estimate, the choice of the distribution 
fitted through count data may be crucial in QMRA studies.  
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Introduction 
EU Directive 178/2002 EC (General Food Law) requires food legislation to be based on “risk 
analysis” except where this is not appropriate for the circumstances or the nature of the 
measure. There is no specific requirement on the nature of the risk assessment and regulations 
can be based on qualitative as well as quantitative. EFSA is responsible for giving 
independent scientific advice for the European Community legislation and politics in all fields 
which have a direct or indirect impact on food and feed safety. EFSA’s main attributes for 
this task are the Scientific Committee and the Scientific Panels. Questions from European risk 
managers are addressed in scientific opinions published by EFSA.  
To provide scientific advice and risk assesments, EFSA has set up a structure existing of a 
Scientific Committee and Scientific Panels, involving scientists from all Member States. The 
Panel on Biological Hazards (BIOHAZ) provides independent scientific advice on biological 
hazards in relation to food safety and food-borne diseases. This covers: Food-borne zoonoses, 
Transmissible spongiform encephalopathies (BSE/TSEs), Food microbiology, Food hygiene 
and associated waste management issues. The BIOHAZ Panel carries out risk assessments in 
order to produce scientific opinions and advice for risk managers. This helps to provide a 
sound foundation for European policies and legislation and supports risk managers in taking 
effective and timely decisions. 
The opinions of the BIOHAZ Panel are based on qualitative or quantitative assessments. The 
Panel aims to structure its opinions according to the established risk assessment framework 
with four stages: hazard identification, hazard characterization, exposure assessment and risk 
characterization. Due to the qualitative nature of some opinions, they can also be considered 
as risk profiles. 
The application of Risk Assessment was promoted by the World Trade Organisation in 1995 
with the ratification of the Agreement on the Application of Sanitary and Phyto-sanitary 
Measures (SPS Agreement). It requires that any measures applied to protect human, animal 
and plant health are developed using a scientific and transparent approach. The international 
developments on risk assessment and risk based management of microbial hazards have been 
coordinated mainly by the Codex Committee on Food Hygiene. The risk assessment 
framework as applied in food safety was initially defined by FAO, WHO and the Codex 
Alimentarius Commission (CAC, 1995) as a process consisting of three components: Risk 
assessment, Risk management and Risk communication. In the EU system risk assessment is 
the responsibility of EFSA, risk management is for the European commission, the Member 
States and/or the European Parliament, while risk communication is a shared responsibility 
between risk assessors and risk managers.  
The risk analysis framework defined by FAO and WHO and adopted by CAC allows for the 
conduct of both qualitative and quantitative risk assessments. The decision which approach to 
take depends on the risk management issue, on the quality of the available data and on the 
available resources and time. CAC does not give specific guidance on the choice between 
qualitative and quantitative risk assessment although it is stated that “the use of quantitative 
information is encouraged to the extent possible, but the value of qualitative information 
should not be discounted” (CAC, 1999). 
A study commissioned by EFSA in 2005 to Prof Havelaar (EFSA, 2005) identified many 
expected benefits from Quantitative Microbiological Risk Assessment (QMRA) at the 
European level: (i) a more solid basis for common and more objective, science-based criteria 
for food safety across Europe, (ii) the quantitative analyses would also support national food 
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safety risk management and help to evaluate the possibilities of different risk mitigation 
options that might be used by different Member States to reach common targets, (iii) the 
increased transparency of a quantitative approach was expected to improve risk 
communication between professionals and to help building trust among stakeholders, (iv) a 
European approach was also recommended because it enables the sharing and optimal use of 
available data and resources. This would be more efficient, and avoid duplication of work 
between Member States. Less experienced countries expected a European approach to be 
helpful in building up their capacities for risk based food safety management and stressed the 
need for the promotion and development of harmonised models and databases.  
QMRA in the above report was also identified as to help to focus data collection efforts and 
identify key knowledge gaps, to provide more insight in complex processes and to integrate 
regulations across different stages of the food chain. It was also considered a useful tool to 
rank the relative contribution of different exposure pathways (food, water, person-to-person 
transmission, direct contact with animals etc.) resulting in better targeting of control options It 
has also been widely acknowledged that QMRA may lead to a more transparent, systematic 
and efficient risk management process including improved risk communication, resulting in 
reduced consumer exposure to microbial hazards. 
Since the establishment of EFSA in 2002 and the appointment of the first mandate of the 
BIOHAZ Panel in 2003, the Panel has evolved in their scientific advice to the risk managers. 
The EU risk managers have also evolved in sending request for quantitative microbiological 
risk assessments to EFSA which have resulted in a full farm-to-fork microbiological risk 
assessment in the EU for the first time: Salmonella in slaughter and breeder pigs and 
Campylobacter in broilers apart form other quantitative studies on Salmonella in breeding 
hens, layers, broilers and turkey. In the results and discussion chapter, only the main results 
obtained from, the two first studies are mentioned. 

Results and Discussion  
Salmonella in pigs 
Following a request from the European Commission, the Panel on Biological Hazards was 
asked to deliver a scientific opinion on a QMRA of Salmonella. The assessment was to 
provide the input for a future cost/benefit analysis of setting a target for reduction in slaughter 
pigs at EU level. EFSA commissioned a QMRA modelling the pig meat food chain from farm 
to fork. The QMRA model was based on input data from the baseline studies of Salmonella in 
breeder and slaughter pigs, and other relevant data. 
The QMRA represents a major step forward in terms of modelling Salmonella in pigs from 
farm to consumption as it takes into account the variability between and within EU Member 
States (MSs). Around 10-20% of human Salmonella infections in EU may be attributable to 
the pig reservoir as a whole. From the QMRA analysis it appears that an 80% or 90% 
reduction of lymph node prevalence should result in a comparable reduction in the number of 
human cases attributable to pig meat products. Theoretically, according to the QMRA the 
following scenarios appear possible (a) by ensuring that breeder pigs are Salmonella-free a 
reduction of 70-80% in high prevalence MSs and 10-20% in low prevalence MSs can be 
foreseen; (b) by feeding only Salmonella-free feedstuffs, a reduction of 10-20% in high 
prevalence MSs and 60-70% in low prevalence MSs can be foreseen; and (c) by preventing 
infection from external sources of Salmonella (i.e. rodents and birds) a reduction of 10-20% 
in slaughter pig lymph node prevalence can be foreseen in both high and low prevalence MSs. 
A hierarchy of control measures is suggested - a high prevalence in breeder pigs needs to be 
addressed first, followed by control of feed and then control of environmental contamination. 
Also according to the QMRA, for each MS, a reduction of two logs (99%) of Salmonella 
numbers on contaminated carcasses would result in a 60-80% reduction of the number of 
human salmonellosis cases attributable to pig meat consumption. 
 
Control of Salmonella in pig meat as a public health problem should be based on the 
individual MSs situations and include combinations of following interventions: Salmonella-
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free (low risk) breeder pigs, Salmonella-free feed, cleaning-disinfection between batches both 
on-farm and during lairage, avoidance of faecal contamination during slaughter and 
decontamination of the carcasses. Efficient vaccination will also be useful to control 
Salmonella on farm, but might interfere with the interpretation of serological test results in 
monitoring/surveillance programmes. From the current evidence, it would appear that specific 
slaughterhouse interventions are, at present, more likely to produce greater and more reliable 
reductions in human illness, at least in a shorter timeframe than can be achieved at the farm in 
high prevalence MSs. However, the hypothetical reductions and multiple interventions 
investigated with the current risk assessment model suggest that MSs can achieve more 
effective reductions in human cases by targeting both farm and slaughterhouse. MSs should 
have the possibility to assess their national pig meat food chains using this QMRA model. 
The slaughterhouse remains a critical step of the pig meat chain in respect to pig and carcass 
contamination and numerous aspects (e.g. airborne transmission of Salmonella in the abattoir) 
still remain unknown. Therefore studies need to be performed to properly assess the ways 
carcasses become contaminated. 
The control of Salmonella in pig reservoir in the EU is a reasonable objective. The EU 
Salmonella control strategy in pigs should be continuously evaluated to identify possible 
improvements. 

Campylobacter in broilers 
Following a request from the European Commission, the Panel on Biological Hazards was 
asked to deliver a scientific opinion on Campylobacter in broiler meat production: control 
options and performance objectives and/or targets at different stages of the food chain. EFSA 
commissioned the development of a QMRA model which has been used to estimate the 
impact on human campylobacteriosis due to the presence of Campylobacter spp. in broiler 
meat. This QMRA was also used to rank/categorize selected intervention strategies in the 
farm to fork continuum, for which quantitative data, of sufficient quality on efficacy for 
Campylobacter reduction at the point of application, were available. The evaluation of 
microbiological criteria required the development of a specific model by the BIOHAZ Panel, 
using data from the EU baseline survey, as an input. 
It is estimated that there are approximately nine million cases of human campylobacteriosis 
per year in the EU27. The disease burden of campylobacteriosis and its sequelae is 0.35 
million disability-adjusted life years (DALYs) per year and total annual costs are 2.4 billion 
€. Broiler meat may account for 20% to 30% of these, while 50% to 80% may be attributed to 
the chicken reservoir as a whole (broilers as well as laying hens). The public health benefits 
of controlling Campylobacter in primary broiler production are expected to be greater than 
control later in the chain as the bacteria may also spread from farms to humans by other 
pathways than broiler meat. Strict implementation of biosecurity in primary production and 
GMP/HACCP during slaughter may reduce colonization of broilers with Campylobacter, and 
contamination of carcasses. The effects cannot be quantified because they depend on many 
interrelated local factors. In addition, the use of fly screens, restriction of slaughter age, or 
discontinued thinning may further reduce consumer risks but have not yet been tested widely. 
After slaughter, a 100% risk reduction can be reached by irradiation or cooking of broiler 
meat on an industrial scale. More than 90% risk reduction can be obtained by freezing 
carcasses for 2-3 weeks. A 50-90% risk reduction can be achieved by freezing for 2-3 days, 
hot water or chemical carcass decontamination. Achieving a target of 25% or 5% BFP in all 
other MS is estimated to result in 50% and 90% reduction of public health risk, respectively. 
A public health risk reduction > 50% or > 90% could be achieved if all batches would comply 
with microbiological criteria with a critical limit of 1000 or 500 CFU/gram of neck and breast 
skin, respectively, while 15% and 45% of all tested batches would not comply with these 
criteria. 
Microbiological criteria could theoretically be implemented immediately but the ability to 
comply will also differ between MSs. They stimulate improved control of Campylobacter 
during slaughter. 
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The BIOHAZ Panel recommended that effective control options should be selected and 
verified under conditions where the application is intended to be used by industry to reduce 
Campylobacter and comply with potential targets and/or MC when established. Several data 
gaps were identified and generation of data in several areas was recommended. 

Conclusions  
QMRA of food borne pathogens at European level has been proved as a feasible and good 
tool to enable risk managers to undertake impact assessment studies so to evaluate the 
feasibility and the cost/benefit of introducing control measures and target to further protect 
public health of European consumers. 
The BIOHAZ Panel after undertaking some major exercises n identifying quantitatively some 
microbiological risks in some animal populations and/or foodstuffs is now  reflecting which 
were the lessons learnt and how improvements could be introduced in future exercises. 
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Abstract 
Quantitative risk assessment of microbiological hazards in foods (QMRA) can assess the 
impact of control measures on risk and can help to achieve food safety targets. Generally, the 
effect of a particular input variable of a QMRA model is assessed by comparing the results 
corresponding to the default situation to those obtained from scenarios modifying its 
behaviour. The purpose of this work is to handle and propose alternative methods to scenario 
testing for determining PO (performance objective) or process criterion from a given FSO 
(food safety objective). These methods were applied in the framework of a QMRA model that 
considered the fate of a hazard from raw material to the consumption stage. A second order 
Monte-Carlo simulation approach separately assessing the uncertainty and variability on the 
final exposure, we applied an accept-and-reject algorithm to measure the importance of each 
variable of the model and to determine, with its uncertainty, the probability of compliance 
with an FSO according to the range of values that these variables can take. Within a first 
order Monte-Carlo simulation approach, we applied the Saltelli sensitivity analysis method to 
select the most influential variables on the compliance with the FSO. Then, an accept-and-
reject algorithm was applied for the most influential variables. With both approaches, we 
managed to identify influential variables and were able to determine which ranges of values 
should be met to respect the FSO. Complications originated from correlated variables or 
QMRA models with low probability to reach the FSO were also tackled. It is concluded that 
accept-and-reject algorithms are simple methods to apply and that they allow extrapolation of 
the classical point estimate scenario analysis to the entire range of values taken by input 
variables. 
 
Keywords: exposure assessment; performance objective; accept and reject algorithm   

Introduction 
Quantitative risk assessment of microbiological hazards (QMRA) in foods is now a widely 
applied methodology. Originally founded to meet the needs of risk managers such as 
governments or international organizations, it assesses the impact of general measures on risk 
and can help to achieve food safety targets. These targets could be “the maximum frequency 
and/or concentration of a hazard in a food at the time of consumption” (food safety objective, 
FSO) or “at a specified step in the food chain before the time of consumption” (performance 
objective, PO) (Codex Alimentarius 2004). The use of QMRA is not limited to institutional 
organizations; today it is an integrated methodology for some industries or professional 
associations. QMRAs can provide assistance to move HACCP from a mostly “hazard based” 
approach to a “risk-based” quantitative modelling. POs and process criteria (PC) can then be 
calibrated to comply with FSO. 
However, it is not straightforward to get back from a given objective (e.g. FSO) “up” to 
operational values (e.g. critical limits, process and product criteria) (Havelaar et al. 2004; 
Rieu et al. 2007). Generally a variable of a QMRA model is assessed by comparing the 
results corresponding to the default situation to those obtained from different scenarios (e.g. 
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Tuominen et al. 2007). The objective of this work was to handle and propose alternative 
methods to scenario testing for determining PO or PC from a given FSO. 

Materials and Methods 
Exposure assessment model 
In order to handle and compare different methods for determining PO or PC from a given 
FSO, we proposed the use of an exposure assessment model. This theoretical model is not 
linked to a specified hazard or food process and was only built for the didactic reasoning. This 
model considered the fate of a hazard along three stages: growth in raw material, inactivation 
during cooking and growth during storage. Model parameters and relation between nodes are 
presented in Figure 1. 
A second-order Monte Carlo simulation (MC2D) (Pouillot and Delignette-Muller 2010) was 
used in order to separately assess the uncertainty and variability on final exposure at the end 
of storage (N3). We also considered the same model without separating uncertainty and 
variability (MC1D). We focused on how to determine the levels of five variables (t2, T2, T3, 
T1, N0), on which risk managers can act, that comply with the FSO. We chose for FSO a value 
of 5 log10 (cfu/g). 

 
Figure 1: Directed acyclic graph of the exposure model and definition of the parameters of the 

model. Logical links between nodes are represented by dotted arrows whereas solid arrows 
indicate stochastic links. Ellipses represent uncertain and/or variable nodes while rectangles 

represent constants. Shaded ellipses correspond to variables of interest. 

Accept-and-reject algorithm 
In the MC2D framework, we proposed the following algorithm in order to check the 
importance of five considered variables : 

1. Sample random values in the uncertainty distributions (index i from 1 to Nu):  
2. Sample random values in the variability distributions, conditionally to 
uncertainty (index j from 1 to Nv):  
 If N3i,j<FSO accept Xi,j and registered its value in XA 
 Else registered Xi,j in XR 

In the MC1D framework, steps 1 and 2 are combined in the same loop, with only one index. 

Sensitivity analysis 
Sensitivity analysis was only applied in the MC1D framework.The impact of variables (Table 
1) on compliance with FSO was checked with sensitivity analysis (SA). The output of the 
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model N3, was here expressed in 0 and 1 (respectively lower or higher than 5 log10 cfu/g, the 
FSO). For sensitivity analysis we used the Saltelli method (2002). This SA method is based 
on variance decomposition and computes first order indices (Si) which represent the main 
effect contribution of each input factor to the variance of the output, and total effect indices 
(Sti) which account for the total contribution to the output variance due to the first order 
effects (Si) and to their non linear interactions.  

Probability of compliance to the FSO 
For each variable of interest we considered the range of possible values different variables 
can take. Each range was divided in k classes of equal size. Let nbA and nbR (A, R for 
Acceptance and Rejection) as the numbers of simulation runs (in the variability dimension for 
the MC2D framework) that allow compliance or non-compliance with a FSO, respectively. 
This was done for each class of the considered variable. We could then calculate the 
probability of compliance with the criterion for the class k by 

RA

A
k nbnb

nbP
+

= . 

Pk ranges from 0 to 1. Variation of Pk through the different classes indicates that the order of 
magnitude of the variable is of importance for the compliance of the FSO. In the MC2D 
framework, Nu values of Pk were obtained (one for each value of index i), enabling the 
characterization of its uncertainty.  

Results and Discussion  
Sensitivity analysis 
Table 1 summarises the results of SA of the model in MC1D framework. The variables 
influencing the compliance of the FSO were mainly Dref, T3 and T2 and then Tmin, t2, z, T1, N0. 
Apart from T3 which had a first order indice of importance, other variables influenced the 
compliance of the FSO interacting with other variables. 

Table 1: Estimates of the first order (Si) and total effect (Sti) indices of the sensitivity analysis 
and their bootstrap confidence intervals. 

Factor Range Sti Si 
N0 (log10 cfu/g) 1.5, 2.85 0.05 [0.02,0.08] 0.00 [-0.01,0.00] 

Tmin (°C) -5.4, -3.8 0.15 [0.12,0.18] 0.02 [0.01,0.03] 
T1 (°C) 2.5, 5.6 0.03 [0.00,0.05] 0.00 [0.00,0.00] 
T2 (°C) 60.5, 65.4 0.19 [0.16,0.21] 0.02 [0.02,0.03] 
t2  (min) 3.5, 6.5 0.14 [0.11,0.16] 0.01 [0.00,0.02] 
Dref (sec) 10, 20 0.18 [0.16,0.21] 0.02 [0.01,0.03] 

Z (°C) 7.2, 10.4 0.15 [0.13,0.18] 0.01 [0.01,0.02] 
T3 (°C) 1.5, 10.5 0.92 [0.89,0.94] 0.65 [0.64,0.66] 

Probability of compliance 
Figure 2 shows the probabilities of compliance according to the values of the variables for the 
initial contamination level (N0), the temperature of cooking (T2) and the storage temperature 
(T3) in the MC2D framework. The mean, 5 and 95th percentiles of the probability of 
compliance to the FSO are shown. Uncertainty was very large for N0 and T2 and the 
probability of compliance was slightly affected by the values these variables can take. The 
same conclusion can be drawn for  t2 and T1 (data not shown). T3 greatly impacted the 
probability of compliance to the FSO. For example if T3 is below 4°C the mean probability of 
compliance is higher than 95%.   

Correlations between variables 
Before applying accept-and-reject algorithm, parameters of the model were independent. 
Figure 3 shows examples of correlations between parameters induced by the algorithm. 
Theses correlations should be taken into account for setting PO or PC values that comply with 
FSO.  
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Figure 2. Probabilities of compliance to the FSO according to possible values of three 
variables of interest. Dotted lines represent mean Pk. Shaded areas characterize uncertainty : 

they comprise 90% of simulated Pk values (between 5th and 95th percentiles). 

 
 

Figure 3. Distributions of Nu values of correlation coefficients between some variables of the 
model. In dark correlation coefficients for accepted set of parameters, in gray for rejected. 

Conclusions  
Sensitivity analysis methods are efficient in determing which variables of a model impact on 
the compliance with FSO. For the determination of PO or PC, accept-and-reject algorithms 
are simple tools to apply and are more powerful than classical point estimate scenario analysis 
as the entire space of values taken by input variables is considered. 
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Abstract 
To establish a link between governmental food safety control and operational food safety 
management, the concepts of the Appropriate Level of Protection (ALOP) and the Food 
Safety Objective (FSO) have been suggested by international bodies as a means of making 
food safety control transparent and quantifiable.  The purpose of this study was to investigate 
how the concepts of ALOP and FSO could be applied in practice. As a case study, the risk of 
severe listeriosis due to consumption of deli meat products in the Netherlands was taken. The 
link between these concepts was explored for two situations following a “top-down” 
approach, using epidemiological country data as a starting point, and a “bottom-up” approach, 
using data on the prevalence and concentration of the pathogen at retail as a starting point. 
Models based on both approaches were able to describe the link between ALOP and FSO and 
our results showed that meaningful estimations are feasible, although interpretations need to 
be made with care. For the top-down approach, the mean estimated value derived for ALOP 
was 3.2 cases per million inhabitants per year (95% CrI: 1.1-6.6). For the bottom-up 
approach, ALOP values ranged considerably, 4.7-55 (with 95% CrI ranging from 2.9-162), 
depending on the input parameters selected.  The level of detail considered in the stochastic 
models considerably influenced the ALOP and FSO estimates. As best practice it is 
recommended to develop both approaches, although depending on the application context one 
may appear more appropriate than the other.  
 
Keywords: risk assessment, stochastic modelling, foodborne disease, public health targets  

Introduction 
Food safety is an issue of fundamental public health concern and providing guidance to the 
food industry on achieving a safe food supply poses major challenges for competent 
authorities who have the responsibility to articulate the level of control they expect the 
industry to achieve. To establish a link between governmental public health goals related to 
food safety and operational food safety management, the concepts of the Appropriate Level of 
Protection (ALOP) and the Food Safety Objective (FSO) have been suggested by respectively 
the World Trade Organization (WTO 1995) and Codex Alimentarius (2010) as a means of 
making food safety control transparent and quantifiable. A major difficulty related to the 
implementation of these concepts is that they are still evolving and there is no uniform 
agreement with regards to their use (Stringer 2005). A consistent approach is necessary from 
a legal point of view (WTO 2000). So far very few case-studies have been published on how 
these concepts might work in practice (Crouch et al. 2009; Membré et al. 2007; Rieu et al. 
2007; Tuominen et al. 2007). Our aim was to investigate further how the ALOP and FSO 
concepts could be applied in a real life example, the risk of severe listeriosis due to the 
consumption of deli meat products (cooked ready-to-eat meat products) in the Netherlands. In 
this example, two likely approaches to establish a link between the concepts have been 
followed. One approach was based on analysis of public health data and epidemiological 
surveys (from now on referred to as the top-down approach). The second approach was based 
on data related to the level and/or frequency of Listeria monocytogenes  in deli meat, from 
which through a risk characterization curve disease incidence estimates are derived (from 
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now on referred to as the bottom-up approach) (Codex Alimentarius 2007). Our aim is to 
compare both approaches.  

Materials and Methods 
For the two different approaches the estimation steps in either Figure 1 or 2 were followed. 
Stochastic models were built in Microsoft Excel using the @RISK 5.7 software (Palisade 
Corporation). The dose response model was the common element in both approaches 
(WHO/FAO, 2004) through the formula: 

D))r(( SLOP ⋅−−⋅⋅= exp1106 ))Mr(( SLOP SO10exp1106 ⋅⋅−−⋅⋅= or  (1) 
where: LOP = the Level of Protection, defined as the currently achieved number of cases of 
severe listeriosis per million people per year in each risk group, being either the healthy or the 
susceptible population (Young-Old-Pregnant-Immunocompromised or YOPI)  
S = the number of servings per person per year 
r = the probability of a single microorganism causing listeriosis for each risk group  
D = the dose consumed (log CFU) 
M = the mass per serving (g) 
SO = the Safety Objective, defined as the concentration of microorganisms at consumption 
(log CFU per g) 
 
The FSO was considered to be the stricter of the two estimated SO in the top down approach. 
The ALOP was considered to be the sum of the LOPs for the healthy and the susceptible 
population after adjusting for the different percentages of each group in the general 
population in the bottom up approach. In their baseline version the models were built as 
simple as possible and alternative versions were included using different deterministic or 
stochastic input parameters for r, M and S and selecting r values based on different 
assumptions for the maximum dose at consumption (Dmax).  
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Figure 1: Outline of the estimation steps in the top down approach model. 
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Figure 2: Outline of the estimation steps in the bottom up approach model. 

Results and Discussion  
The results for the different models used in the top down and bottom up approach to estimate 
the ALOP can be seen in Table 1. For the bottom up approach the estimated FSO was the 
same for the different combinations of input parameters tested with a mean of -0.82 log CFU 
per g (95% CrI: -3.2 to 5.6). For the top down approach mean estimates for the FSO varied 
from 2.3 to 3.9 log CFU per g with 95% CrI covering the range 1.6-4.4 log CFU per g (data 
not shown).  

Table 1: ALOPs (cases of severe listeriosis due to the consumption of deli meat per million 
people per year) estimated with both the top down approach and bottom up approach for 

different combinations of input parameters.  

Parameter Description 

ALOPdeli meat 
Top down 
approach 

ALOPdeli meat 
 Bottom up 
approach 

Mean (95% CrI) Mean (95% CrI) 
Baseline r, M, S fixed   12 (8.8-15) 
Alternative 1 r stochastic, M & S fixed   44 (5-118) 
Alternative 2 r, M, S fixed, Dmax=7.5 log CFU  4.7 (3.5-6.0) 
Alternative 3 r, M, S fixed, Dmax=8.5 log CFU  6.8 (5.1-8.8) 
Alternative 4 r, M, S fixed, Dmax=9.5 log CFU  12 (9.0-16) 
Alternative 5 r, M, S fixed, Dmax=10.5 log CFU  6.1 (4.5-7.9) 
Alternative 6 r stochastic, M,S fixed, Dmax=7.5 log CFU  4.8 (3.0-7.0) 
Alternative 7 r stochastic, M,S fixed, Dmax=8.5 log CFU  7.0 (4.3-10) 
Alternative 8 r stochastic, M,S fixed, Dmax=9.5 log CFU  13 (7.9-19) 
Alternative 9 r stochastic, M,S fixed, Dmax=10.5 log CFU 3.2 (1.1-6.6) 6.2 (3.9-9.1) 
Alternative 10 r fixed, M,S stochastic  15 (8.1-25) 
Alternative 11 r fixed, M,S stochastic, Dmax=7.5 log CFU  5.9 (3.2-9.9) 
Alternative 12 r fixed, M,S stochastic, Dmax=8.5 log CFU  8.7 (4.7-15) 
Alternative 13 r fixed, M,S stochastic, Dmax=9.5 log CFU  16 (8.3-26) 
Alternative 14 r fixed, M,S stochastic, Dmax=10.5 log CFU  7.8 (4.2-13) 
Alternative 15 r, M, S stochastic  55 (6.0-162) 
Alternative 16 r, M, S stochastic, Dmax=7.5 log CFU  6.1 (2.9-11) 
Alternative 17 r, M, S stochastic, Dmax=8.5 log CFU  8.9 (4.3-16) 
Alternative 18 r, M, S stochastic, Dmax=9.5 log CFU  16 (7.7-29) 
Alternative 19 r, M, S stochastic, Dmax=10.5 log CFU  7.9 (3.8-14) 

 

The mean estimates of the ALOP and FSO were different for most of the combinations of 
input parameters used in the two approaches although considering the uncertainties involved 
they are not so far apart. Moreover, the interpretation of the concepts suggests that 
comparisons should be made taking into account the frequency of the hazard in the case of 
FSO (Codex Alimentarius Commission 2010) or the credible intervals in the case of the 

Prevalence & concentration at retail 
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ALOP (FAO/WHO 2002). Keeping this in mind, for several of the bottom up approach 
outcomes the 97.5th percentile of the ALOP estimates is well in agreement with the 97.5th 
percentile of the ALOP based on the top down approach, being different by a factor smaller 
than two. With regards to the FSO however this was less the case, with the 97.5th percentiles 
being 1 to 3 log CFU per gram different. Obviously, with comparisons based on other 
percentiles these differences might be smaller or greater depending on the input parameters 
selected. An important finding is that the level of detail encompassed in the risk assessment 
process (bottom up approach) influenced considerably the risk estimates with the introduction 
of additional stochastic parameters instead of point estimates leading to higher mean 
estimates for the ALOPs and larger credible intervals. Uncertainty related with the maximum 
dose at consumption was another parameter that also considerably influenced our risk 
estimates as observed by other authors (Pouillot and Lubran 2011). Although ideally the two 
approaches should yield comparable results (Whiting 2010),  in reality a single approach 
should be used for consistency purposes (WTO 2000). Nevertheless, as a best practice we 
recommend that both approaches should be used to allow validation of the risk estimates, 
although depending on the application context one may appear more appropriate than the 
other.  

Conclusions  
It was found to be better practice to base decisions for ALOP and FSO values on both 
different approaches considering the level of detail encompassed in the base data.  
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Abstract 
In this study, the microbial quality of milk from the collection centres through the operations of 
transport to the processor plant, reception and cold storage of raw milk, thermization and cold 
storage, were simulated in order to establish the suitability of milk towards UHT (ultra high 
temperature) processing in Colombian dairy industries. The growth and inactivation rates at 
different temperatures were determined based on experimental data of ComBase and published 
articles. The @Risk software (Palisade Corporation, Newfield, NY, USA) was used to simulate 
the distribution of microbial concentration in milk. The simulation included 10 000 iterations 
with Latin Hypercube sampling. The results obtained showed a non appropriate performance of 
the model with deviations of predictions of growth and of inactivation up to 2 log cycles when 
validated with real microbial concentration data at the different stages of the milk flow before 
entering the UHT equipment. Therefore, the simulation exercise was repeated but with the 
introduction of kinetic parameters from more psychrotolerant and thermoduric bacteria 
generating outputs close to the real system (0.3 – 0.6 log cycle deviation). In this instance, this 
simulation model shows the need to redesign supply and manufacturing conditions to meet 
microbial standard quality criteria for milk in the UHT milk production. 
 
Keywords: simulation, fluid milk quality  

Introduction 
Milk is a highly perishable food and requires refrigeration and special handling; quality and 
shelf life depend on continuous and appropriate cooling. By virtue of the milk supply chain, 
milk is susceptible to contamination by a wide variety of bacteria. Microorganisms are naturally 
present in milk in a concentration range of 103 to 105 of aerobic mesophilic bacteria per ml 
when good hygienic practices have been applied. Cooling reduces the growth of bacteria and 
under refrigeration temperature the microbial quality of raw milk can be preserved for at least 
two days. Subsequent thermal processing renders fluid milk safe for consumption. 
Psychrotolerant endospore forming bacteria, such as Bacillus and Paenibacillus spp., are 
important spoilage microorganisms present in raw milk that can influence the quality and shelf 
life of pasteurized and UHT milk (Huck et al. 2007). These thermoduric bacteria can survive 
heat treatments and jeopardized further production processes. They are responsible for the 
production of heat resistant proteolytic enzymes that cause the sweet curdling of processed fluid 
milk (Griffiths and Phillips 1990). 
The maintenance of an uninterrupted cool chain from the producer to the consumer is a 
challenge especially in underdeveloped and developing countries. In Colombia, the distances 
between milk collection centers and processing plants are long and time consuming and the 
storage of preprocessed milk is almost the rule. Therefore, in the UHT fluid milk production, a 
so called thermization and storage precede the UHT treatment. The purpose of this simulation 
exercise was to establish the microbial quality of the milk through different stages of the UHT 
fluid milk production in order to assess the quality of milk entering the UHT treatment; shelf 
life largely depends on microbial load and presence of proteolytic enzymes. 

Materials and Methods 
Experimental data 
Aerobic mesophilic bacterial counts (plate count method) from different fluid milk processing 
industries at four stages of the production line were used in the analysis: (1) primary collection 
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centres, (2) plant reception, (3) after thermization, and (4) before UHT treatment. For each stage 
50 data points were collected. The probability distribution of the data at each stage was 
established with @Risk (Palisade Corp., USA), using Anderson-Darling criteria. Other 
operation conditions were established as reported by the fluid milk processors (Table 1). 

Table 1: Operation condition of the production line. 
Stage Parameter Distribution Descriptors 

Transport Time/Duration (h) Uniform (0.5;24) 
Temperature (°C) Normal (12;2) 

Storage before thermization Time/Duration (h) Uniform (0.5;48) 
Temperature (°C) Uniform (4;12) 

Thermization Temperature (°C) 
Time/Duration (s) 

RiskNormal 
RiskNormal

(74;1) 
(15;0.5) 

Storage after thermization Temperature (°C) Uniform (0.5;8) 
Temperature (°C) Uniform (4;12) 

Growth estimation 
To predict the microbial growth the modified Gompertz equation was used. The parameters of 
the equation were set as follow: maximum population 9.0 log10CFU/ml, lag time 0 h, and μ was 
established by linear regression (eq. 1) of growth data of indigenous milk microflora obtained 
from ComBase (81 data sets, Australian Food Safety Centre of Excellence, University of 
Tasmania, Hobart, Australia).  
 
ߤ ൌ 0.0131 ൈ ܶ െ 0.0447                   ܴଶ ൌ 0.86

ଵܦ ൌ ଶܦ ൈ 10
ሺమషభሻ

ೋ

                                                                       (1) 
 

Inactivation estimation 
The effect of the thermization on the microbial load was established based on the D and z 
parameters of the Bigelow model. The D - values at different temperatures were calculated 
according to the equation 2, considering a thermoresistant D63 of 22s (Verrips and van Rhee 
1981) and a z - value of 10 (Xu et al. 2006). 
 

                                                                                                                   (2) 
 

Simulation 
The process was simulated using sequential steps for each of the stages. Variability of the 
operation parameters and microbial loads were simulated using @Risk (Palisade Corp., USA). 
The full simulation was done with 10 000 iterations and Latin Hypercube sampling. 

Results and Discussion 
Experimental data adjustment 
The distributions of data from the four stages are shown in Table 2. The number of bacteria 
along the process varied in a wide range from 0.88 to7.39 log10CFU/ml. At the collection 
centres, the microbial loads were under the standard criteria for raw milk. During transportation 
(0.5 - 24h at 12 ± 2°C) the microbial load increased to values up to 7.39 log10 CFU/ml rendering 
milk of very poor quality. After the thermization process (15 - 0.5s at 74 - 1°C) and during the 
refrigerated storage (0.5 - 8h at 4 - 12°C) the concentration of bacteria increased between 1 and 
3 log cycles. These results indicated low efficiency of the heat treatment on the inactivation of 
bacteria and a possible germination of bacterial spores (Hanson et al. 2005; Novak et al. 2005). 
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Table 2: Probability distributions of experimental data. 
Stage Probability distribution Descriptors 

Collection centre BetaGeneral (2.29;1.75;1.51;4.37) 
Plant reception Triang (3.98;6.95;7.39) 

After thermization BetaGeneral (1.26;0.88;2.45;5.03) 
Before UHT treatment Triang (3.82;6.84;6.84) 

Simulation results 
The microbial load of the fluid milk was sequentially simulated during the production process 
according to the distribution of the original data and proposed equations for growth and 
inactivation (Table 2). The simulation results had great discrepancies with the experimental data 
(Figure 1) at the different production stages. Simulated growth was higher than the observed; 
19.8% and 22.2% of the observed data fall below the 95% confidence interval of the model at 
the stages of plant reception and before the UHT process respectively. The simulated efficacy of 
the thermization was lower than the observed and 31.2% of the experimental data were above 
the 95% confidence interval of the model. These deviations showed the need to adjust the 
kinetic parameters: to reduce the growth rate and to increase the z – value. 
 

 
Figure 1: Results of simulation of microbial loads at the stages of plant reception (left) and 

before UHT processing (right). (Experimental data distribution ion white, simulation results in 
black). 

Adjustment of the simulation 
Bacterial diversity in milk is great due to the number and diverse possible sources of 
contamination (Coorevits et al. 2010). Bacterial population shifts and changes in the spoilage 
potential of milk contaminants due to process properties are also often observed (Jaspe et al. 
1995). Growth and inactivation behaviour of the microorganisms in milk suggested the presence 
of more psychrotolerant and thermoduric bacteria. The growth rate was decreased by lowering 
the intercept value of the regression from -0.0447 to -0.14 in those stages that favour growth. 
The k value for the heat treatments was modified increasing the z value from 10 to 13 (Xu et al. 
2006). The figure 2 shows the effect of the adjustments at the stages of plant reception and 
before the UHT process. 
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Figure 2: Simulation with the adjusted model. Results of simulation of microbial loads at the 
stages of plant reception (left) and before UHT processing (right). (Experimental data 

distribution on white, simulation results in black). 

In this case the simulated growth decreased and only 12.4% and 7.5% of the observed data fall 
below the 95% confidence interval of the model during the stages of plant reception and before 
the UHT process. In the simulation, the distributions were wider; the upper limit values were 
higher than those observed experimentally. The relative frequencies of the simulated values in 
the stage of plant reception were higher than the experimental data (maximum 1.5 logarithmic 
units). If 5 log10 CFU/ml is considered as the upper limit that renders milk suitable for UHT 
treatment, 93.8% (simulation) and 84.7% (experimental data) of the milk will not complain for 
such preservation technology. 

Conclusions 
The simulation of a production process enables milk processors to better design their production 
processes in order to assure safe and quality products. The analysis of experimental data and the 
simulation results showed that during the fluid milk production system (1) the quality a milk 
deteriorated, (2) the thermization was not effective in reducing microbial load, (3) the quality of 
milk before the UHT was mostly of poor and will be reflected in UHT milk with reduced shelf 
life and high incidence of sweet curdling. 
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Abstract 
Risk-based inspection of food-producing plants is crucial for efficient monitoring of Food 
Safety by the National Authorities. Targeting certain food categories, based on the risk profile 
of specific food-hazard combinations, may save time and resources and ensure that 
insignificant risks will not be over-addressed, while significant risks will receive proper 
attention. A well-established nomogramm was adopted incorporated input variables regarding 
food-specific hazards, whereas the output was the frequency of the sampling. Α regression 
model was developed to evaluate the nomogram. Τhe recalibration procedure was based on 
the rationale of having close limits of agreement as well as on a modified regression 
calibration procedure. The present methodology suggests a risk-based tool for optimization of 
Food Inspection that could be adopted by Food Authorities that have not developed local 
tools. The proposed methodology will minimize time and resources waste and enable the 
development of a useful track-record for National Surveillance purposes.  
 
Keywords: risk-based inspection, nomogram, calibration, control frequency  

Introduction 
In European Union, Member States (MS) has an obligation to submit a multiannual plan for 
controls in food businesses according to the Community legislation. The purpose is the 
control of foods to be equivalent in every MS. Hellenic Food Authority (EFET) has been 
considered to develop a risk-based tool for the determination of the frequency of control in 
the food businesses. This will help to improve the efficiency of EFET via his own resources. 
Nomogramm is a calculator designing to graphically interpret a set of related variables. In 
many nomogramms the variables are empirically and not functionally related. The outcome of 
the nomogramm is a figure of interest, e.g., in our case the number of controls in food 
businesses performed within a certain time interval. Nomogramms have been used in food 
inspections, but to the best of our knowledge none of them has been widely used.  
Therefore the aim of this work was to propose a methodology for modeling and calibrating 
into local data a specific nomogramm that has already been developed to propose the 
frequency of sampling in food industries, based on local conditions and facts. This 
methodology could be applied by any other country.  

Materials and Methods 
The nomogramm 
A well established nomogramm (Lenartowicz and Michie 2002a,b) was adopted that 
incorporated input variables regarding food-specific hazards, whereas the output was the 
frequency of the sampling in a specific food industry on a tri-annual basis. Specifically, 
variables such as the type of food product processed and the hazards potentially present, 
volume of production, history of laboratory results for food-related hazards, establishment 
practices including interventions that reduce food-related hazards contamination and testing 
programs that effectively detect food-related hazards, frequency of food product consumption 
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and hazard severity were taken into account. The nomogramm uses non-parallel axes enabling 
the non-linear relationships to be incorporated in the model. The variables requiring input 
after appropriate assessment are denoted by square boxes. The tool is divided into two parts. 
The pair of nomogramm at the top of the tool determines the probability of occurrence, and 
the availability, which are then incorporated in the bottom multistage nomogramm. In the 
bottom of the tool there are two extra lines, the so-called ‘tie lines’ for the transition between 
the stages of the nomogramm. The final parallel logarithmic scale is not nomogramm as such, 
but reading-off scale to translate the risk score (remote to extremely high) into a sampling 
frequency to address safety aspects. The nomogramm was based on that developed by the UK 
Public Analyst Service in conjunction with the UK Food Standards Agency for use as a tool 
to guide the appropriate frequency of sampling and analysis of food for official food control 
purposes, intended to be used to assess all potential problems with foods. The modification 
made was referred to the substitution of the original variable “Likelihood of defect 
recognition by consumer” with the variable “Occurrence of positive samples to a specific 
hazard” to include the history of laboratory results for food-related hazards. Until now the 
aforementioned nomogramm has not been modeled through a formal statistical procedure. 
Thus, in this work a Poisson regression model was applied to model the input variables of the 
nomogramm in relation to the number of inspections suggested by the tool. Discrete, ordered 
scores ranging from 0 to 5 were assigned to each factor Qi of the nomogramm (Table 1). 
Based on these scores the frequency of inspections was derived on a tri-annual basis. 

Table 1: Scoring of the factors (Qi) included in the nomogramm. 
Factor Score 
Q1=level of hazards’ presence 0 (very rare) to 5 (almost inevitable) 
Q2=control level within the company 0 (no control) to 4 (total control) 
Q3=frequency of food consumption 0 (rare) to 3 (daily) 
Q4=estimated level of population at risk 0 (hundreds or less) to 4 (millions) 
Q5=level of severity in the case of hazard 0 (minor) to 4 (extremely severe) 
Q6=history of positive inspections 0 (12 months) to 3 (1 month) 

Application to national data 
The database of the EFET was used to retrieve the inspections made in 64 group of 
companies during the years 2007 and 2009 (a total of 21.621 inspections).  

Statistical methodology 
The modeling of the nomogramm 
Using the aforementioned nomogramm, a panel of experts that applied established criteria, 
evaluated companies’ and food’s related hazards. As mentioned above a random variable was 
derived, let S, denoting the suggested number of inspections based on a tri-annual basis for 
each company. S is considered to follow the Poisson distribution. Thus, the following model 
has been estimated: 

 
QS ×= 'ˆ)ln( θ           (1) 

 
where θ’ is the vectors of parameters estimates of the Poisson regression model and Q is the 
vector of factors included in the nomogramm. The factors used in the aforementioned 
nomogramm, where: Q1=level of hazards’ presence, Q2=control level within the company, 
Q3=frequency of food consumption, Q4=estimated level of population at risk, Q5=level of 
severity in the case of hazard, Q6=history of positive inspections, as well as their interactions 
as they have been proposed by the nomogramm, i.e., Q1XQ2, Q3XQ4, Q1XQ2XQ5 and 
Q1XQ2XQ5XQ6. The maximum likelihood method was used to estimate the vector of 
model’s parameters. Factors Qi with significant impact on estimating S were considered at 
type-I error level <0.05. The results are presented as b-coefficient, standard error, Wald test 
and the corresponding exact probability of type-I error (p-value).  
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The calibration method 
At this point it should be underlined that the S could not be considered as the optimal number 
of inspections (i.e., the gold standard), since the nomogramm has never been evaluated in 
Greek population before, and does not take into account potential peculiarities of the existed 
conditions. To evaluate the performance of the nomogramm into the Greek data, a generalized 
linear regression model, with probit link, was applied. Let pi ∈ [0, 1] the probability of a true 
positive inspection for the i-th company. The probit regression for the suggested by the 
nomogramm numbers of inspections, S, takes the form: 

 

ii Sbbp ×+=Φ− *
1

*
0

1 )(         (2) 
 
The results are presented as b-coefficient, standard error, Wald test and the 

corresponding exact probability of type-I error (p-value); where a p-value <0.05 was 
considered as statistically significant. To evaluate the predictive ability of S, on true positive 
rate, p, various goodness-of-fit measures were calculated. In particular, Pearson chi-square 
and scaled Pearson chi-square, log-likelihood and Akaike's information criterion (AIC), are 
presented. 

To calibrate the nomogramm a new methodology is proposed here based on the 
concept of regression calibration method (Brown 1994). At first model (2) is estimated. Based 
on the results obtained from model (1) a calibration of θ̂  is applied in order to obtain a new 
estimation of the suggested number of inspection S, let S’. Then, model (2) is re-estimated 
using S’ instead of S (i.e., model (3)). The calibration of θ̂  is based on the effect size 
measures of each Qi obtained in model (1) and the correlation between Qi and pi. In particular,  

 

rho
θθ
ˆ

'ˆ =             (3) 

 
where rho is Spearman’s correlation coefficient. If goodness-of-fit criteria (e.g., Pearson chi-
square, log-likelihood and Akaike's information criterion (AIC)) of model (3) are better than 
of model (2) then parameter estimates of model (1) are replaced and the suggested number of 
inspections is now S’, alternatively, the initial modeling of the nomogramm is used, since the 
suggested number of inspections, i.e., S, predicts better true positive events. Moreover, by this 
approach, the best model leads also to less overdispersion, a common problem in Poisson 
regression.  

Results and Discussion 
The vector of parameter estimates of model (1) was θ = {5.95, -.86, 0.72, -.89, -2.39, -.20, 
.19, .60, .05, -.08, .03} (*P-value<.05). According to this model, the median number of 
inspections suggested by the nomogramm during a three year period was 2.17 inspections. 
The corresponding median number of inspections as estimated by the model (1) was S=1.47. 
Model’s goodness of fit was poor (Pearson chi-square = .014, log-likelihood=-33.105, and 
AIC=88.210).  

The evaluation of S on the probability of a true positive inspection revealed that S 
was not significantly associated with the investigated outcome (b±SE: 8 x 10-3 ± .02, Wald 
chi-sq., = .09, p=.763); model’s goodness-of-fit statistics were Pearson chi-square and scaled 
Pearson chi-square = 2976,123, log-likelihood = -238.251, and AIC = 584.502. Then, vector θ 
was calibrated and equation (1) was re-applied in order to calculate S’.  

The calibration of the models’ parameters was based on the observed relationships 
between Qi and pi, as they assessed using the individual effect of Qi on pi. Data analysis 
revealed that the calibrated equation and the corresponding calibrated number of inspections 
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S’(=2.39), performed better than the original (Pearson chi-square and scaled Pearson chi-
square = 2918,844, log-likelihood = -237.691, and AIC = 583.382).  

Conclusions  
A new approach in deciding the number of regular food-related inspections was proposed in 
the current work by modeling and calibrating a previously designed nomogramm into local 
conditions. The application and use of tools and methodologies like the presented will 
minimize time and resources waste and enable the development of a useful track-record for 
National Surveillance purposes.  
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Abstract 
This study, in cooperation with 30 Flemish companies of the processed meat industry, aims at 
implementation of predictive models in their production environment to support the 
compliance with the EU regulation 2073/2005, particularly regarding L. monocytogenes.  
An inventory of the different processed meat products from the participating companies was 
made. Based on the intrinsic and extrinsic factors of these products on the one hand and the 
process characteristics on the other hand, different categories were defined. Extended 
challenge tests according to the EU technical guidance (15 data points) were performed on 
two different batches of cooked ham and aspic products. Also the physicochemical 
characteristics of these products were analyzed. Next to that, samples following a certain T-
profile, were analyzed in threefold on day 0 and at the end of shelf-life to assess growth 
potential. Available predictive models were evaluated regarding their performance towards 
these meat products. These models could (i) support the companies in demonstrating their 
compliance with EU regulation 2073/2005 while reducing the amount of necessary challenge 
tests, (ii) stimulate their product innovation and (iii) determine the shelf-life of these products 
more precise. 
Keywords: L. monocytogenes, challenge testing, growth potential, predictive models  

Introduction 
As part of the control measures for L. monocytogenes, Food Business Operators (FBO) should 
conduct studies to identify growth potential of L. monocytogenes in products put on the 
market. Next to the specifications of physicochemical characteristics and available scientific 
literature, predictive microbiology can be used. Therefore, it is important that existing 
predictive models are validated for a large category of products and that predictions are 
compared with results obtained from extensive challenge tests. 
The objective of the study was the evaluation of the challenge test protocol described in the 
technical guidance document published by the EU Community Reference Laboratory (EU 
CRL, 2008) for L. monocytogenes. The concept of a simple challenge test to assess growth 
potential on actual data measurements at start and end of shelf life was compared to a 
modelling approach. Processed meat was chosen as a target food product. Based on the 
intrinsic and extrinsic characteristics of the products, obtained from 30 Flemish meat 
companies, several categories were defined and model products were made on lab scale.  

Materials and Methods 
Standardisation of the inoculum 
All strains (LMG 23194, LMG 13305, LFMFP 392, LFMFP 491 and LFMFP 802) were 
taken from stock cultures stored at -80°C and were cultured in BHI at 37°C. In case of cold 
adaptation, a subculture was inoculated in fresh BHI broth and incubated at 7°C for 4 days 
(Vermeulen et al., 2011). To determine growth rates two monoculture strains were used, 
while for the growth potential tests a mixture of three L. monocytogenes strains was used. 
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Inoculation and packaging 
Cooked ham was prepared on lab scale while the aspic products were purchased from a local 
producer. The products were immediately after production sliced in the lab and randomised 
before packing. After portioning in test units (150 ± 5 g), blanks were inoculated with 100 µl 
PPS and the other samples with 100 µl of the diluted mixed culture (growth potential tests) or 
the monoculture (tests assessing growth rate). An inoculum of ca. 50 CFU/g was obtained. 
The aspic products were vacuum packed in high barrier packaging material using a gas 
packaging chamber machine. Cooked ham was MAP packed (30% CO2 and 70% N2) in a 
1/1.8 G/P-ratio by using a traysealer. The concentration of O2 and CO2 in the packages were 
determined using a O2 CO2 gas analyser.  

Storage conditions 
In a first approach growth rates of two monocultures were determined for the meat products at 
constant temperature (7°C). In a second approach growth potential based on the actual 
measurements data of L. monocytogenes at the beginning and end of shelf-life was performed 
for different time-temperature profiles or for experiments that were inoculated with different 
cultures (Table 1).  

Table 1: Overview of the different growth potential tests. 
N° Pre-inoculation 

conditions 
T-profile 

1 Cold adapted 7d@8°C+15d@12°C 
2 Not adapted 14d@4°C+8d@7°C 
3 Cold adapted 14d@4°C+8d@7°C 
4 Cold adapted 24d@4°C+12d@7°C 

Microbial and physico-chemical analyses 
For each growth curve at constant temperature total aerobic count (TAC), lactic acid bacteria 
(LAB) and L. monocytogenes count were analysed at 15 time points. This was performed for 
the blanks and two L. monocytogenes strains in monoculture. For growth potential tests the 
same parameters were analysed on day 0 en end of shelf-life in threefold. Enumeration of 
L. monocytogenes was performed according to ISO 11290-2 using a reduced detection limit. 
The enumeration of TAC at 22°C was derived from ISO 6222 (4-5 days incubation of PCA at 
22°C). LAB was determined according to ISO 15214 (4-5 days incubation of MRS at 22°C).  
On day 0 and the end of shelf life, the pH, aw, % dry matter, % salt, % lactate and % acetate 
were determined according to the methods described in Vermeulen et al. (2011). Also the 
nitrite concentration was determined by an external laboratory. 

Predictive modelling 
The data of the extensive challenge tests (15 data points) were used to compare the growth 
rates predicted by SSSP (http://sssp.dtuaqua.dk) (one model with and one model without 
interaction with background flora) with the obtained growth rates by linear regression. 
Besides, these tertiary models and the modelling process as recommended by the EU 
technical guidance (EU CRL, 2008) were used to predict the growth potential for the different 
studied temperature profiles (Eq. 1 and Eq. 2). As input factors for the SSSP model the mean 
values of the experimentally determined intrinsic factors at day 0 were used. The lag phase 
was ignored as the L. monocytogenes originated from an adapted culture, except for 
condition 2. 
 
           (1) 
 
with µmax the maximum specific growth rate at temperature T, µmax,ref the maximum specific 
growth rate at the reference temperature Tref (i.e. 7°C), and Tmin the minimum growth 
temperature of L. monocytogenes (-2 °C) (EU CRL 2008). 
 

( )
( )2min

2
min

maxrefmax µµ
TT

TT

ref −
−

⋅=

119



i∑ ⋅=∆ dµCFU/glog imax,          (2) 
 

with Δ log CFU/g the logarithmic increase in cell count during the shelf-life, µmax,i the 
maximum specific growth rate at a certain temperature (Ti) and di the time of incubation at 
temperature Ti. 

Results and Discussion 
Extensive challenge or growth potential tests were performed on two batches for the two 
monocultures, cocktails and for blank samples. These tests showed a large variability on 
microbial growth within a batch and between different batches, as it was also seen for smoked 
salmon (Vermeulen et al, 2011). From commercial software packages, only the SSSP model 
was used as this model allowed to combine most of the intrinsic factors. For cooked ham the 
model showed good correspondence with the observed growth rates (Table 2). The model 
including nitrite and acetic acid underestimated the growth rate while the other model 
predicted much faster growth. 

Table 2: observed and predicted growth rates (log CFU/g . d). 
   Growth rate 
   Observed SSSPa SSSPb 

Cooked ham 
Batch 1 LMG 13305 0.2140 0.1782 0.2950 LFMFP 802 0.2085 

Batch 2 LMG 13305 0.2218 0.1303 0.2752 LFMFP 802 0.1953 

Aspic 
Batch 1 LMG 13305 0.1602 0.0323c 0.2085c 

LFMFP 802 0.1337 

Batch 2 LMG 13305 0.1187 0.0219c 0.1917c 
LFMFP 802 0.1294 

a model without interaction with background flora 
b model considering background flora, without nitrite and acetic acid 
c pH was set on 5.6 (lowest value in the model), while the measured pH was 5.5 

Table 3: Observed and predicted growth potential (log CFU/g) for L. monocytogenes in 
cooked ham. 

  Observed Predicted 
N°   Linear SSSPa SSSPb 

1 Batch 1 5.03 9.49 6.61 3.72 
Batch 2 5.86 11.00 6.70 3.50 

2 Batch 1 2.12 3.40 1.18 1.89 
Batch 2 > 1.82 3.94 0.37 1.10 

3 Batch 1 2.98 3.40 2.53 3.25 
Batch 2 2.34 3.94 1.73 2.76 

4 Batch 1 2.46 5.38 3.92 2.95 
Batch 2 2.74 6.24 2.64 2.26 

a model without interaction with background flora 
b model considering background flora, without nitrite and acetic acid 
 
The growth potential was in a few cases underestimated (fail-dangerous) (Table 3). For the 
model incorporating nitrite and acetic acid, this is caused by the slower growth rate while for 
the other model this is due to the overestimation of the background flora which suppresses the 
growth of L. monocytogenes. On the blank and inoculated samples, TAC and LAB count was 
initially very low (< 1 log CFU/g) and growth started only after six days (data not shown). It 
should be noted that this underestimation was still within the limits of microbial variability 
between the three replicates of the growth potential tests. Results also showed that growth 
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potential was higher for the cold adapted cultures due to the absence of lag phase. This 
illustrates the importance of a standardized inoculum preparation.  
For the T-profile as suggested by the EU-protocol (condition 1), the prediction of growth 
potential was strongly deviating from the observed data. The linear model overestimated the 
growth potential far, even to unrealistic high levels, because it ignores the stationary phase of 
L. monocytogenes. The SSSP model, which takes into account the background flora 
underestimated the growth of L. monocytogenes due to the very low background flora in the 
samples. By consequence, the industrial trend towards food which is almost free from 
background flora (prolonged shelf-life) can compromise the food safety if L. monocytogenes 
is present in the food product.  
The growth potential of L. monocytogenes in aspic products was in general relatively low  
(< 2.0 log CFU/g) (Table 4). This was mainly due to the low pH, the high acetic (0.1 %) and 
lactic acid (0.17 %) concentration and the fast growth of the background flora which reached 
the stationary phase after 10 days incubation at 7°C. For the aspic products the growth rate 
predicted by the SSSP model including nitrite and acetic acid underestimated far the growth 
of the two monocultures. Still the growth potential was not underestimated by this model as it 
does not consider the background flora. 
 
Table 4: Observed and predicted growth potential (log CFU/g) for L. monocytogenes in aspic products. 
  Observed Predicted 
N°   Linear SSSPa SSSPb 

1 Batch 1 1.35 6.60 6.57 3.56 
Batch 2 1.72 9.37 6.26 4.03 

2 Batch 1 -0.34 2.37 0.00 2.15 
Batch 2 1.99 3.35 0.00 2.62 

3 Batch 1 0.53 2.37 1.33 3.50 
Batch 2 1.15 3.35 1.23 3.97 

4 Batch 1 1.35 3.74 2.02 3.48 
Batch 2 1.18 6.20 2.18 3.93 

a model without interaction with background flora 
b model considering background flora, without nitrite and acetic acid 

Conclusions  
This study proves that to fulfil the need from the industry to provide product specific, easy-to-
use software models, more model validation is necessary. This is of utmost importance for the 
implementation of predictive models in assuring compliance with the EU-regulation and for 
the acceptance of this by the controlling agencies. Focus should be on (i) a better estimation 
of the background flora, (ii) the calculations of an adaptation factor to bridge the gap between 
challenge test and model prediction and (iii) the confidence interval on the predicted growth 
curves, to cover microbial variability. If the industry could use these models to prove 
compliance with the EU-regulation it can significantly reduce the costs of challenge tests and 
easily implement newly developed recipes or products. 

Acknowledgements  
This research is supported by the Agency for Innovation by Science and Technology (IWT) 
project n° 100206 and by and the Belgian Program on Interuniversity Poles of Attraction 
initiated by the Belgian Federal Science Policy Office. Jan Van Impe holds the chair Safety 
Engineering sponsored by the Belgian chemistry and life sciences federation essenscia. 

References 
EU CRL for Listeria monocytogenes (2008). Technical guidance document on shelf-life studies for Listeria 

monocytogenes in ready-to-eat foods. 
Vermeulen A., Devlieghere F., De Loy-Hendrickx A. and Uyttendaele M. (2011) Critical evaluation of the EU-

technical guidance on shelf-life studies for L. monocytogenes on RTE-foods: A case study for smoked salmon. 
International Journal of Food Microbiology 145, 176-185. 

121



Suggestion for a decision support tool (DST) for corrective storage of 
sausages suspected of VTEC survival during fermentation and 
maturation 

T.B. Hansen1, A. Gunvig2, H.D. Larsen2, F. Hansen2, S. Aabo1 
1 National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark. 
(tibha@food.dtu.dk) 
2 DMRI – Danish Meat Research Institute, Danish Technological Institute, Maglegaardsvej 2, DK-4000 Roskilde, 
Denmark. (agg@teknologisk.dk) 

Abstract 
It is well documented that pH inactivation of verocytotoxin producing Escherichia coli 
(VTEC) in fermented sausages is higher when stored at ambient temperatures when compared 
to chilled temperatures. We investigated whether storage at ambient temperature could 
provide sufficient consumer protection from sausages where the processing (fermentation and 
drying) did not provide the required pathogen reduction. A decision support tool (DST) is 
suggested, which can predict a possible corrective action to be applied dependent on the 
sausage characteristics, such as pH, NaNO2, salt levels and choice of starter culture. Sausages 
were produced according to 19 recipes with 3 % (w/w) salt, NaNO2 (0 to 200 ppm) and starter 
cultures (Bactoferm T-SPX, F-1 and F-SC 111) used in the batter. Sausages were challenged 
with a 3-strain-cocktail of O26, O111 and O157 and survival was measured during storage of 
vacuum packaged fermented sausages at 5 °C for 4 weeks and 16 and 22 °C for 2 weeks. 
Decimal reduction times (DT) were estimated for each recipe and storage temperature, T. The 
square root of D22 was modelled as a function of pH (4.3 – 5.3) and salt-in-water (8.9 – 16.0 
%) in sausages with and without NaNO2 separately. The influence of storage temperature on 
D was described by the classical z-concept, which primarily depended on salt and starter 
culture. For the starter cultures F-1 and F-SC 111, also the use of NaNO2 affected the z-value. 
The combination of D- and z-models served as the DST suggesting time/temperature storage 
conditions capable of providing a one log10-reduction of VTEC. 
 
Keywords: CCP, corrective action, VTEC O26:H-, VTEC O111:H-, VTEC O157   

Introduction 
Previous studies (e.g. Hwang et al. 2009) have shown that pH inactivation of VT Escherichia 
coli in fermented sausages is higher if combined with storage at ambient temperatures 
between 20 and 30 °C, when compared to chilled temperatures. We wanted to investigate 
whether this mechanism could be applied to ensure consumer safety from sausages where the 
processing (fermentation and drying) did not induce the required pathogen reduction. The aim 
of this work was to set up a decision support tool (DST), which could suggest storage 
conditions to be applied dependent on the sausage characteristics, such as pH, NaNO2, salt 
level and starter culture. Such DST would provide the manufacturer a possibility to introduce 
an additional holding step at a specified temperature before release of the sausages to ensure 
that adequate inactivation of VTEC is achieved.  

Materials and Methods 
VTEC challenge study 
Sausages consisting of meat from beef and pork were produced according to 19 recipes with 3 
% (w/w) salt, 0 to 200 ppm NaNO2 and the starter cultures T-SPX, F-1 and F-SC 111 used in 
the batter. A 3-strain-cocktail of Escherichia coli (VTEC) O26:H-, O111:H- and O157 (all 
being VT negative) was added during batter preparation to obtain a concentration of 105 - 106 
cfu/g. The batter was stuffed in 60 mm fibre casings. Each sausage weighed approx. 600 g at 
the time of production. Fermentation was performed at 24 °C for 48 h followed by drying at 
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16 °C until 30 - 35% weight loss. Sausages were smoked twice in the beginning of the drying 
process. Three times during post-maturation storage of vacuum packaged fermented sausages 
at 5 °C for 4 weeks and at 16 and 22 °C for 2 weeks, survival was investigated. Samples were 
resuscitated for 2 h in Brain Heart Infusion broth, surface inoculated on Enteric Medium (SSI, 
Denmark) and incubated at 37 °C for 18 - 24 h. 
Duplicate measurements of pH, salt, moisture and NaNO2 contents in the batter were 
conducted. After fermentation and drying, pH and moisture was measured in two sausages 
from each recipe and salt% = 100 x %salt / %moisture was calculated.  

Modelling and validation 
All VTEC counts were log10-transformed. Linear regressions, using log10VTEC/g as response 
variable, were applied for estimating DT for T = 5, 16 and 22 °C. Linear regressions using 
log10DT as response variable were applied for estimating z-values. Variants of the following 
secondary model were used for modelling the effect of sausage pH and salt on the square root 
of D22 and the z-values: 
 
(D22-value)½ or z-value = b x  (Salt – Saltmin) 
     x  (Salt – Saltmax) 
     x  (pH – pHmin) 
     x  (pH – pHmax) 
 
The units of D22 and z are days and °C, respectively, b is a constant, Salt is Salt% in the 
fermented sausage, pH is pH of the fermented sausage, Saltmin and Saltmax represent minimum 
and maximum salt% where the models work, and pHmin and pHmax represent minimum and 
maximum pH where the models work. The goodness of fit of models to the observed data was 
evaluated by the root mean sum of squared errors, RMSE.  
Data for reduction of VTEC in fermented sausages, which had been vacuum-packaged during 
post-maturation storage, were selected from the literature for validation of the predictive 
models defining the decision support tool. Reduction rates were converted to D-values and 
expressed in days. Performance was evaluated by bias (Bf) and accuracy (Af) factors. 

Results and Discussion  
After fermentation and drying, sausages had a pH from 4.3 to 5.3 and salt% from 8.9 to 16.0 
depending on the specific recipe used. For each recipe, results revealed a simple log-linear 
relationship between counts of VTEC and storage time at constant temperatures (results not 
shown). This is in agreement with previous published studies (Faith et al. 1997; Calicioglu et 
al. 2001; Calicioglu et al. 2002; Porto-Fett et al. 2008; Hwang et al. 2009) and D-values 
were, therefore, used for the description of reduction rates of VTEC during storage of the 
sausages.  

Table 1: Comparison of observed D-values with D-values predicted from PMP’s VTEC 
survival model for soudjouk-style sausages using bias factor (Bf) as performance criterion. 

D-values used for comparisona 
Storage temperature (°C) 

5  16  22 
N Bf  n Bf  n Bf 

All recipes  12 0.62  27 2.51  30 0.86 
Recipes without added NaNO2 6 0.56  11 2.51  14 0.81 
Recipes with added NaNO2 6 0.68  16 2.50  16 0.90 
Recipes where F-1 was used 6 1.26  9 1.56  10 0.89 
Recipes where F-SC 111 was used 6 0.30  8 0.90  8 0.63 
Recipes where T-SPX was used 0 -b  10 8.73  12 1.02 
a Only recipes that produced D-values below 120 days were included. 
b – as sausage pH, after fermentation and drying, using T-SPX was ≥5.0, no reduction was predicted 
with the PMP model at this storage temperature. 
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When the observed D-values were compared to values predicted with the VTEC survival 
model published in PMP (Hwang et al. 2009) it was found that only D22 were within an 
acceptable prediction zone having a Bf close to 1.0 (Table 1). D16 were strongly overestimated 
whereas D5 were underestimated (Table 1). Explanations for these deviations could be many, 
e.g. strain variation, presence of smoke components and concentration of NaNO2 or use of 
different starter cultures. As illustrated in Table 1, exclusion of recipes without NaNO2 
improved Bf for D22 and D5 with 5-10 %. Looking at the three starter cultures separately 
resulted in large difference in Bf (Table 1), which indicated that the type of starter culture 
significantly affected the VTEC reduction during post-maturation storage of fermented 
sausages. Therefore, a model distinguishing between starter cultures was developed. 
As opposed to the PMP model (Hwang et al. 2009), we found that the influence of 
temperature on D could be described by the classical z-concept. It was observed that z-values 
primarily depended on salt and starter culture, whereas sausage pH appeared to have no 
influence. For the F-1 and F-SC 111 starter cultures, use of NaNO2 also affected the z-value.  

Table 2: Parameter estimates for the models used in the decision support tool. 
Models Parameter estimates  

b pHmin pHmax WPSmin WPSmax RMSE 
z-value       
 T-SPX -12.52 -a - 8.459 13.44 8.18 
 F-SC 111 without NaNO2 -0.9038 - - 4.363 18.02 1.35 
 F-SC 111 with NaNO2 -1.854 - - - 23.37 0.43 
 F-1 without NaNO2 -0.6351 - - 6.649 19.57 3.65 
 F-1 with NaNO2 -2.378 - - 7.329 18.47 2.56 
(D22-value)½       
 Without NaNO2 0.1279 3.558 5.793 6.590 16.54 0.60 
 With NaNO2 0.7020 1.569 - - - 0.13 
a – indicates that the parameter in this column is not included in the model. 
This may also be the case for T-SPX, but our data did not support that. As a result, the five 
models shown in Table 2 were developed and combined for prediction of z-values in 
fermented sausages made from various recipes. Figure 1A compares observed to predicted z- 

Figure 1: Comparison of observed and predicted values. A) z-values (°C); B) D-values (days). 

values (RMSE = 3.53). Data from sausages, where T-SPX had been applied for fermentation, 
were the major contributor to the total error (Figure 1A). As the effect of storage temperature 
was described satisfactorily by the z-concept, it was only necessary to model D for one 
temperature and use this as a reference value for calculation of D for other temperatures. The 
D22-value was chosen as reference value and for modelling purposes the square root 
transformation was applied in order to minimize variation. As shown in Table 2, two models 
were required for the prediction of the square root of D22. Figure 1B compares observed to 
predicted DT for T = 5, 16 and 22°C. RMSE was 6.91 when all three temperatures were 
included and decreased to 3.56 when D5 were omitted. 

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80

Observed z-value (°C)

Pr
ed

ic
te

d 
z-

va
lu

e 
(°

C
)

F-1
F-SC 111
T-SPX

0
10
20
30
40
50
60
70
80
90

0 10 20 30 40 50 60 70 80

Observed D-value (days)

Pr
ed

ic
te

d 
 D

-v
al

ue
 (d

ay
s)

5°C
16°C
22°C

A B 

124



The combination of the square root of D22- and z-models represented our idea for a DST 
(Figure 2). Based on input of 1) whether or not NaNO2 was added to the batter, 2) which 
starter culture was used, 3) sausage salt content and 4) sausage pH after maturation, 
time/temperature combinations resulting in 1 log10-reduction of VTEC will be suggested. 

Figure 2: An example of output parameters and graph for the suggested decision support tool. 

For validation of the DST, VTEC survival data were collected from five published studies 
(Faith et al. 1997; Calicioglu et al. 2001; Calicioglu et al. 2002; Porto-Fett et al. 2008; 
Hwang et al. 2009). All five studies used starter cultures different from the ones used in the 
present study and Hwang et al. (2009) did not include information on salt content. This 
complicated the validation as it was necessary to assume a starter culture and, in the case of 
Hwang et al. (2009), to convert aw to salt% using the equation salt% = -93.958 x aw + 95.939 
(n = 67; R2 = 0.946) derived from observation in the present study (results not shown). 
Evaluation of performance of the DST for temperatures from 4 to 30 °C resulted in Bf and Af 
of 0.82 and 1.54, respectively. Narrowing the temperature interval to 10 –  30 °C improved 
the Bf to 0.85. When adopting acceptability limits used for growth models, the DST was 
evaluated acceptable on the borderline as Bf was between 0.85 – 1.3 and Af was ≤ 1.5. 
However, the underestimation of D, observed when compared to literature values, stresses the 
importance of the specific starter culture for the obtainable reduction of VTEC during post-
maturation storage. Therefore, application of the suggested DST should be limited to sausages 
where the starter cultures modelled in the present study are used. 

Conclusions  
Manufacturers of fermented sausages sometimes face the problem that processing does not 
provide the required pathogen reduction. Using VTEC as example, we have presented the 
idea for a DST that could help manufacturers choose a corrective storage in the form of 
introducing a holding step, between 10 and 30 °C, before release of the sausages for sale. 
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INPUT QUESTIONS 
1) NaNO2 added?   YES 
2) F-1, F-SC 111 or T-SPX? F-1 
3) Sausage salt-in-water%? 9 % 
4) Sausage pH?   4.8 

OUTPUT PARAMETERS 
z-value    37.6°C 
D22-value   5.1 days 
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Abstract 
The aim of the present study was the development of a common shelf life model for fresh 
pork and fresh poultry meat. Overall, 42 time series were investigated at constant and 
dynamic temperature conditions to collect microbiological growth data of Pseudomonas sp. 
for the development as well as for the validation of the model. Additionally, the influence of 
several intrinsic factors (pH-value, aw-value, Warner-Bratzler shear force, D-glucose, L-lactic 
acid, fat and protein content) on the microbiological growth was analysed during storage at 
4°C. Based on the growth of Pseudomonas sp., the model was developed by combining the 
Gompertz model as primary and the Arrhenius model as secondary model. Since the 
investigated intrinsic factors had only minor or no influence on the growth of Pseudomonas 
sp. in both meat types, they were not considered in the predictive shelf life model. 
Temperature was identified as the main influencing factor. Relevant microbial growth 
parameters for fresh poultry were related to the corresponding parameters for fresh pork 
which enabled the development of a common shelf life model. Predictions of the growth of 
Pseudomonas sp. and the shelf life at dynamic temperature conditions were in good 
agreement with the observations for fresh pork and fresh poultry even if only short 
temperature abuses occurred. With the information provided by the model the handling of the 
product as well as the stock rotation can be optimised in companies in meat chains and thus 
economic losses and product waste due to early unexpected spoilage can be reduced. 
 
Keywords: predictive microbiology, Gompertz model, Arrhenius model, Pseudomonas sp., 
spoilage 

Introduction 
Fresh meat with high moisture content, moderate pH-value and readily available sources of 
energy provides an ideal matrix for microbial growth (Lambert et al. 1991). The spoilage 
flora of aerobically packed meat is mainly dominated by the growth of Pseudomonas sp. 
(Kreyenschmidt 2003, Raab et al. 2008).  
Unexpected spoilage of meat can lead to food waste and thereby economic losses as well as 
the loss of consumer confidence (Nychas et al. 2007). Thus an accurate definition of shelf life 
and remaining shelf life is of high relevance for companies at all stages of meat supply chains. 
A good estimation of the remaining shelf life allows to optimise the storage management and 
thus to reduce the waste of meat resulting from a lack of knowledge concerning the products 
real shelf life (Kreyenschmidt et al. 2008, 2010; Raab et al. 2010). An alternative to 
traditional microbiological challenge tests for shelf life definition is the concept of predictive 
microbiology which uses mathematical models to predict microbiological growth and thus 
shelf life (McMeekin et al. 1993). But until now only a few models were developed for fresh 
meat or meat products, which are also usable for dynamic temperature conditions. However, 
most of these models were just developed for one type of meat product. Predictive shelf life 
models that are usable for different types of fresh meat (e.g. fresh pork and poultry) are 
missing. 
Therefore, the objective of the study was the development of a common predictive shelf life 
model for fresh pork and fresh poultry based on the growth of Pseudomonas sp. as specific 
spoilage organism (SSO). 
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Materials and Methods 
Skinless chicken breast fillets (150 - 170 g) and sliced pork loins (150 - 200 g) were packed 
aerobically. Immediately after packaging, pork and poultry samples were stored in high 
precision low temperature incubators at five different isothermal temperatures (2, 4, 7, 10 and 
15°C). At dedicated points of time, total viable counts, the numbers of Pseudomonas sp. and 
sensory changes of pork and poultry samples were analysed. 
For the validation of the model, the growth of Pseudomonas sp. was also investigated under 
non-isothermal conditions with periodically changing temperatures. The temperature cycle 
was 4 h at 12°C, 8 h at 8°C and 12 h at 4°C. Furthermore, four trials with short temperature 
abuses were performed. These trials consisted of three scenarios each: one control scenario at 
a constant storage temperature of 4°C (scenario 0) as well as two dynamic temperature 
scenarios with a basic storage temperature at 4°C and short temperatures shifts to 7°C 
(scenario 1) and 15°C (scenario 2), respectively. The trials differed in the number and 
duration of temperature shifts in scenario 1 and 2. Additionally, several intrinsic factors 
(pH-value, aw-value, Warner-Bratzler shear force, D-glucose, L-lactic acid, fat and protein 
content) were analysed during the storage at 4°C to investigate their influence on the growth 
of Pseudomonas sp. (and thus the shelf life). Overall, 638 pork samples and 600 poultry 
samples were investigated in 42 time series.  
The Gompertz model (1) was used as the primary model to describe the growth of 
Pseudomonas sp. with time (Gibson et al. 1987) and the Arrhenius equation (2) as a 
secondary model to describe the growth rate B at time M as a function of temperature. 
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−⋅−−⋅+=     (1) 
N(t): microbial count [cfu/g] at time t 
A: initial bacterial count [cfu/g] 
C: difference between Nmax (= maximum population level) and A [cfu/g] 
B: relative growth rate at time M [1/h] 
M: reversal point [h] 
t: time [h] 
 









⋅
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B: relative growth rate at time M [1/h] 
F: pre-exponential factor [1/h] 
Ea: activation energy for bacterial growth [kJ/mol] 
R: gas constant = 8.314 J/mol K 
T: absolute temperature [K] 
 

The accuracy of the fits was evaluated with the adjusted coefficient of determination ( ²R ). 
The variable ²R is written as R² in the following text. As described by Bruckner (2010) the 
primary and the secondary model were combined to predict the growth of Pseudomonas sp. 
under non-isothermal conditions. The combined model predicts the microbial growth within 
intervals. Therefore, the time-temperature history of the product was divided into several 
assumed time-temperature intervals with constant storage temperature. Microbial growth 
could then be predicted by using the Gompertz function.  
In every interval except the first interval a new reversal point M had to be calculated as a 
function of B (calculated with the Arrhenius equation) and as a function of the initial 
microbial count of the respective interval which has to equal the final microbial count of the 
previous interval. The bacterial count at the end of each interval could than be computed with 
the so calculated M for the respective interval as well as B for the respective interval 
(calculated with the Arrhenius equation). For the first interval in the non-isothermal 
temperature scenarios a proper M was derived from the linear regression of M against 
temperature in the isothermal experiments (Bruckner 2010 for detailed description and 
formulas). 
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Results and Discussion  
A comparison of the growth of Pseudomonas sp. on fresh pork and poultry revealed that the 
growth was faster on poultry than on pork resulting in shorter shelf lives for fresh poultry at 
all investigated constant storage temperatures. The investigated intrinsic factors had only 
minor or no influence on the growth of Pseudomonas sp. in both meat types. Therefore these 
factors were not considered in the predictive shelf life model. 
The growth of Pseudomonas sp. was well described with the Gompertz function with R² 
≥ 0.93 for both meat types. Furthermore, the Arrhenius equation described the temperature 
dependency of the growth rates (R² = 0.98 for pork and R² = 0.99 for poultry).  
The linear fits of M values (obtained at isothermal temperatures) against temperature showed 
a good linearity with R² = 0.97 for pork and R² = 0.94 for poultry. This enabled the 
calculation of an adequate M value for the first interval in non-isothermal storage scenarios. B 
and M values for poultry could be related to pork values by linear fitting. The fits were good 
with R² values of 0.98 (for B) and 0.998 (for M) which made it possible to predict the growth 
of Pseudomonas sp. for fresh poultry based on the kinetic of fresh pork. 
Figure 1 shows the observed bacterial count as well as the model predictions for the trial with 
periodically changing temperature (cycle: 4 h at 12°C, 8 h at 8°C and 12 h at 4°) for fresh 
pork and poultry. The model predicted the growth of Pseudomonas sp. well for pork during 
the whole storage. For poultry, a slight underprediction became visible in the first 50 h. 
However, at the determined end of shelf life, when the count of Pseudomonas sp reached 
7.5 log10 cfu/g (Bruckner 2010), the predictions for both meat types matched to the 
observations. Predicted shelf life was in good agreement with observed shelf life (difference < 
8 h for both meat types). 
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Figure 1: Observed and predicted growth of Pseudomonas sp. on fresh pork (left) and poultry 

(right) under periodically changing temperature conditions; ( ■ ) observed growth, (―) 
predicted growth; (---) ± 10 %, (grey line: temperature profile) (Bruckner 2010). 
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Figure 2: Observed and predicted growth of Pseudomonas sp. on fresh pork at two dynamic 

temperature scenarios with short temperature abuses; ( ■ ) observed growth data (―) 
predicted growth; (---) ± 10 %, (grey line: temperature profile) (Bruckner 2010). 
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In the dynamic temperature scenarios with only short temperature shifts of durations less than 
5 % of the total storage time, the predictions for the growth of Pseudomonas sp. and the shelf 
lives were also in good agreement with the observations for both meat types. An example is 
shown in Figure 2. Whereas for poultry in general a slight underestimation of shelf life 
occurred (mean difference between observed and predicted shelf life: 11.1%), the shelf life 
times for pork were marginally overestimated (mean difference: 2.7 %). 

Conclusions  
A common predictive shelf life model was developed by combining the Gompertz and the 
Arrhenius model. The model delivered reliable shelf life prediction for fresh pork as well as 
poultry under dynamic temperature conditions even if short temperature shifts of less than 
5 % of the total storage time occurred  
With the information provided by the model the handling of the product as well as the stock 
rotation can be optimised in companies in meat chains and thus economic losses and product 
waste due to early unexpected spoilage can be reduced. 
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Abstract 
The aim of this research was to evaluate the combined effect of the temperature and carbon 
dioxide on the growth of spoilage bacteria isolated from fish products under MAP. Isolates 
obtained from Atlantic horse mackerel (Trachurus trachurus) fillets packed in MAP at time 
of sensory rejection were genotypically characterized. Identified bacteria included 
Carnobacterium maltaromaticum, Serratia proteamaculans, Yersinia intermedia, Shewanella 
baltica. These bacteria were inoculated alone and in a mixed culture into modified Long and 
Hammer’s broth. Cultures were incubated at several temperatures (0, 4, 6, 12 and 20ºC) under 
CO2 enriched atmospheres (0, 25, 50, 75, 100% v/v, balance nitrogen) and under air (21% 
O2).  The growth kinetic parameters were estimated by fitting the model of Baranyi and 
Roberts (1994). The dependence of the maximum specific growth rate on temperature, CO2 
and O2 was described by a cardinal model similar to that described by Mejlholm et al. (2010).  
The performance of the models was validated under constant temperature conditions. Models 
were implemented in a user-friendly computing program called “Fishmap”. This program 
predicts the growth of spoilage bacteria in horse mackerel under MAP at constant and 
fluctuating temperature conditions. 
 
Keywords: kinetic modelling, spoilage bacteria, fish products, software application  

Introduction 
Modified atmosphere packaging (MAP) with carbon dioxide (CO2) as active gas is widely 
used, together with refrigeration, to delay spoilage and extend the shelf life of fresh fishery 
products. Modelling the behaviour of specific microflora and quantitatively correlating it with 
shelf life can provide an effective tool for predicting fish quality.  
In previous work, a good correlation was found between sensory attributes and bacterial 
population in Atlantic horse mackerel fillets packed under MAP stored at different 
temperatures, however lipid oxidation was not observed at sensory rejection time. 
The aim of this work was to develop mathematical models for studying the dependence of the 
maximum specific growth rate on temperature, CO2 and O2 of Carnobacterium 
maltaromaticum, Serratia proteamaculans, Yersinia intermedia, Shewanella baltica and a 
mixed culture isolated from Atlantic horse mackerel fillets packed in MAP at time of sensory 
rejection. The performance of the models was validated in different fish products. 

Materials and Methods 
Initial studies with naturally contaminated fish products  
In a previous work samples of Atlantic horse mackerel (Trachurus trachurus) fillets packed in 
MAP were obtained directly from fish processing plant. Fillets of 400 ± 20g were packed 
with a gas ratio of 48% CO2, 50%N2 and 2% O2. Isolates obtained at time of sensory rejection 
were genotypically characterized. Identified bacteria included Carnobacterium 
maltaromaticum, Serratia proteamaculans, Yersinia intermedia and Shewanella baltica.   

Inoculum preparation and growth data 
Identified bacteria alone Carnobacterium maltaromaticum, Serratia proteamaculans, Yersinia 
intermedia and Shewanella baltica and mixture of four species, was studied. These bacteria 
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and the mix were inoculated into modified Long and Hammer’s broth (L&H) (Koutsoumanis 
et al. 2000). Cultures were incubated at several temperatures (0, 4, 6, 12 and 20ºC) under CO2 
enriched atmospheres (0, 25, 50, 75, 100% v/v, balance nitrogen) and under air (21% O2). 
Total viable counts (TVC) were determined by spread plating on Long and Hammers medium 
and incubated for 7 days at 10ºC.  The growth kinetic parameters, the lag phases, maximum 
specific growth rates (µmax) and maximum cell numbers (Nmax) were estimated by fitting the 
model of Baranyi and Roberts (1994).  

Models development  
The dependence of the maximum specific growth rate on temperature, CO2 and O2 was 
described by a cardinal model similar to that described by Mejlholm, et al. (2010): 
 

2

2max 2min 2 2

min 2max 2 2

equilibrium K
ref

ref ref k

CO COT T O O
T T CO O O

µ µ ξ
   − − −

=        − −    
 (1) 

The concentration of CO2 dissolved at equilibrium, CO2equilibrium, was calculated according to 
the initial percentage of CO2 in the headspace, to the temperature and to the initial gas product 
volume ratio as described by Mejlholm et al. (2010). The same terms as in Mejlholm, et al. 
(2010) were used for the effects of temperature and CO2 .  A new term was introduced in the 
model for the effect of O2: 
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In Equation 2, O2 is the concentration of O2 (ppm) dissolved in the medium. O2 was estimated 
according to the data of Lewis (2006). From this data the estimation of the amount of O2 
dissolved in water at 760 millimetres of mercury (sea level) is estimated as: 
 
 
Ο2=         (3) 
 
 
where O2percent is the percentage of oxygen in the atmosphere. According to our experimental 
design this percentage has only two values, either 21.2% for air or 0% for vacuum. In 
equation 2, O2ref is the amount of O2 dissolved in water at 760 mmHg (10.0565 ppm) and at 
the reference temperature used in equation 1, 15°C.  
For organisms unable to grow at low concentrations of O2, the parameter O2k could be 
interpreted as the minimum amount of O2 required for growth. However, since all bacteria 
studied in this work are able to grow in absence of O2, O2k takes negative values. 
The smaller the values of O2k are, the smaller the effect of the lack of oxygen on the growth 
rate. The proportional decrease of the growth rate as a consequence of vacuum packaging 
with respect to storage under air can be estimated from O2k as follows: 

Proportional decrease = 2
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     (4) 

The model, in Equation 1, comprises an interaction term, ξ, described by (Le Marc, et al. 
2002) but adding the correspondent term for the oxygen as follows: 
 

2

2
2(1 ( ))O Oϕ φ= −        (5) 

Tref and O2ref were fixed in the model to 15°C and 10.0565 ppm, respectively. The other 
parameters were estimated using the nlin procedure (SAS version 9.2, SAS Institute Inc., 
Cary, NC ). 

 
 (0.0045 Τ 2−0.3628 Τ+14.486) Ο2percent 

21.2 
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Product validation  
Validation experiments were carried out with four batches of commercial products, Atlantic 
horse mackerel fillets packed under MAP (%50 C02). Each batch was stored at different 
temperatures (2, 4, 6 and 8ºC). Numbers of total viable counts were analysed at regular 
intervals during storage of each batch of fish product. In addition, observations of growth of 
Lactic Acid Bacteria (LAB) on fish product under MAP from fish naturally contaminated 
(data obtained from Combase) were compared to predictions of the model developed for 
Carnobacterium.  

Results and Discussion  
The population dynamics of total viable counts in Atlantic horse mackerel fillets packed 
under MAP (%50 C02) stored at 6ºC and the growth of the bacteria isolated from Atlantic 
horse mackerel in L&H growth liquid medium are presented in Figure 1. Similar growth 
parameters were obtained in mackerel and in L&H culture medium. For this reason, this 
medium was chosen to evaluate the combined effect of the temperature and carbon dioxide on 
the growth of spoilage bacteria isolated from Atlantic horse mackerel.  
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Figure 1: Growth curves  (a) of Carnobacterium maltaromaticum(●), Serratia 

proteamaculans(x), Yersinia intermedia(○) and Shewanella baltica(Δ) in LH liquid medium 
stored at 6ºC with 50% of CO2( b)  of total bacteria counts in naturally contaminated Atlantic 
horse mackerel stored at 6ºC in an atmosphere with 50% CO2(○)  and growth of the mix (■)  

in LH liquid medium stored at 6ºC with 50%.  Sensory rejection time (*) was 120 hours. 
Lines represent the fitted models. 

Table 1 shows the parameters estimates and standard error of the model with and without 
interactions. The results showed that Carnobacterium had the slowest growth rate under air 
while it was the group with the greatest resistance to CO2 and to the lack of O2.The growth 
rate of Carnobacterium was reduced only by 9% under vacuum conditions. Shewanella 
showed also high resistant to CO2. Yersinia was the least resistant isolate to CO2 while 
Serratia was the most sensitive to the lack of O2. Serratia growth rate was reduced 29% under 
0% O2 condition.  

Table 1: Parameters estimates and standard error for the cardinal model with and without 
interactions for each group of bacteria. 

Model for Estimated model parameters Effect 
of 0% 
O2 * 

Fixed model 
parameters standard error 

µref Tmin CO2max O2k O2ref Tref 
No 
interactions 

With 
interactions 

Carnobacterium 0.299 -6.58 5974 -102.7 0.09 10.06 15 0.0442 0.0446 
Mixed bacteria 0.517 -7.19 5839 -16.8 0.37 10.06 15 0.0785 0.0786 
Serratia 0.458 -5.39 4867 -24.2 0.29 10.06 15 0.0369 0.0364 
Shewanella 0.398 -7.68 5112 -67.7 0.13 10.06 15 0.0487 0.0484 
Yersinia 0.425 -6.01 3803 -47.7 0.17 10.06 15 0.069 0.0688 
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*Proportional decrease of the growth rate under 0% of O2 with respect to storage under air condition. 

Validation of the applicability of the predictive models 
The model for “mixed bacteria” was validated by comparing predictions with independent 
observed growth rates in Atlantic horse mackerel fillets and in L&H growth medium (Figure 
2a). For “mixed model” values of 1.12 and 1.29 were obtained for the bias factor Bf and the 
accuracy factor Af, respectively. The model for Carnobacterium maltaromaticum was 
validated on ComBase data in fish products (sea bream and red mullet) under MAP (Figure 
2b). For this model values of 0.96 and 1.67 were obtained for Bf and Af, respectively.  
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Figure 2: (a) Comparison of observed and predicted µmax values for TVC in Atlantic horse 
mackerel fillets and in L&H growth medium stored at different temperatures and CO2 

concentrations (n=31) (b)Comparison of observed and predicted µmax values for LAB in fish 
products under MAP (n=18). Predicted µmax values were obtained by the model developed for 

Carnobacterium maltaromaticum. The solid line represents the perfect adequacy between 
observed and predicted values. 

Conclusions  
The validation study showed that µmax values of spoilage microflora in fish products under 
MAP can be accurately predicted. The models have been implemented in a Visual Basic add-
in for Excel called “Fishmap”. This program predicts the growth of spoilage bacteria in fish 
products under MAP at constant and fluctuating temperature conditions.  
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Abstract 
Minimally processed lettuce is a ready-to-eat (RTE) food commodity subjected to be 
contaminated by pathogenic microorganisms if processing and distribution conditions as well 
as handling practices are not efficient. In this study we evaluated the behaviour of a 
Enteropathogenic Escherichia coli strain (serotype O158:H23) in RTE iceberg lettuce by 
simulating different time/temperature (t/T) scenarios along the processing and distribution 
chain found in catering establishments. Different initial contamination levels (4, 3 and 2 log 
cfu/g) were used and lettuce samples were incubated at static (8, 12, 16, 20 and 24ºC) and 
dynamic temperatures (six representative t/T scenarios) during 6h. Observed log increase 
(Loginc) was calculated at each studied condition. Statistical tests (ANOVA, t test, correlation 
coefficients) were implemented in Statistica for Windows v10. The results indicated that the 
maintenance of the lettuce at 8ºC reduced the E. coli population (reductions from -0.36 to -
0.45 log cfu/g). However, if chill-chain is not maintained, E. coli can grow up to 1.13 log 
cfu/g at temperatures above 16ºC, even from the lowest contamination levels. Indeed, 
significant differences were obtained (P<0.05) in Loginc at these conditions. Dynamic t/T 
profiles resulted in growth of E. coli excepting the storage between 8 and 16ºC. However, no 
significant differences were observed in E. coli behaviour between the simulated scenarios. 
The survival of E. coli in RTE iceberg lettuce samples depended on the contamination level, 
since from an inoculum of 4 log cfu/g, growth was observed at 12ºC while low initial 
concentrations (2 and 3 log cfu/g) led to a slight final reduction (-0.78 and -0.37 log cfu/g 
respectively). It can be concluded that time delays from processing to consumption of RTE 
lettuce salads together with inappropriate food temperatures would allow E. coli growth at 
unacceptable levels. These findings may serve to food safety managers to better define the 
control measures to be adopted in catering establishments in order to prevent foodborne 
infections. 
 
Keywords: Ready-to-eat lettuce salads, Enteropathogenic Escherichia coli, short-term storage, 
dynamic t/T profiles, predictive models 

Introduction 
Verotoxigenic Escherichia coli is one of the most important emerging foodborne pathogen, 
affecting a large group of people, being the very young, elderly and inmunocompromised the 
most susceptible groups (Schneider et al. 2009). It is well known that non-O157 E. coli 
strains can be transmitted throughout contaminated foods such as meat, water and fresh or 
raw vegetables (Marzocca et al. 2006; Frias et al. 1996; Rowe et al. 1974). 
Besides, cutting, shredding, packaging and shipping processes, together with the storage 
conditions of RTE lettuce salads between food preparation and consumption can to affect the 
food quality, allowing the growth and survival of pathogenic microorganisms (Luo et al. 
2010). Given the number of meals served in catering establishments, storage and distribution 
conditions are not always well established, thus favouring microbial growth. 
In order to provide quantitative data on the microbial behaviour in foods, growth and survival 
models are shown to be a basic tool to predict the safety of food and microbial spoilage in the 
food chain (Franz et al. 2010; McMeekin et al. 2005; Tamplin et al. 2005; Rodríguez et al. 
2000).  
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The main objective of this study was to provide a more insight on the E. coli behaviour in 
RTE iceberg lettuce salads by evaluating the impact of storage and distribution conditions. 
This was done by simulating different time/temperature (t/T) scenarios (static and dynamic 
conditions) along the processing and distribution chain commonly found in catering 
establishments. 

Materials and Methods 
200g-packages of RTE iceberg lettuce were purchased in a local supermarket. A frozen stock 
culture of a Enteropathogenic Escherichia coli strain (serotype O158:H23, NCTC 10974), 
was re-suspended in Tryptone Soja Broth (TSB, Oxoid) and serial dilutions were made. RTE 
iceberg lettuce samples (10g) were inoculated at different initial contamination levels (2, 3 
and 4 log cfu/g), and subsequently incubated at static (8, 12, 16, 20 and 24ºC) and dynamic 
temperatures (six representative t/T scenarios: 8-24ºC, 8-20ºC, 8-16-24ºC, 8-16-20, 8-12-
20ºC and 8-16ºC) during 6h. Growth monitoring was performed at six storage periods (30, 60, 
90, 120, 180, 360 min) in Tryptone-Bile-X Glucuronide agar (TBX, Oxoid), incubated at 
42ºC during 24h. The dynamic t/T profiles studied corresponded to the most representative 
temperatures measured during preparation and distribution of RTE salads in Spanish catering 
establishments. The temperatures inside the RTE lettuce packages were measured by a 
Datalogger (MicrologPro EC700, Fourier Systems) together with the external temperature of 
the refrigerator. Subsequently, observed log increases (Loginc) of E. coli population in RTE 
iceberg lettuce were obtained and the relationship between Loginc and static temperatures was 
described by a linear regression for each inoculum level studied (Fig. 1). Regarding dynamic 
t/T profiles, the secondary Ratkowsky model proposed by Koseki and Isobe (2005) (Eq. 1) 
was used to estimate the growth of E. coli. The methodology of Carrasco et al. (2010) was 
applied to calculate the maximum growth rate and the “effective” static temperature that 
produced the same Loginc (Eq. 2): 
                                                        
    (Eq.1) 
where µmax is the maximum growth rate (h-1) and T is the storage temperature (ºC). 
 

            (Eq.2) 

where Teff  is the effective static temperature (ºC), t is the time during which the temperature 
was recorded (h), and Loginc is the increase of E. coli at each temperature profile. 

Results and Discussion  
The results obtained in our study have shown the ability of E. coli to grow in RTE lettuce 
salads at temperatures above 16ºC. Fig. 1 shows the Loginc of E. coli at static temperature 
conditions (8, 12, 16, 20 and 24ºC) and the fitted linear regression models. Results at 8ºC 
showed a slight decrease in E. coli population at the three contamination levels studied (2 log 
cfu/g: Loginc = -0.36; 3 log cfu/g: Loginc = -0.27 and 4 log cfu/g: Loginc = -0.33). Other 
published studies performed at lower temperatures (2-5ºC) have shown that E. coli cannot 
grow and a decrease in the microbial population was observed at the end of the storage period 
(Koseki and Isobe 2005; Bharathi et al. 2001). We also observed that growth of E. coli was 
observed at temperatures above 12ºC corroborating what other related studies has found 
(Abdul-Raouf et al. 1993). At abuse temperature conditions (24ºC), the initial inoculum level 
resulted in a lower Loginc at 2 log cfu/g than at 3-4 log cfu/g (0.89 and ~1.50 log cfu/g 
respectively).  
Beside this, significant differences (P<0.05) in the Loginc at the different storage temperatures 
were observed. At 4 log cfu/g, larger differences in Loginc values were noted (from -0.33 to 
1.52 log cfu/g). Therefore, if chill-chain is not maintained, E. coli can grow up to 1.13 log 
cfu/g at temperatures above 16ºC, even from the lowest contamination levels. Similar results 
were found by Bharathi et al. (2001) in minimally processed vegetables at 16ºC with a higher 
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inoculum level (6.3 log10 cfu/g). They detected an increase of E. coli up to 11 log10 cfu/g in 2 
days.    

Loginc (4 log cfu/g) = 0.096x - 1.168
R² = 0.806

Loginc (3 log cfu/g) = 0.098x - 1.252
R² = 0.780

Loginc (2 log cfu/g) = 0.069T - 0.925
R² = 0.895
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Figure 1: Logarithmic increase (Loginc) of the E. coli population and linear regression models 

as a function of storage temperature at 2, 3 and 4 log cfu/g in RTE lettuce. 

Regarding dynamic profiles, through the secondary model of Koseki and Isobe (2005), it was 
estimated maximum growth rate (µmax ) and the effective temperature (Teff) that produced the 
same value of Loginc for each t/T profile in E. coli population (Table 1).  
No significant differences were observed between the six t/T profiles (P>0.05) in Loginc, 
however, some difference was noted between the profile (8-16ºC) and the other scenarios. 
This was especially relevant at low inoculation levels, since when the initial contamination 
was equal to 2-3 log cfu/g, Loginc were negative (-0.78 and -0.37 log cfu/g respectively, Table 
1). In contrast, at 4 log cfu/g of inoculum level a slight increase of E. coli was observed at the 
end of the storage period. These results suggest the importance of good manufacturing 
practices of food, together with a more strict control of the temperature during preparation 
and distribution of RTE lettuce. Additionally, the importance of a good monitoring of 
microbial quality of raw material can lead to reduce the initial contamination of E. coli.    

Table 1: Estimated maximum growth rate (µmax, h-1) and the effective temperature Teff (ºC) 
that produced the same Loginc of E. coli in RTE lettuce at each dynamic t/T profiles and 

contamination levels.  
t/T Profiles 8-24º 8-20º 8-16-24º 8-16-20ºC 8-12-20ºC 8-16ºC 

4 log 
cfu/g 

Loginc 0.39 0.20 0.31 0.24 0.22 0.27 
µmax (h-1) 0.07 0.03 0.05 0.04 0.04 0.04 
Teff (ºC) 12.29 10.10 11.38 10.60 10.39 10.96 

3 log 
cfu/g 

Loginc 0.21 0.15 0.31 0.14 0.17 -0.37 
µmax (h-1) 0.04 0.03 0.05 0.02 0.03 - * 
Teff (ºC) 10.23 9.38 11.44 9.14 9.67 - 

2 log 
cfu/g 

Loginc 0.13 0.21 0.13 0.03 0.09 -0.78 
µmax (h-1) 0.02 0.04 0.02 0.01 0.01 - 
Teff (ºC) 9.04 10.20 9.05 6.77 8.18 - 

*Teff and µmax could not be estimated since a logarithmic decrease of E. coli population was observed. 
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Conclusions  
This study demonstrated that E. coli can grow at temperatures above 12ºC, even at low 
contamination levels (2 log cfu/g). Likewise, dynamic storage conditions can result in growth 
of E. coli at short-term storage if lettuce is left at room temperatures (above 20ºC).  
Estimating the growth and behaviour of E. coli in RTE lettuce salads will help to reduce the 
microbial risks associated with preparation and/or distribution of RTE lettuce. Also this data 
will serve as proof of the importance of cooling temperatures management. These findings 
may serve to food safety managers to better define the control measures to be adopted in 
catering establishments in order to prevent foodborne infections. 
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Abstract 
Equilibrium Modified Atmosphere Packaging (EMAP) of fresh produce is a dynamic system 
and relies on the modification of the atmosphere inside the package, achieved by the natural 
interplay between two processes, the respiration of the product and the transfer of gases 
through the packaging film, which leads to an atmosphere richer in CO2 and poorer in O2. A 
real challenge is how to integrate the mathematical modelling depicting product respiration 
rate and package permeability on a packaging system. The “pack-and-pray” approach and in-
house trial-and-error experiments are normally used to find a suitable packaging material, 
film area for gas/water vapour exchange, package size and the quantity of product to be 
packaged. This is both time and labour intensive and a potential risk to health. Mathematical 
models on product respiration rate and package permeability were integrated in order to 
determine the needs for packaging of fresh produce and predict gas composition EMAP 
during storage period. Further, it also provides the impact of temperature variation, and 
variability of product/package on gas composition providing a system which allows selection 
of suitable packaging materials for fresh produce. Pack-in-MAP is a knowledge web-based 
system combining product and film databases and various mathematical models to test several 
packaging designs on a value-for-money basis while minimising costs and avoiding costly 
trial-and-error approaches. 
 
Keywords: fresh produce, MAP, respiration, permeability, packaging simulation, Pack-in-MAP 

Introduction 
The segment of ready-to-eat fresh-cut consumer products is one of the few that has shown 
consistent growth in the last few years. Trends for healthier eating increased consumption of 
fruits and vegetables, while trends for convenience stimulate ready-to-eat products. However, 
fresh produce are living commodities which respire even after harvest. Equilibrium modified 
atmosphere packaging (EMAP) is a well known technique for preserving fruit and vegetables 
for longer time. It relies on the modification of the atmosphere inside the package, achieved 
by the natural interplay between two processes, 
the respiration of the product and the transfer of 
gases through the packaging film, which leads to 
an atmosphere richer in CO2 and poorer in O2. In 
this system, atmosphere is generated naturally by 
product respiration rate (passive MAP). Low O2 
and high CO2 are widely assumed to maintain 
quality and extend shelf life of fresh produce (Fig. 
1).                            Figure 1: Principles of MAP 
The major challenge faced by the fresh produce industry is “What packaging material do I 
use?” While it may be possible to find an appropriate packaging material through simply 
testing various packages (“pack & pray” approach), the optimal packages is likely to be found 
by taking an integrative mathematical modelling process. There is a wealth of published 
information on MAP, which could be used to find which polymeric films would be most 
suitable for a particular produce under a given set of processing and environmental 
conditions. Such analysis could provide an initial screening of films, point out their potential 
limitations/benefits and reduce the experimental testing.  
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The ultimate aim of this integrative mathematical modelling process is to contribute to the 
development of a knowledge-based system, in order to help design of an optimal package by 
selecting a suitable film for a given product, its area and thickness, filling weight, equilibrium 
time, and the equilibrium gas composition at constant and varying temperature conditions.  

Materials and Methods 
EMAP design entails consolidated knowledge of the i) fresh produce quantification, ii) 
polymer engineering and iii) converting technology, and a successful packaging needs the 
interaction of these three different 
disciplines (Brandenburg and Zagory 2009).  
EMAP design for fresh produce requires an 
integrated model considering: 
 1. Product respiration rate as a function of 
both gas composition and temperature,  
2. Amount of product,  
3. Permeability of packaging to O2, CO2, as a 
function of temperature and  
4. Packaging geometry and size, among 
other product characteristics (Fig. 2) 
(Mahajan et al. 2006, 2009).        

               Figure 2: Factors affecting EMAP design                                                                                              

A real challenge is how to integrate the needs of the product to find an optimal package. The 
answer through an engineering approach involves the use of mathematical models depicting 
product respiration rate and package permeability to be integrated into the mass balance 
equation of a packaging system. The differential equations of mass balance for O2 and CO2 in 
MAP containing a respiring product in a permeable package can be generated (Fig. 3).  

 
Vf : Package free volume, ml A : Film area, m2 
PO2 : O2 permeability, ml/m2.hr.atm RO2 : Respiration rate, ml/kg.hr 
yO2 : O2 concentration, atm M : Product mass, kg 

e
2Oy  : O2 concentration at equilibrium, atm t : Storage time, hr 

Figure 3: Integrative mathematical modelling of EMAP for packaging design of fresh produce  

Ultimate result of this integrative mathematical modelling was a web-based packaging design 
software called Pack-In-MAP® (www.packinmap.com) (Mahajan et al. 2009) 

Results and Discussion  
Pack-in-MAP® is a knowledge based system containing databases on product characteristics, 
respiration rate, optimum temperature, optimum range of O2 and CO2 concentrations as well 
as permeability of different packaging materials, including micro-perforated films. Pack-in-
MAP® is a web-based (www.packinmap.com) software developed by University College 
Cork, Ireland, that helps in designing EMAP for fresh and fresh-cut fruits and vegetables. 
The software determines the needs for packaging of fruits and vegetables in order to generate 
their optimal gas composition for maintaining quality and maximizing shelf-life (Mahajan et 
al. 2009).  

Pack-in-MAP® software can be accessed online, the user defines the type of product, storage 
conditions, amount of product to be packed, and size and geometry of the package. The 
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software selects the optimum gas composition (O2 and CO2) and calculates the respiration 
rate for that product. The software then selects the best possible films in the given range of 
permeability ratio (Fig. 4). Pack-in-MAP® software then simulates how the package 
atmosphere (O2 and CO2) changes over storage time for the given time-temperature profile 
for the particular product, indicating the O2 and CO2 at equilibrium and the time required to 
reach it. It also has the capability of simulating the impact of product and package variability 
on internal package atmosphere (results not shown). 

 
Figure 4. User interface of Pack-in-MAP® software showing the input parameters (i.e., 

product information, package geometry (e.g., tray) and dimensions), the recommended MAP 
conditions and temperature (e.g., 10 ºC) and the output parameters (recommended film, film 

permeability to O2 and CO2 and if necessary number of holes and its diameter. 

Pack-in-MAP® has been successfully used to design EMAP of mushrooms, carrots, cheese, 
mango, blueberry, mixed vegetables, and onions and the results have been validated with the 
experimental data.  
A validation test on a package containing a mixed vegetable salad at 10 ºC is reported in this 
study (Fig. 4). This package contained 75 g of cut carrot, 20 g of sliced garlic, 55 g of cut 
cucumber, and 50 g of green pepper. The target atmosphere for such vegetable mix was 3-4 
% O2 and 3-5% CO2. Respiration rate characteristics were obtained from Lee et al. (1996) 
and incorporated into the software. Breathable film area and package volume were 0.06 m2 
and 313 ml, respectively.  
The design protocol of Pack-in-MAP® software was then implemented and the results are 
shown in Fig 4. The results indicate that LDPE film (PO2 = 4242.42 and PCO2 = 16346.46 
ml/m2.day.atm) would be ideal for packaging mixed vegetable salad. This package would 
yield an equilibrium atmosphere of 2.69% O2 and 4.24% CO2 at equilibrium. This was 
validated experimentally and the results are shown in Fig 5. The experimental and predicted 
gas compositions during storage are closely matching (Table 1) and within optimal range for 
O2 and CO2, thereby showing the ability of Pack-in-MAP® software to determine the ideal 
packaging material and predict the gas composition inside the package during the storage 
period. 

140



 
 
 
Table 1: Equilibrium modified 
atmosphere parameters 
 

Figure 5: Experimental versus predicted gas composition 
as a function of time inside LDPE 27 ìm thick LDPE 
package of mixed prepared vegetable dish at 10ºC.  
 
Overall, integration of product and package models in Pack-in-MAP® software enables the 
users to choose the best packaging material to achieve EMAP rapidly and within the optimal 
O2 and CO2 range.  It can help the fresh produce industry to simulate “what- if” scenarios 
without any knowledge of mathematical models, package design and MAP itself.   
 
Other features of Pack-in-MAP® software: 
• Study the impact of product/package variability on package atmosphere  
• Design a package considering varying temperature during a real life distribution chain 
• Input users’ own data to customize it further for their own requirements (e.g., product 

respiration rates or film permeabilities) 

Conclusions  
Integrative mathematical models for packaging design of fresh produce have been developed, 
validated and added to the Pack-in-MAP® software knowledge-based system, with the overall 
goal to design optimal packages, avoiding costly trial-and-error approaches with the added 
benefit of testing several solutions on a value-for-money basis. Potential users will be able to 
define a packaging solution to improve shelf life and prevent potential safety hazards. 

Acknowledgments 
The authors acknowledge financial support from FIRM (00/R&D/UL55 and 08/R&D/UL661), 
administered by the Department of Agriculture, Fisheries & Food, and from Enterprise Ireland 
(PC/2008/0118 and CP/2009/0205).  

References 
Brandenburg J.S. and Zagory D. (2009) Modified and controlled atmosphere packaging technology and 

applications. In: E.M. Yahia (Ed.) Modified and Controlled Atmospheres for the Storage, Transportation, and 
Packaging of Horticultural Commodities, Chapter 3, 74-91, CRC Press. (ISBN: 1420069578) 

Lee K.S., Park I.S. and Lee D.S. (1996) Modified atmosphere packaging of a mixed prepared vegetable salad. 
International Journal of Food Science and Technology 31, 7-13. 

Mahajan P.V., Oliveira F.A.R., Sousa M.J., Fonseca S.C. and Cunha L.M. (2006). An Interactive Design of MA-
Packaging for Fresh Produce. In: Y. H. Hui (ed.), Handbook of Food Science, Technology, and Engineering, 
Volume 3, Chapter 119, 119-1 – 119-6, CRC Taylor & Francis, New York. 

Mahajan P.V., Oliveira F.A.R., Montanez J.C. and Frias F. (2007). Development of user-friendly software for 
design of modified atmosphere packaging for fresh and fresh-cut produce. Innovative Food Science & 
Emerging Technologies 8, 84-92. 

Mahajan P.V., Sousa-Gallagher M.J., Yuan B., Patel H.A. and Oliveira J.C. (2009). Development of web-based 
 software for modified atmosphere packaging design, Oral presentation in 10th Controlled & Modified 
 Atmosphere Packaging Conference (CAMA2009), 4-7th April 2009, Antalya, Turkey.  

 O2 
(%) 
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Time 
(hr) 

Predicted 2.69 4.25 44 
Experimental 2.7 4.8 48 

R2 (%) 97.4 65.7  
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Abstract 
The flavor of food accounts for a large part in the choices and preferences of consumers. It is 
notably induced by odorant molecule that are released during food consumption due to intra 
oral processing and swallowing. The development of food products with high nutritional 
(such as salt and fat reduction) and sensory qualities is now a challenge for the food industry. 
Therefore, identifying mechanisms that lead to in-mouth flavor release could be a valuable 
help for the formulation of healthy foods. On the basis of an experimental and modeling 
study, the objective of this work is to better understand the relative importance of the 
individual, the product and of the product-person interaction leading to the release of odorous 
stimuli. The physicochemical parameters (air / product partition coefficient and mass transfer 
coefficient of aroma compounds) relating to the dairy matrices studied as well as relating to 
the bolus formed during food consumption (mixture of saliva and food product) were 
measured. Physiological data (oral and nasal volumes, masticatory efficiency test etc.) and in 
vivo aroma compound release data were obtained at UMR CSGA (Dijon, France) on a panel 
consisting of 50 individuals. A mechanistic model describing the release of aroma compounds 
during consumption of a solid food product by humans has been developed. This model is 
based on mass balances between the different compartments of the oro-naso-pharyngeal area 
during the different eating stages (product mastication and swallowing). These assessments 
are based on mass transfer phenomena and dissolution of the product into the saliva during 
chewing, resulting in the formation of bolus made of saliva and product. Simulations issued 
from the model were then compared to in vivo release data of two aroma compounds during 
the consumption of the cheeses obtained by atmospheric pressure chemical ionization mass 
spectrometry (APCI-MS). Ten panelists and four cheeses were selected for this step. Model 
assumptions and a discussion on their validity will be presented. This work has led to a better 
understanding of the mechanisms and parameters having a major impact on the release of 
aroma compounds during consumption of solid food. This work constitutes a step toward 
computer-aided product formulation by allowing calculation of retronasal aroma intensity as a 
function of transfer and volatility properties of aroma compounds in food matrices and 
anatomophysiological characteristics of consumers. 

Keywords: mechanistic modeling, solid food product, chewing, flavor release, oral physiology 

Introduction 

Delivery of aroma compounds determines the aromatic quality of food products and plays 
also a role in food intake by affecting the perception of satiety (Ruijschop et al. 2008). During 
the consumption of a complex food product, flavour release depends both i) on the food 
properties (structure, rheology and composition) and ii) on the individual eating the product 
(breakdown efficiency, saliva flow, breath frequency…). Coupling nutrient criteria (such as 
salt and fat reduction) and organoleptic qualities is a challenge for the food industry. 
Therefore, identifying mechanisms that lead to in-mouth flavor release could be a precious 
help for the formulation of healthy foods. On the basis of an experimental and modeling 
approach, the objective of this work was to understand the relative importance of the 
individual, the product and of the product-individual interaction leading to the release of 
odorous stimuli. 
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Mathematical model for in vivo release 
The current model is dedicated to solid food products. It is an extension of the model 
developed for liquid and semi-liquid food by Doyennette et al. (2011). This new model takes 
the mastication process into account. The global eating process involves several steps, 
including :  
• the intra-oral manipulation of the product, which consists of several masticatory cycles; 
• several swallowing events; 
• the resting phase which occurs when there is no more product in the mouth. 
Each swallowing leads to the deposit of a small part of the liquid part of the bolus present in 
mouth on the pharyngeal walls. A residual amount of the solid part of the bolus remains in the 
mouth and is chewed again in order to form a new food bolus suitable for swallowing. 
A schematic representation of the four compartments involved in the model design, as well as 
their connections and the mechanisms responsible for flavor release, are given on Figure 1. 
The model structure is similar the one found in Doyennette et al. (2011). However, two main 
differences can be observed: 
- the presence of three instead of two sub-compartment in the mouth (the non-dissolved food 
product, which is the solid part of the bolus, the liquid phase of the bolus, made of saliva and 
dissolved food product and the air phase); 
- the opening of the velopharynx during the intra-oral manipulation phase, allowing 
exchanges of aroma compounds between the air phases of the mouth and of the pharynx. 

  
Figure 1: Schematic representation of the interconnected compartments and of the mechanisms 

involved in flavor release during the consumption of a solid food product. 

When eaten, the solid food product placed in the mouth is destructed during intra-oral 
manipulation. Two concurrent phenomena can occur: 
• the fragmentation of the product which increases the exchange surface between the solid 
food product and the bolus (mixture of saliva and dissolved product), and which promotes the 
transfer of aroma compounds from the food product to the bolus; 
• the melting of the product into the bolus, which changes the volume of the product and of 
the liquid phase of the bolus. 
In the following paragraphs, the main differences with the previously published model for 
liquid products are presented (Doyennette et al. 2011). 

Air in the oral cavity 
In addition to the exchange of aroma compound with the bolus, the air in the mouth can also 
exchange aroma compounds with the air of the pharynx when velopharynx opens due to the 
jaw and teeth movements during mastication. 
The variation of aroma concentration in the air in the oral cavity COA is due to the volatile flux 
φOAB from the food bolus and from the air coming from the pharynx (QOA≥0 with velopharynx 
opening): 

ൌ ߀ߍߔ  ቊ
ሻݐሺܣܱܳ ൈ ൫ܣܨܥሺݐሻ െ ሻݐሺܣܱܳ ݂݅ ሻ൯ݐሺܣܱܥ  0
ሻݐሺܣܱܳ ݂݅                                                    0  0

ቋܸܱܣሺݐሻ ൈ ሻݐሺܣܱܥ݀
ݐ݀

  (1) 
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with VOA the volume of air in the oral cavity, and CFA the aroma concentration in the air of the 
pharynx. 
The masticatory movements create a cyclic variation of the air volume VOA around a mean 
value:  
ሻݐሺܣܱܸ ൌ ݊ܽ݁݉ܣܱܸ  Δܸܱܣ ൈ sin ሺ2 ൈ ߨ ൈ ݕݎ݅ݐܽܿ݅ݐݏܽ݉ݎ݂ ൈ ሻݐ

ሻݐሺܣܱܳ ൌ ܣܱܸ݀ ݐ

ݐ݀

 (2) 
Where ΔVOA corresponds to the opening variation of the mouth during mastication, and 
frmasticatory of the masticatory frequency of the individual. Little is known on the real evolution 
of the air flow coming from the mouth QOA. We hypothesized that it was coordinated with the 
masticatory cycles as it has been observed by Matsuo et al. (2005) : 

ሺ ሻ
ൌ 2 ൈ ߨ ൈ ݕݎݐܽܿ݅ݐݏܽ݉ݎ݂ ൈ ݐ ൈ Δܸܱܣ ൈ cos ሺ2 ൈ ߨ ൈ ݕݎݐܽܿ݅ݐݏܽ݉ݎ݂ ൈ ሻݐ

ݐ݀

 (3) 

Product in the oral cavity 
Due to dissolution process, the volume of the food product decreases over time, while its 
exchange surface with the bolus rises to a certain point because of the fragmentation process 
and then decreases due to swallowing. 
The dissolution of the product at a rate v gives the following equation: 
ܸܱ݀ܲሺݐሻ

ൌ െݒ ൈ  ሺtሻ (4)ܲܤܱܣ

with VOP the volume OBP

ly over time, i.e.:  

ݐ݀

of product in the oral cavity, and A  the contact area in the oral cavity 
between the liquid part of the bolus and the product. 
We assumed that the exchange surface evolved linear
ሻݐሺܲܤܱܣ݀

ൌ
݅݊݅ܲܤܱܣെ݃݁݀ܲܤܱܣ

݀݀݁݃െ݅݊݅ݐ
   ݂݅ ܸܱܲሺݐሻ  0  (5) 

with the index "deg" meaning “at the deglutition moment”, and the index "ini" meaning “a

OB can be divided into two parts:  

where VOS is the volume o

t 
the introduction of the food product in the mouth”. 

Bolus in the oral cavity 
The volume of the bolus V
ሻݐሺܤܱܸ ൌ ܸܱܵሺݐሻ   ሻ (6)ݐሺܦܱܸܲ

f saliva in the bolus and VOPD is the volume of product dissolved in 
the bolus.  
The mass balance for aroma compounds in the bolus gives us the following equation: 

ሺ ሻܸܱ݀ܤ ݐ ൈܤܱܥሺݐሻ

ݐ݀
ൌ ܲܤܱߔ െ  (7) ܤܣܱߔ

with the mass flux φOBP com
ߔ ൌ ݒ ൈ ܣ ሺݐሻ ൈ ܥ  (8) 

ncentration (C ) and the 
interfacial concentration (

) 

ሻݐሺܤܱܥሻൈݐሺܤܱܸ݀ 

ing from the dissolution of the product 

ܲܤܱ ܲܤܱ ܱܲ

The mass flux φOAB is given by the difference between the bolus co OB
C*

OB): 
ܤܣܱߔ ൌ ሻݐሺܤܱ݇ ൈ ሻݐሺܤܣܱܣ ൈ ሺܤܱܥሺݐሻ െ כܥ

ሻሻ (9ݐሺܤܣܱ
As we have: 

ݐ݀
ൌ ሻݐሺܤܱܥ ൈ ሻݐሺܤܱܸ݀

ݐ݀
 ሻݐሺܤܱܸ ൈ ܤܱܥ݀

ݐ݀

ሺݐሻ (10) 

Phenomena governing flavor release in the pharynx and in the nose are similar to the ones 
escribed in the liquid model. 

ty was performed to evaluate the effect of some physiological 
or physicochemical parameters. For that, each simulated kinetic, expressed in arbitrary unit, 

um intensity. Only the flow of saliva incorporated to the bolus 

d

Results and discussion  
An analysis of model sensitivi

was divided by its own maxim
during food consumption, the duration of the period before the first swallowing as well as the 
velopharynx opening (amplitude and frequency) has a strong influence on the overall kinetics. 
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For example, an increase in the flow of saliva incorporated to the bolus during food 
consumption results in a decrease in the part of the curve after the first swallowing (renewal 
of liquid phases present in the mouth and pharynx by supply of fresh saliva). 

Comparison of model predictions with experimental data for ethyl propanoate  
To determine the unknown parameters of the model, simulations were fitted to experimental 

ulated 

te resulting from the opening of the velopharynx was adjusted to fit the 

 

elopharynx) may improve the predictions. 

Figure 2: Comparison of model predictions (bold line) with in vivo ethyl propanoate release (thin line ) 
for panelist S090, Cheese Sl (left) and S002, cheese Fh (right). Experimental standard deviation is 

represented by the colored envelopes. Vertical lines represent the various consumption events. 

C
Com nds 

mption of cheeses by APCI-MS gave satisfactory results for the ten panelists 
. The adjusted parameters are in a range of variation that is in agreement with 

financial support and the UMR CSGA (Dijon) for all the performed experiments on the panel. 

plaining the role of 
viscosity and post-deglutitive pharyngeal residue on in vivo aroma release: a combined experimental and 

od Chemistry 128, 380–390. 

data as follows: 
- the flow rate of saliva incorporated to the food bolus was adjusted so that the sim
release kinetic after the first deglutition fits the decay phase of the experimental curve; 
- the air flow ra
simulated release kinetic before the first deglutition to experimental data.  
All the simulations have been reproduced satisfactorily compared to in vivo release data.
Figure 3 presents some comparisons of simulations and experimental data for one panelist and 
one cheese. 
It is highly likely that for these specific cases, a modification of other parameters for which 
the value was approximately set due to a lack of knowledge (such as the amplitude of the 
opening of v
 

 

onclusions  
parison of model predictions with the experimental release of two aroma compou

during the consu
and four cheeses
literature data. This work has led to a better understanding of the mechanisms and parameters 
having a major impact on the release of aroma compounds during consumption of solid food.  
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Abstract  
The objective of this study is to better understand and model the effect of dairy matrix 
structure on the hydrolysis and transit rates of milk proteins during digestion. 4 dairy matrices 
having a similar composition but differing by their internal structure were manufactured: 2 
solutions, 1 acid gel and 1 stirred acid gel which all contained a small amount of Cr-EDTA 
complexes, a non-absorbable and non-hydrolysable water soluble marker. These 4 matrices 
were given to six adult mini-pigs and, for each experiment, 9 samples corresponding to 8 
different times after the meal ingestion and 1 time before the meal were collected after the 
pylori, i.e. at the stomach exit. Effluents were analysed by ELISA to determine their residual 
concentration in β-lactoglobulin and caseins (intact proteins and large fragments) and by 
atomic absorption to measure the Cr2+ concentration. Statistical analyses performed on ELISA 
data for proteins are presented. They allow distinguishing the gelled from the liquid matrices, 
the stirred acid gel being equally distributed among the two groups. A first mathematical 
model describing the gastric emptying of Cr-EDTA is also presented. This model provides a 
good fitting of the Cr-EDTA concentrations and allows estimating several unknown digestion 
parameters (level of gastric juice flow and half-life of the chromium complex in the stomach) 
with a good accuracy. 
 
Keywords: caseins, food structure, gastrointestinal transit tract, modelling, in vivo digestion, 
whey proteins  

Introduction 
Degradation of food proteins is a major source of biological signals (peptides and amino 
acids) which can have an effect on human health. It has been shown that the structure of the 
ingested food can affect the dynamics of the amino-acid appearance within the blood, in 
particular for dairy products (Lacroix et al. 2008). However, little is still known about the 
influence of food structure on their digestibility and nutritional properties. In this context, 
monitoring the behaviours of the dairy proteins within the gastro-intestinal tract is an 
important challenge in order to gain knowledge on the phenomena involved. 

Materials and Methods 
In vivo experiment 
The dairy solution was reconstituted from skim Ultra Low Heat powder manufactured at 
INRA-STLO (Rennes) and Milli-Q pure water in order to obtain 14.5% dry matter. The 
reconstituted solution contained 40 g/L of caseins, 10 g/L of β-lactoglobulin and 95 g/L of 
lactose and minerals. 110.8 ppm (w/w) of Cr-EDTA was then added to the solution and 4 
dairy matrices (1kg each) were prepared thereafter: raw skim milk (M1), skim milk heated 10 
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min at 90°C (M2), stirred (M3) and non-stirred (M4) acid gel made with 30g of 
gluconodeltalactone and 1 kg of heated skim milk. The acid induced gelation was performed 
at 20°C and launched 24h before the beginning of the in vivo experiment. When carried out, 
stirring was made with a Magimix mixer during 2 min. Each sample was given to six adult 
mini-pigs (U, V, W, X, Y and Z) according to a Latin-square experiment. Effluents were then 
taken 8mm after the pilori (at the end of stomach exit) at 1 time point before the meal and 8 
time points during meal digestion (-30, 0, 20, 50, 105, 165, 225, 315, 405 min) and 
characterized by ELISA in order to monitor digestion dynamics. The concentration of Cr-
EDTA was measured by atomic absorption spectrometry according to Siddons et al., 1985. 

Software 
The statistical analyses (Principal Component Analyses and Factorial Discriminant Analyses) 
were performed with R 2.12.1 on concentration data of whole caseins and β-lactoglobulin 
obtained from ELISA assays, which were normalized in order to limit analytical variability. 
For each subject, the 4 dairy matrices are submitted to statistics. A 24 lines×9 columns table 
was created for both groups of proteins when they are analysed separately: the lines are 
subjects×dairy matrices and the columns are the sampling times. When both groups of 
proteins were analysed together, a 48 lines×9 columns table was created: 24 lines for each 
protein. A method of clustering (kmeans) was also employed for the PCA analyses to 
underline similar or different behaviours between subjects and/or matrices. The AMIGO 
(Advanced Model Identification using Global Optimization) toolbox was used to estimate 
model parameters with MATLAB R2010a in the Cr-EDTA concentration model (Balsa-Canto 
et al., 2010).  

Formulae used in the Cr-EDTA concentration model 
Cr-EDTA is a non-absorbable and non-hydrolysable marker: a first model describing the 
transit of this matrix component in the case of liquid matrices was thus developed by taking 
into account the fluxes of ingestion (φin [1], Figure 1), gastric secretions (φg [2], Figure 1) and 
gastric emptying (φsd [3], Figure 1). The compartment s (volume Vs) represents the stomach 
(Figure 1). Cr-EDTA enters into the compartment s and is emptied according to a power 
exponential model ([4], Elashoff et al., 1982). The states of the model are: Vs (stomach 
volume [5]), mCrs (Cr-EDTA mass in the stomach [6]) and cCrs (Cr-EDTA concentration in 
the compartment s [7]). The parameters of the model are: t1/2 (half-life time in the stomach), β 
(Elashoff exponent), tg (time of transition between high and low levels of gastric secretions), 
fgh (high level of gastric secretions), fgl (low level of gastric secretions), tin (time of 
ingestion), λ (parameter controlling the shape of gastric secretions), mCrtot (Cr-EDTA mass in 
the matrix before ingestion), mtot (matrix mass) and Vbasal (fasted stomach volume).  
Some parameters have known values: tin=4 min ; mCrtot=110.8×10-3 g ; mtot=1000 g and some 
others were fixed according to the literature: β=1; fgl=2 mL/min; λ=5 ; Vbasal=15 mL.  
The remaining parameters were estimated: t1/2 ; tg and fgh (initial guess: 60 min; 40 min and 
30 ml/min, respectively).  

compartment s: 
liquid (Vs) 

Qg

Qsd

milk, Qin

  
Figure 1: Cr-EDTA model 
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Results and Discussion  
Statistical analyses: Principal Component Analyses (PCA) 
Two approaches were used to analyse the proteins and Cr-EDTA data: in the first one, both 
groups of proteins were compared simultaneously for each matrix (Figures 2a, 2b for M1 and 
M2); in the second one, the four matrices were compared simultaneously for each group of 
proteins and for Cr-EDTA. For all PCA analyses, the first two principal components 
represented more than 70% of the variance. 
The first approach gives information about digestion dynamics of both proteins for each 
matrix. For M1 (Figure 2a) the dynamics of both proteins are clearly different. For M3 the 
behaviours of the two proteins are less distinct and, for M2 (Figure 2b) and M4 (not shown), 
the behaviours of both proteins are very similar for each subject. This could be explained 
because M1 is the only meal which has not been subjected to thermal treatment, a process 
which induces aggregates of β-lactoglobulin, part of them being covalently bound to the 
surface of casein particles. 
The second approach gives information about the influence of the matrix on digestion 
dynamics for each group of proteins and on transit for Cr-EDTA. Clustering allows 
discriminating between M3 points on one side and M1, M2 and M4 points on the other side. 
For Cr-EDTA, the clusters are even more discriminatory between M1-M2 and M3, M4 
having an intermediate behaviour between the former 2 clusters (not shown). This shows that 
the viscoelastic properties of the meal have an effect on the digestion dynamics and could be 
explained because solutions are emptied more rapidly than the acid gel, the stirred acid gel 
having an intermediate transit between the liquid matrices and the gel.  

Statistical analyses: Factorial Discriminant Analysis (FDA) 
The FDA performed on both groups of proteins and on Cr-EDTA data for the 4 matrices 
allows to maximize the variance between groups: the FDA is a PCA carried out on 
barycenters of a priori groups (the 4 matrices). The FDA for caseins (Figures 3a) and Cr-
EDTA (not shown) are quite similar, M3 being properly separated from the other matrices, 
M1 and M2 being joined and M4 having an intermediate behaviour. The FDA for β-
lactoglobulin (Figure 3b) underlines the distinct behaviour of the raw skim milk (M1) and the 
similarity in the behaviours of gelled matrices, M3 and M4. The FDA results thus confirmed 
PCA analyses and reinforced the hypothesis of a significant influence of viscoelastic 
properties and thermal treatment of the dairy matrix on proteins digestion dynamics. 
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Gastrointestinal transit model: Cr-EDTA concentration 
Below are shown the curve fitting of Cr-EDTA concentration (Figure 4), the simulations of 
the evolutions of gastric secretions and gastric emptying recovered from the fitting (Figure 5) 
and the parameter estimations (Table 1) after ingestion of skim milk heated 10 min at 90°C by 
subject U. The parameters are properly estimated (Table 1) and the curve fitting matches 
closely the experimental data (Figure 4).  
 
 
 
 
 
 
 
 
 
 
 

      Figure 2a: PCA for raw skim milk (M1) 
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             Figure 3a: FDA for caseins                Figure 3b: FDA for β-lactoglobulin 

          

 

Table 1: Parameters estimations obtained with the Cr-EDTA model (local estimation) 
 
 
 
 
 
 

Conclusions  
By means of statistical analyses, the influence of matrix structure on proteins digestion 
dynamics and on Cr-EDTA transit was underlined. Furthermore the Cr-EDTA model 
presented offers a good pattern to implement hydrolysis mechanisms in a next step aimed at 
integrating ELISA data. Such a work is on progress. 
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parameter parameter value 
t1/2 97.116 +- 19.583 
tg 40.395 +- 4.8355 
fgh 29.274 +- 2.3006 

φg 
φsd 

Figure 5: Simulations of gastric secretions 
(φg) and gastric emptying (φsd) evolutions 

Figure 4: Curve fitting of Cr-EDTA concentrations
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Abstract 
The shelf life of minced beef stored aerobically and under modified atmosphere packaging 
(MAP) at 0, 5, 10, and 15 ºC was assessed by monitoring the microbial association of meat 
and the changes of the volatile compounds occurring in the meat substrate.  Microbiological 
analyses, concerning total viable counts (TVC), Pseudomonas spp., Brochothrix 
thermosphacta, lactic acid bacteria (LAB), Enterobacteriaceae, yeasts and moulds, were 
performed in parallel with sensory analysis, pH measurements and headspace SPME-GC/MS 
(solid phase microexraction-gas chromatography/mass spectrometry). In particular, a large 
number of volatile compounds, including aldehydes, alcohols, ketones, esters, hydrocarbons 
and terpenes, were identified at each storage condition, whilst more than 100 of them were 
further semi-quantitatively determined. Correlation of the volatile compounds with the 
spoilage sensory status of the samples and subsequent qualitative classification of the samples 
was performed with principal component and factorial discriminant analysis (PCA and FDA, 
respectively), whilst quantitative estimations of the different microbial groups was performed 
using the partial least squares-regression (PLS-R). Both temperature and packaging were 
found to have a great impact on the evolution of volatiles during storage that resulted in 
different chemical profiles. Through PCA, many of the identified compounds were correlated 
with the sensory scores, depicting possible spoilage indicators such as 2-Pentanone, 2-
nonanone, 2-methyl-1-butanol, 3-methyl-1-butanol, ethyl hexanoate, ethyl propanoate, ethyl 
lactate, ethyl acetate, ethanol, 2-heptanone, 3-octanone, diacetyl, and acetoin. The FDA and 
PLS-R models indicated that the dynamic changes of the volatile metabolic compounds being 
present in the meat substrate during storage can provide estimations about the microbial 
populations and the sensory scores. The overall results the HS/SPME-GC/MS analysis of the 
volatile profile of meat combined with chemometrics, may be considered as a potential 
method to predict the spoilage of a meat sample regardless the storage conditions (e.g. 
packaging and temperature).  
 
Keywords: GC/MS, SPME, spoilage indicators, chemometrics, PLS-R   

Introduction 
The correlation between microbial growth and chemical changes during spoilage has been 
continuously recognised as a means of revealing indicators that may be useful for quantifying 
muscle tissue quality as well as the degree of spoilage (Nychas et al. 2007). Different volatile 
microbial metabolites have been detected in naturally contaminated samples of meat with GC or 
GC-MS.  Tsigarida and Nychas (2001) have investigated the profile of the volatile compounds 
as attributed from GC analysis of sterile beef fillets inoculated with meat spoilage bacteria 
and stored in air and in MAP. The volatile compounds using GC or GC/MS analysis have also 
been studied for inoculated and/ or naturally contaminated beef stored in air (Dainty et al. 
1989) and in MAP and/ or VP (Stutz et al. 1991; Jackson et al. 1992; Insauti et al. 2002), for 
chicken stored in MAP (Eilamo et al. 1998) and for cooked ham stored in MAP (Leroy et al. 
2009). Finally, the GC-GC/MS volatiles profile of different types of fresh or processed meat 
(chicken, beef or pork) has been studied, to assess their quality characteristics, without 
subsequent storage of the samples (Wettasinghe et al. 2001; Marco et al. 2004; Xie et al. 
2008; Rivas-Cañedo et al. 2009). However, knowledge gaps related to GC or GC/MS analysis 
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need to be addressed since the above studies do not include combinations regarding numerous 
compounds, several storage conditions (i.e. temperature and packaging), microbiological and 
sensory evaluation. 

Materials and Methods 
The shelf life of minced beef stored aerobically and under Modified Atmosphere Packaging 
(MAP) at 0, 5, 10, and 15 ºC was assessed by monitoring the microbial association of meat 
and the changes of the volatile compounds occurring in the meat substrate.  Microbiological 
analyses, concerning total viable counts (TVC), Pseudomonas spp., Brochothrix 
thermosphacta, lactic acid bacteria (LAB), Enterobacteriaceae, yeasts and moulds, were 
performed in parallel with sensory analysis, pH measurements and headspace SPME-GC/MS 
(solid phase microexraction-gas chromatography/mass spectrometry). Correlation of the 
volatile compounds with the spoilage sensory status of the samples and subsequent qualitative 
classification of the samples was performed with principal component and factorial 
discriminant analysis (PCA and FDA, respectively), whilst quantitative predictions of the 
different microbial groups was performed using the Partial Least Squares-Regression (PLS-
R). The performance of the PLS-R models was evaluated using four different criteria, namely, 
the RMSE, the bias factor (Bf), the accuracy factor (Af) and the percent relative error (% RΕ) 
between predictions and observations (Ross 1996). 

Results and Discussion  
Figure 1 shows indicatively the volatile metabolic profile of a fresh minced beef sample at the 
onset of storage (a) and a spoiled minced beef sample stored under MAP at 5 °C (b). A large 
number of volatile compounds, were identified from the analysis of the GC/MS ion 
chromatograms, that included aldehydes, alcohols, ketones, esters, hydrocarbons and 
terpenes, were identified at each storage condition, whilst more than 120 of them were further 
semi-quantitatively determined. Out of these compounds, 34 were selected for mathematical 
analysis. Both temperature and packaging had a great impact on the evolution of volatiles 
during storage that resulted in different chemical profiles.  
According to the PCA, the derived loading plots and scores plot gave useful information 
about the possible correlations of the compounds used for the analysis in correlation with the 
sensory scores. 2-butanone was correlated with acceptable samples (fresh and semi-fresh) and 
showed a decrease during storage. Moreover, the most of the acceptable samples were 
correlated with 2-butanone, 2, 3-pentanedione, 2, 5-octanedione, pentanal, hexanal, trans-2-
heptanal, trans-2-octenal that all showed a mixed, mostly decreasing trend during storage. 2-
Pentanone, 2-nonanone, 2-methyl-1-butanol, 3-methyl-1-butanol, ethyl hexanoate, ethyl 
propanoate, ethyl lactate, ethyl acetate, ethanol, 2-heptanone, 3-octanone, diacetyl, acetoin 
were associated with spoiled samples which increased during storage at the most storage 
conditions.  
The correct classification rate for the validation of the FDA model was 77.78% correct for the 
fresh samples, 62.50% for the semi-fresh and 89.66% for the spoiled ones, with an overall 
performance of 79.17% accuracy (Table 1). These results revealed a good correlation of the 
sensory estimates of the spoilage with the dynamic changes of the amounts of the volatiles 
compounds. The potential of PLS-R analysis to estimate the population of selected microbial 
groups of the indigenous microbiota of meat samples such as total viable counts (TVC), 
Pseudomonas spp, Br. thermosphacta, lactic acid bacteria, Enterobacteriaceae, and 
yeasts/moulds was also demonstrated in this study (Table 2). The values of Bf were generally 
close to unity, indicating good agreement between observations and estimations. The fact that 
in certain cases it is slightly above 1 indicates a slightly ‘fail-dangerous’ model (Ross, 1996). 
In addition, the values of the Af indicated that the average deviation between estimations and 
observations of the various microbial groups ranged from 9.3 % (either above or below the 
line of equity) for TVC to 14.0% for Br. thermosphacta (Table 2). Regarding the estimations 
for TVC, the % RE values were distributed above and below 0, with 91.78 % of predicted 
microbial counts included within the ± 20% RE zone. However, a trend of over-prediction 
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was evident especially at lower population densities (counts less than 7 log cfu g-1) and some 
times an under-prediction was observed at higher populations. As far as the models of the 
remaining microbial groups are concerned, the Pseudomonas spp., Br. thermosphacta and 
yeasts/moulds were generally under-estimated, whilst the LAB were slightly over-estimated 
at the lower populations densities. These results indicate that the HS/SPME- GC/MS analysis 
can provide useful information about the dynamic changes of the volatile metabolic 
compounds being present in the meat substrate during storage and provide estimations about 
the microbial populations and the sensory scores.  

Conclusions  
In this study, it was demonstrated that GC/MS analysis is a promising tool for monitoring the 
freshness of meat, whilst it provides numerous information about the progress of meat 
spoilage depending on the temperature and packaging storage conditions. The analysis of the 
GC/MS data depicted a well discrimination regarding the sensory classes of the samples, 
whilst sufficient estimations of the microbial counts were provided. 

 
Figure 1: Typical GC/MS volatile metabolic profiles of minced beef at the onset of storage (a) 

and after 268h stored aerobically at 5ºC (b). 
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Figure 2: Changes of the concentration of hexanol in minced beef stored aerobically (a) and 

under MAP (b) at 0 °C (*), 5 °C ( ), 10 °C (▲) and 15 °C ( ) for 110h. 

152



Table 1: Confusion matrix according to the FDA for the validation of the sensory estimates. 
True class Estimated class Correct 

Classification  
 Fresh Semi-fresh Spoiled (Sensitivity %) 

Fresh (n = 27) 21 0 6 77.78 
Semi-fresh (n=29) 1 10 5 62.50 

Spoiled (n =16) 1 2 26 89.66 
Total (n =72) 23 12 37 79.17 

Specificity (%) 91.30 83.33 70.27  

Table 2: Comparison of calculated performance indices for the estimation of the microbial 
population in minced beef samples using the validation estimates from the PLS-R models. 

Microbial group No of 
latents Bf  

a Af 
 b 

% of the 
samples in 

± 20% RE c zone 

% of the 
samples in 

±10% RE zone 
R2 RMSEd 

TVC 2 1.001 1.093 91.78 76.71 0.65 0.81 

Pseudomonas spp 3 1.012 1.125 83.56 60.27 0.78 0.97 

Br. thermosphacta 2 1.010 1.140 75.34 58.90 0.54 0.94 

LAB 3 1.008 1.099 90.41 65.75 0.47 0.81 

Enterobacteriaceae 2 1.008 1.112 80.82 65.75 0.71 0.84 

Yeasts and moulds 3 1.009 1.111 84.93 78.08 0.74 0.78 

  a bias factor, b accuracy factor, c relative error, d root mean square error 
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Abstract 
A quality by design approach considers both the critical product characteristics and process 
variables in order to design for optimum packaging. Mathematical modelling can be used to 
describe the effect of process variables (e.g. environmental conditions) on product 
characteristics and predict quality and shelf-life. The aim of this study was to i) determine the 
water-vapour-transmission-rate (WVTR) of different packaging materials, and ii) develop and 
validate a predictive model for the shelf-life of packed granola breakfast cereal using 
accelerated storage conditions. The WVTR for each film was measured according to an 
experimental design (32) with 2 factors (temperature and relative humidity) at 3 levels (10, 30, 
40 °C; 32-33, 75-76, 89-96%). Granola breakfast cereal was packed using 3 commercial 
biodegradable materials (NK, NM, N913), biaxial-oriented-polypropylene (BOPP), 
commercial-packing-material (control) and stored using accelerated conditions (38 °C and 
90% RH). Samples were assessed for moisture content (critical quality parameter), at regular 
intervals throughout 82 days of storage. The WVTR of BOPP and N913 films were not 
significantly affected by RH, whereas temperature had a significant effect on all types of 
materials studied; an Arrhenius relationship was found to describe the dependency of WVTR 
on temperature. A global model considering the dependency of temperature and RH was 
developed and was found to fit the experimental data well. Moisture uptake for packaged 
granola was found to be significantly affected by both storage time and packaging material. 
The BOPP film resulted in the lowest moisture gain for the granola, followed by the 
biodegradable film N913. The predicted shelf life for granola under accelerated conditions 
ranged from 13-2 days depending on the packaging film, and these results were in agreement 
with those obtained experimentally. The predicted shelf life for granola under normal storage 
conditions ranged from 283, 90, 33, 228 days in BOPP, NK, NM, N913 pouches, 
respectively. 

Keywords: quality by design, mathematical modelling, packaging, shelf life, water vapour 
transmission rate 

Introduction 
Granola is a dry granulated cereal product which has a low water activity. During the 
distribution chain, granola can be exposed to a range of quite different environmental 
conditions, and if there is a differential between water activity inside and outside the package, 
this driving force allows the transfer of water molecules through the package leading to an 
increase of internal water activity, therefore causing an increase of moisture content and 
consequently a loss of granola quality (Macedo et al. 2009). 
The shelf life of a moisture sensitive food product is typically estimated using mathematical 
models that describe and connect the equilibrium sorption isotherm of the product, the initial 
and the permissible final moisture content of the product, the permeance properties of the 
package and also the environmental relative humidity and temperature. 
The aim of this work was to i) determine the water vapour transmission rate of different 
packaging materials (BOPP, NK, NM, and N913) at different environmental conditions, and 
ii) develop and validate a predictive model for the shelf-life of packed granola breakfast 
cereal using accelerated storage conditions. 
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Materials and Methods  
WVTR Assessment: The biodegradable packaging films (NatureFlex 30 NK; NaturFlex 55 
N913; NaturFlex 23 NM; and Propafilm RGP 30) were supplied by Innovia Films (Innovia 
Films Ltd, Cumbria, United Kingdom). The WVTR was calculated for each film using a full 
factorial experimental design at different RH (32-33, 75-76, and 89-96 %) and T (10, 30, 40 
°C). WVTR was determined by gravimetric “cup” method described in ASTM E-96. 
 Shelf-life Assessment: Granola samples (30 g) were packed in pouches made from the 
different films, and closed by heat sealing. Care was taken to minimize the pouches head 
space and to ensure that the pouches were leak proof. Beside the four different films studied 
(BOPP, NK, NM and N913), a control film used in the packaging of a commercial brand was 
removed and designed similarly to the other film pouches (8.5 cm x 10 cm). Seven sample 
pouches of each film were hanged on top of a big airtight container, ensuring that pouches 
were not in contact with each other and that all were exposed to the same environmental 
conditions (38 °C and 90% RH). One pouch was taken out from each container at 7 or 14 
days interval up to 82 storage days, and moisture content was assessed in triplicate.   
Shelf-life Modelling: A shelf life model was developed describing the relationship of the food, 
packaging and environmental conditions. Granola is a moisture sensitive product, and 
moisture content was identified as its critical quality parameter (Macedo et al. 2009). 
Therefore its shelf-life was determined based on product response to moisture content. The 
different packaging materials considered were good moisture barriers and the shelf-life of the 
granola was assumed to be controlled by the film WVTR. The package headspace was 
neglected once WVTR was assumed to be accounted totally by the gain in moisture content of 
granola. The mass balance and permeation of the package system is described by Eq. 1: 

)( winwouts ppPA
dt

dMW −=         (1) 

where Ws is the product dry weight (g); M is the moisture content of granola (g H2O/g dry 
solids); t is the time (days); P is the permeance (g/m2.day.Pa); A is the packaging surface area 
(m2); and pwout and pwin are water vapour pressures outside and inside the package.  
The pwout and pwin could be described by Eq. 2 and 3, respectively: 

          RHpp swout ×=          (2)                       

wswin app ×=                   (3) 
where, ps is the saturated water vapour pressure (Pa),  RH is the environmental water activity 
and aw  the food water activity. 
Combining the granola moisture sorption model (Eq. 4) (Macedo et al. 2011) with the mass 
balance and permeation of the packaging system (Eq. 1) to establish the interaction between 
the moisture gain by the granola and the internal environment, led to  Eq. 5., and the shelf-life 
of granola was then calculated by numerical methods. 

c
wbaaM +=           (4) 
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where Ws is product dry weight ( 28.17 g); A is pouch area (0.017 m2); ps (38 °C) is 6556 Pa; 
permeance (P) was determined based on the WVTR (38 °C) parameters a, b and c (modified 
Freundlich) which were 4.055, 43.72 and 3.718 respectively; MCi is the initial moisture 
content (0.0650 gH2O/gdry solids) and MCc is the critical moisture content (0.0890 
gH2O/gdry solids).  

Results and Discussion  
Water vapour transmission rate  
The WVTR of the films (BOPP, NK, NM and N913) was determined using a full factorial 
experimental design at different temperatures and RH (Table 1).  

155



Table 1: Water vapour transmission rate (±the confidence intervals) of each film at different 
temperature (T°C) and relative humidity (RH %). 

T (°C); RH (%) Water vapour transmission rate (g.m-2.day-1) 
BOPP NK NM N913 

10; 33 0.310 ± 0. 197 0.837 ± 0. 395 0.558 ± 0.0 0.837 ± 0.395 
10; 76 0.420 ± 0.197 2.23 ± 0.790 4.47 ± 1.58 1.40 ± 0.395 
10; 96 1.95 ± 1.18 9.21 ± 0.395 11.7 ± 1.58 2.23 ± 0.0 
30; 32 1.67 ± 0.0 3.07 ± 0.395 1.95 ± 0.395 2.23 ± 0.0 
30; 75 2.79 ± 0.0  7.54 ± 0.395 22.9 ± 5.53 4.19 ± 0.395 
30; 92 3.63 ± 0. 395 21.8 ± 0.790 35.7 ± 0.0 6.14 ± 0.0 
40; 32 7.54 ± 0.395  8.65 ± 2.76 6.70 ± 0.790 7.54 ± 0.395 
40; 75 6.42 ± 2.76 15.1 ± 0.790 44.7 ± 13.4 11.4 ± 4.34 
40; 89 9.49 ± 1.58 38.2 ± 1.97 47.4 ± 0.0 18.4 ± 0.790 

The WVTR of BOPP and NatureFlex N913 films was independent of RH, but were shown to 
be T dependent, which was described well by the Arrhenius relationship. The NaturFlex NK 
and NM films showed that WVTR increased significantly with increasing T and RH. An 
Arrhenius relationship was used to describe the dependence between T and WVTR at 
constant RH. The activation energy (Ea) followed a linear relation with RH, Ea decreasing 
with the RH; an exponential function was used to fit the WVTRref as a function of RH. A 
global model for WVTR as a function of T and RH is presented in Eq. 6. 

[ ]





















−−=

refTTR
EaRHbaWVTR 11exp)*exp(                                     (6) 

Assessment of shelf life of packed granulated product 
An ANOVA analysis showed that the moisture uptake by granulated product was 
significantly affected (p < 0.05) by storage time and type of packaging material. Therefore, 
the water vapour permeability of the packaging film is crucial for control of the moisture 
uptake by granola and consequently its shelf life. The kinetics of moisture content of the 
granulated product packed in the different packaging materials under accelerated storage 
conditions, followed a first order reaction model (Figure 1). The model showed a suitable 
fitting and the coefficient of determination was higher than 0.803 and the mean relative 
deviation modulus was lower than 8.77. 

 
Figure 1: Example of kinetics of moisture content (MC) of granola under accelerated storage 

conditions (38°C and 90% RH) packed in a) BOPP, and b) N913 film. The markers 
correspond to the experimental values and the solid lines correspond to the predicted   values 

by a first order reaction model. 
As an example, the diagnosis plot between experimental values and predicted by a first order 
reaction model for N913 film is shown in Figure 2, and also the plot of frequency distribution 
of residuals and the plot of residuals vs. predicted values. A normal distribution of residuals 
was found and the trend was not biased showing a dispersed data points centred on zero. 
The initial moisture content of granola was 6.50 ± 0.057 % (d.b.) and the critical limit for 
moisture gain was decided on the basis of the consumer’s acceptability. The sensory cut-off 
point was determined based on the least significant differences and the threshold value was 
2.4 p.p. of moisture gain i.e., the critical moisture content was 8.9 % (d.b.)   

a) 

e) 

b) 
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Figure 2: Diagnosis plot between experimental 
and predicted values of moisture content (MC) of 
N913 film. The upper left graph shows the 
frequency distribution of residuals and bottom 
right graph shows distribution of the residuals 
versus predicted values of WVTR.  
 
 

The shelf life of packaged granola was predicted by solving Eq.5 numerically for each type 
of packaging film. For validation, accelerated tests were performed at 38 °C and 90% RH, as 
shown in Fig 1. The data of Fig. 1 were fitted by a first order reaction model to determine the 
time when critical moisture content was reached. Table 2 gives the predicted and 
experimental shelf-life for 38 °C and 90% RH, showing a good agreement always with a 
conservative estimate. The predicted shelf-life for normal storage conditions is also given. 

Table 2: Shelf life of granola for the different packaging films at accelerated and normal 
storage conditions; permeance predicted by Eq.6, shelf-life predicted by Eq.5, experimentally 

for accelerated conditions Fig1. 

Packaging 
film 

 
38°C and 90% RH 

 
Experimental  

Shelf life  
(days 

 
20°C and 60% RH 

Permeance 
(g/m2.day.Pa) 

 

Shelf life  
(days) 

Permeance 
(g/m2.day.Pa) 

 

Shelf life 
(days) 

control --- --- 21 --- --- 
BOPP 0.0012 

 
 
 

13 
 

19 0.00074 
 

283 
NK 0.0047 

 
3 7 0.0023 

 
90 

NM 0.0074 
 

2 3 0.0063 
 

33 
N913 0.0023 

 
7 9 0.00093 

 
228 

Conclusions  
The BOPP film was found to be the best barrier to water followed by the biodegradable N913, 
Moisture content gain during storage of granola product was less pronounced in BOPP 
packages compared to the others, and BOPP showed to be as effective as the control film. 
Among the biodegradable packages, the N913 was the most effective in controlling moisture 
gain of granulated product. Under accelerated conditions, the predicted shelf life of granola 
ranged from 13, 3, 2, and 7 days in BOPP, NK, NM and N913 pouches, respectively showing 
a good agreement with the experimental shelf-life. Under normal storage conditions 
the predicted shelf-life of granola ranged from 283, 90, 33, and 228 days in BOPP, NK, 
NM and N913 pouches, respectively. 
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Abstract 
The aim of this study was to investigate and compare the dynamics of FTIR and Raman 
spectroscopy in predicting the microbial spoilage of meat stored under different packaging 
conditions (aerobic and modified atmosphere packaging) at 5°C.  Time series spectroscopic, 
microbiological and sensory analysis data were obtained from minced beef samples and 
analysed using machine learning and evolutionary computing methods, including partial least 
square regression (PLS-R), genetic programming (GP), genetic algorithm (GA), artificial 
neural networks (ANNs) and support vector machines regression (SVR) including different 
kernel functions [i.e. linear (SVRL), polynomial (SVRP), radial basis (RBF) (SVRR) and 
sigmoid functions (SVRS)]. Models predictive of the microbiological load and sensory 
assessment were calculated using these methods and the relative performance compared.  In 
general, it was observed that for both FTIR and Raman calibration models, better predictions 
were obtained for TVC, LAB and Enterobacteriaceae, whilst the FTIR models performed in 
general slightly better in predicting the microbial counts compared to the Raman models.  
Additionally, regarding the predictions of the microbial counts the deterministic methods 
(SVM, PLS) that had similar performances gave better predictions compared to the 
evolutionary ones (GA-GP, GA-ANN, GP). This may arise from the fact that the stochastic 
nature of the later methods may make them unreliable for not big datasets like those used 
here, with GA-GP particularly prone to ‘over-fit’ the data. On the other hand, the GA-GP 
model performed better from the others in predicting the sensory scores using the FTIR data, 
whilst the GA-ANN model performed better in predicting the sensory scores using the Raman 
data. The results demonstrated that FTIR and Raman spectroscopy can be applied reliably and 
accurately separately or in combinations, to the assessment of meat spoilage. 
 
Keywords: FTIR, Raman, meat spoilage, PLS-R, ANN, SVR  

Introduction 
Fourier transform infrared (FTIR) spectroscopy has attracted considerable interest since it is 
rapid and non-destructive and has been identified as having considerable potential for 
applications in food and related industries, with several reports on muscle food analysis. 
Studies correlating the microbial spoilage of meat with biochemical changes within the meat 
substrate have been conducted for chicken (Ellis et al. 2002) and beef (Ammor et al. 2009, 
Argyri et al. 2010; Ellis et al. 2004). Raman spectroscopy is a vibrational spectroscopy 
method that is complementary to absorbance and can be used in food analysis, since it is non-
destructive, requires little pre-treatment of samples, provides information about different food 
compounds at the same time, offering quantitative analysis of food components with 
simultaneous information on molecular structure.  Examples of this technique for muscle food 
analysis, include studies upon the authenticity of poultry species, the quality screening of beef 
(Beattie 2004) and the texture of pork muscle (Herrero et al. 2008).  However, we know if no 
reported studies using Raman spectroscopy that have been conducted on the spoilage of 
muscle foods. 
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Materials and Methods 
Minced beef samples were packaged under air and MAP (40% CO2/ 30% O2/ 30% N2), and 
stored at 5 ̊C. Microbiological and sensory analyses, pH measurements, FTIR and Raman 
spectroscopy measurements were carried out in an attempt to correlate the total and individual 
microbial loads from these samples with the biochemical metabolites that fluctuate during the 
spoilage process. The data obtained from the above analyses were analysed using machine 
learning and evolutionary computing methods, including partial least square regression (PLS-
R), genetic programming (GP), genetic algorithm (GA), artificial neural networks (ANNs) 
and support vector machines regression (SVR) including different kernel functions [i.e. linear 
(SVRL), polynomial (SVRP), radial basis (RBF) (SVRR) and sigmoid functions (SVRS)]. 
Models predictive of the counts of the different microbial groups (TVC, Pseudomonas spp., 
Brochothrix thermosphacta, lactic acid bacteria (LAB), Enterobacteriaceae and 
yeasts/moulds) and sensory scores were calculated using these methods and the relative 
performance was compared. The criteria for evaluating and comparing the models were the 
root mean square error (RMSE), the square of the correlation coefficient R2 and the 
percentage of Prediction Error (% PE) (Oscar 2009) for the known values versus validation 
estimates.  In addition, the confusion matrix was used to evaluate the correct classification of 
the estimated sensory scores. 

Results and Discussion  
Microbial association and shelf life 
The minced beef samples were stored for 144 h aerobically and under MAP at 5 °C, until 
spoilage was very pronounced, whilst a total of 13 sampling points were collected for each 
condition with a sampling frequency of 12h.  The microbiological analysis revealed that 
during the aerobic storage of minced beef, Pseudomonas spp. were the dominant 
microorganisms, followed by Br. thermosphacta, yeasts and moulds, LAB and 
Enterobacteriaceae. Packaging under MAP delayed the growth of the pseudomonads, yeasts/ 
moulds, and Enterobacteriaceae and suppressed the maximum level of the aerobic counts 
compared with the aerobic storage, whilst affected positively the growth of Br. thermosphacta 
and LAB.  Similar results for meat have been described previously (Skandamis and Nychas 
2001; Ercolini et al. 2006).  

FTIR and Raman spectroscopy 
Typical spectral data obtained from FTIR in the range of 1800 to 900 cm-1 and Raman in the 
range of 3400 to 200 cm-1 collected from minced beef stored aerobically and under MAP at 5 
°C, as well as possible tentative assignments are shown in Figure 1 and Figure 2 respectively. 

Calibration models 
Tables 1 and 2 present the RMSE and the R2 values for the models built for FTIR and Raman 
measurements.  In general, it was observed that for both FTIR and Raman calibration models, 
better predictions were obtained for TVC, LAB and Enterobacteriaceae, whilst the FTIR 
models performed in general slightly better in predicting the microbial counts compared to the 
Raman models. Additionally, regarding the predictions of the microbial counts the 
deterministic methods (SVM, PLS) that had similar performances gave better predictions 
compared to the evolutionary ones (GA-GP, GA-ANN, GP). This may arise from the fact that 
the stochastic nature of the later methods may make them unreliable for not big datasets like 
those used here, with GA-GP particularly prone to ‘over-fit’ the data. The % PE values of the 
models (data not shown), indicates that for FTIR models, PLS, SVRL and SVRP gave for all 
the counts acceptable predictions (% PE > 70%), except from the counts of yeasts/ moulds. 
For Raman models, SVRR and SVRP gave for all the counts acceptable predictions (% PE > 
70%). The classification accuracies of the sensory estimates regarding the FTIR and Raman 
models for each class and in total can be seen at Table 3. On the other hand, the GA-GP 
model performed better from the others in predicting the sensory scores using the FTIR data, 
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whilst the GA-ANN model performed better in predicting the sensory scores using the Raman 
data.  
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Figure 1: FTIR spectra collected from minced beef samples stored aerobically and under 
MAP at 5ºC. 
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Figure 2: Raman spectra collected from minced beef samples stored aerobically and under 
MAP at 5ºC 

Table 1: Root mean square errors for the validation estimates for each FTIR and Raman. 
model 

 Model TVC Pseudomo-
nads LAB Br. thermo-

sphacta 
Enterobact

eria 
Yeasts & 
Moulds Sensory 

FTIR PLS 0.5472 
(9*) 0.6007 (9) 0.4368 

(9) 0.6886 (9) 0.4442(4) 0.5478(7) 0.3937(9) 

SVRL 0.5040 0.5662 0.4162 0.7846 0.4345 0.5516 0.3932 
SVRR 0.5109 0.5793 0.4111 0.6849 0.4382 0.5154 0.3941 
SVRP 0.5098 0.5648 0.4153 0.6842 0.4394 0.5475 0.3908 

GA-ANN 0.7909 0.7845 0.5857 0.9914 0.4835 0.5683 0.6499 
GA-GP 43.8596 0.6375 0.5740 0.7635 0.4205 0.5807 0.3450 

Raman PLS 0.6301 (6) 0.8122 (3) 0.5513 
(6) 0.7280 (6) 0.5245 (9) 0.6789 (5) 0.3228 

(6) 
SVRL 0.6777 0.8494 0.5328 0.8269 0.6502 0.3445 0.3932 
SVRR 0.5629 0.7060 0.4626 0.7054 0.4961 0.6291 0.3277 
SVRP 0.5713 0.7252 0.5107 0.7245 0.4345 0.5516 0.3932 

GA-ANN 0.9954 1.1708 0.6421 0.7905 0.7050 0.7907 0.3352 
GA-GP 1.0419 9.4335 0.6465 1.3131 0.8000 8.3899 0.7657 

*Number of latent variables used to calculate the PLS model. SVRL = linear. SVRR = radial basis function. SVRP = 
polynomial. 
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Table 2: R2  for the validation estimates for each FTIR and Raman model. 
 Model TVC Pseudomo- 

nads LAB Br. thermo-
sphacta 

Enteroba
cteria 

Yeasts & 
Moulds Sensory 

FTIR PLS 0.8066 0.7885 0.8392 0.7269 0.7562 0.7172 0.6453 
SVRL 0.8368 0.8129 0.8163 0.6693 0.7740 0.7240 0.6660 
SVRR 0.8316 0.8036 0.8178 0.7329 0.7600 0.7629 0.6580 
SVRP 0.8329 0.8147 0.8167 0.7347 0.7682 0.7201 0.6659 

GA-ANN 0.7086 0.6504 0.6920 0.5313 0.7466 0.7654 0.5533 
GA-GP 0.0086 0.7656 0.6730 0.6670 0.7902 0.7101 0.7346 

Raman PLS 0.7259 0.5183 0.7449 0.7142 0.7169 0.6169 0.7834 
SVRL 0.7205 0.5940 0.7220 0.6856 0.6068 0.7531 0.6660 
SVRR 0.7951 0.7003 0.7874 0.7317 0.7232 0.6254 0.7781 
SVRP 0.7893 0.6835 0.7649 0.7333 0.7740 0.7240 0.6660 

GA-ANN 0.4779 0.2894 0.6206 0.7035 0.4774 0.4341 0.8246 
GA-GP 0.3457 0.0018 0.6218 0.2697 0.3191 0.0045 0.2766 

Table 3: Percentage of the correct classification of the validation sensory estimates for the 
FTIR and Raman models 

 Class Correct Classification (%) 
  PLS SVRL SVRR SVRP GA-ANN GA-GP 

FTIR Fresh (n =6) 33.33 16.67 33.33 33.33 66.67 66.67 
Semi-fresh (n=12) 83.33 91.67 100.00 100.00 50.00 91.67 

Spoiled (n =30) 90.00 93.33 93.33 93.33 96.67 90.00 
Total (n =48) 81.25 83.33 87.50 87.50 81.25 87.50 

Raman Fresh (n = 26) 80.77 73.08 69.23 73.08 96.15 23.08 
Semi-fresh (n=30) 56.67 70.00 66.67 80.00 76.67 73.33 

Spoiled (n =74) 90.54 90.54 87.84 90.54 81.08 87.84 
Total (n =130) 80.77 82.31 79.23 84.62 83.08 71.54 

Conclusions  
The results of this study demonstrate that Raman spectroscopy as well as FTIR, in 
combination with the appropriate data analysis and model development can be applied 
reliably and accurately to the rapid assessment of meat spoilage. However, further studies are 
required to create data bases and apply the appropriate prediction models, so as these methods 
can be applied in meat industries. 
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Abstract 
The influence of water activity (aw) on microbiological and organoleptic properties of food is 
a well-known phenomenon. Several models have been described in order to calculate water 
activity of multicomponent solution. They are based on the hygroscopic properties of 
components. In this study we have compared the robustness of the main predictive models for 
aw solution (Grover, 1947, Norrish, 1966, Roa, 1998 and Roos, 1975). For insoluble 
macromolecules, sorption isotherms are used to calculate the aw. Fitting accuracy of the two 
models was studied. The GAB model (Guggenheim-Anderson-deBoer, 1966) is robust for aw 
values from 0 to 0.85 and Ferro-Fontan model (1982) is robust for aw values from 0.5 to 0.98. 
In order to simulate the aw of formulated food which contain solutes and insoluble 
compounds, it is necessary to combine models described for solution and descriptive models 
for sorption isotherms. We have developed a Matlab® based tool called awDesigner in order 
to simulate the aw value of formulated foodstuff. Software modelling is based on Roa and 
Ferro-Fontan models and simulates the equilibrium aw of all the components. Validation of 
the mathematical model was done on different type of matrices with an aw range from 0.7 to 1 
(bakery products, meat products, syrup...). This tool shows great correlations between 
predictive values and aw values measured with Aqualab Aw-meter (R2 =0.94). 
 
Keywords: simulation, water activity, modelling, software 

Introduction 
The influence of water activity (aw) on microbiological and organoleptic properties of food is 
a well-known phenomenon. Several models have been developed in order to determine 
precisely the water activity value in high moisture range. All these mathematical models are 
based on the compositions of the solutions. The main models are empirical but give good 
accuracy (Roa, 1998; Teng and Seow, 1981, Chirife et al., 1980). But all these models could 
only be used for binary and multicomponents solutions but not for foodstuff containing 
insoluble compounds. The objective of this work is to develop mathematical model in order to 
simulate water activity of foodstuff and develop awDesigner software to simulate water 
activity of complex foodstuff in a wide range of formulation and water activity. 

Material and methods 
Several models were used to simulate the aw values of various solutions. 

Description of the main published models for simulation of water activity of multi 
components solutions 

- Roa equation 
For multi components solutions, Roa proposed a model based on the K constant which is the 
depressor coefficient of water activity of each solute. m represents the molality of the solutes, 
and K the Roa parameters (Rao and Tapia, 1998). 

∑−= jjw mKa .1            (1) 
- Grover equation 

The Grover equation (Barbosa et al., 1986) presents the water activity value as a function of 
solute concentration (Ci, g / g water) and the coefficient of sucrose equivalence of the solute 
(Si).  
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- Ross equation  
The binary contributions (awi

0) for each solute, necessary for the application of the Ross 
equation were calculated using Teng and Lenzi model. The calculations were reported by Roa 
(Roa and Tapia, 1998). 
ܽ௪ ൌ ∏ ܽ௪              (3) 

Table 1: Parameters for Roa, Grover and Norrish equations determined for various solutes. 
solute K (molal-1) of Roa Parameters of Grover K AwDesigner (eq8)  

0.01959 1.3 0.01889 Glucose 
0.01723 4 0.01787 Glycerol 
0.02395 1 0.02289 Sucrose 
0.01806 4 0.01782 Mannitol 
0.03710 9 0.03591 NaCl 
0.03248 9a 0.03208 KCl 
0.05620 9a 0.08207 MgCl2 

 

Model for fitting sorption isotherm 
In order to describe the sorption isotherm, the two main models described are: Guggenheim 
Anderson deBoer (GAB, 1966) model and Ferro-Fontan model (1982). The Ferro-Fontan (eq 
4) model is defined by the following equation (Chirife et al., 1983). The parameters γ, α and 
C have no real physical meaning. The first advantage of this model is that it can account for 
the asymptotic character of sorption isotherms at high humidity. For each ingredient, the 
sorption isotherm was obtained using salt-saturated solution method. Then, the Ferro-Fontan 
parameters (eq 4) were determined by minimizing the differences between the modelled and 
experimental values. 

C
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Validation of the models for multicomponent aqueous solutions 
For multicomponent aqueous solutions, the validation of the models was performed 
comparing experimental data with water activity simulations using reported models, i.e. Ross 
model, Roa model and Grover model (Teng and Seow, 1981; Chirife et al., 1980). 
To evaluate the accuracy of the predictions, two parameters were determined (i) delta values 
which represents the difference between estimated and experimental values (eq 6) and (ii) PE 
value representing the percentage error (PE, eq 5). The mean of PE was also calculated for 
each studied model. 

     (5) 
          (6) 

Validation of the developed model on bakery products 
The validations have been made on different bakery products with different formulations 
containing: flour meal (26.8% to 48.1%), rapeseed oil (0% to 19.2%), sucrose (20% to 
36.4%), whole egg (10.4% to 29.2%), sorbitol (0% to 5.3%), water (5% to 20%), glucose 
syrup DE 60 (0% to 2.1%), fructose (0% to 26%), glucose (0% to 26%), black chocolate 60% 
cocoa (0 to 10%), salt (0;5%) and bakery yeast (0.4%). The cakes have been cooked in a 
bakery oven 11 minutes at 180°C using 25g cake molds. 
The determination of water activities were performed for the dough and the cooked cake. 
Cooked cakes were cut and ground before aw measurements. Calculations of cooked cakes aw 
took into account the dehydration of dough during the cooking step. 
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Results and Discussion 
Model development for multi components systems 
For binary solutions (water with one solute), the equation of Roa (eq 7) determines water 
activity as a function of solute mass (mj), molar mass (Mj), depressor coefficient constant Kj 
and the volume of water (V). Equation 8 is similar to equation 6 with Xi representing the 
water content of the solute (expressed in dry basis). Constant K (table 1) was calculated using 
the Teng and Lenzi database (Teng and Lenzi, 1974). 

)1.( wj

j

j
i aM
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−
==
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jw .
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(7) (8) 

We propose a model to describe the impact of water content on a multi components solution 
taking into account the global water content and the relative percentage of each component in 
the solution.  
This model is a different expression of the model of Roa (eq 9). Roa model determines the 
water activity of multicomponents solutions as a function of molality of each components and 
their depressor coefficient constant K. While our model explains the water content as a 
function of water activity, K constant, molar mass of the components and mass ratio of the 
compound (γi) expressed as dry mass of the constituent divided by the total dry mass. 
The model is based on the simulation of the repartition of water between all the components 
in order to equilibrate the aw value of each component. This model presents the advantage to 
be usable in food industry by using only the concentration of each solute. 
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        (9) 

The figure 1 shows comparison between the simulated aw value obtained with Ross model 
(x), Roa model ( ), Grover model ( ) and the model developed for AwDesigner software 
( ).  The experimental aw value and the aw value obtain with Roa and Ross are reported by 
Roa, 1998, Grover simulation was calculated for this work. The formulations of the studied 
solutions are described by Roa (Roa, 1995) for different electrolytes and non-electrolytes: 
NaCl, KCl, MgCl2, CaCl2, Sucrose, Glycerol, glucose and mannitol. 
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Figure 1: Differences delta obtained between experimental and simulated values obtained 
using Ross equation, Roa equation, Grover equation, and AwDesigner. 

Figure 1 shows a general tendency of Roa’s equation to underestimate aw value when the aw 
is higher than 0.9, and to over-estimate aw value when aw value is lower than 0.9. Ross’ 
equation over-estimates aw for all the solutions tested.  The percentage error (PE) calculated 
using equation 6 for ternary and quaternary solution shows differences between the accuracies 
of the different models. AwDesigner gives the best accuracy of calculation. AwDesigner’s PE 
is 2.21%, Roa’s PE is 4.02%, Ross’ PE is 5.84%. Grover’s model gives the highest PE value: 
18.85%. 
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Development of model for multi component system containing insoluble compounds 
Assuming the equilibrium of all the water activity of all the components of the foodstuff, we 
can describe the following equation 11 including the solutes and the insoluble components. 
Where γi is the mass fraction of each solute (expressed by g/g total dry basis) and γi is the 
mass fraction of each unsoluble components described by sorption isotherm. Xi and Xj 
represent the repartition of water on all solutes and non-solutes compounds respectively. For 
solutes, Xi is expressed using eq. 8. For non-solutes compounds, previous works have shown 
that GAB model give good accuracy in sorption isotherm fitting from 0 to 0.85 aw, Ferro-
Fontan gives good accuracy from 0.5 to 0.98 aw. For Xj values, in our work we used Ferro-
Fontan model, eq 4. 
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==
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ii XXX
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.. γγ        (10) 

 
This model has been programmed on Matlab in order to provide software with user friendly 
interface (AwDesigner®). Different comparison between simulated aw value and measured 
aw values have been done in order to validate the developed program. For these validation we 
have work on cereal based products, sauce and meat products. The simulations gave good 
fitting. Correlation between simulated values and predicted values is 0.947. The PE value is 
7.5%. 

 
Figure 2: Comparison between experimental aw  and aw simulated with AwDesigner for bakery 

products. 
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Conclusion 
Simulation of aw of formulated foodstuff is more complicated than aw simulation of 
multicomponent solution. Previous developed models enabled to calculate with good 
accuracy, the aw of multicomponent solution containing only solutes but does not take into 
account the solid phases. This work allowed to develop models and a software in order to 
determine the aw of formulated foodstuff as a function of its formulation. The validations of 
the model give good accuracy: R2 = 0.94 and the average error (PE value) is 7.5% for bakery 
products. The software has also been designed for other types of product (sauce, meat 
products...) and contains more than 230 different ingredients. 
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Abstract 
The objective of the study was the kinetic modelling of temperature and osmotic pre-
treatment with antimicrobial agents dependence on the shelf life of chilled fish fillets. Fresh 
gilthead seabream (Sparus aurata) fillets were osmotically treated with 50% maltodextrin 
(DE47) plus 5% NaCl for 45 min at 15°C. HDM/NaCl solutions with 0.5% carvacrol, 0.5% 
glucono-δ-lactone or 1% Citrox (commercial antimicrobial mix) were also used. Untreated 
and pre-treated slices were aerobically packed and stored isothermally (0-15°C). Quality 
assessment was based on microbial growth, total volatile basic nitrogen (TVB-N), 
trimethylamine nitrogen (TMA-N), lipid oxidation (TBARs) and sensory scoring. Quality 
indices were kinetically modelled and temperature dependence of quality loss rates was 
modelled by Arrhenius equation. The models developed from the isothermal experiments 
were validated at dynamic conditions (Teff=8.8°C). 
Microbial growth, change in chemical indices and sensory scoring were modelled at 
isothermal conditions and the temperature dependence of each index was expressed by the Ea 
value of the Arrhenius equation (ranging from 48 to 76 kJ/mol). End of shelf life determined 
by sensorial unacceptability was correlated to the respective values of the quality indices. 
Osmotic pre-treatment led to significant shelf life extension of fillets, in terms of microbial 
growth and organoleptic deterioration. The use of antimicrobial agents gave additional shelf 
life increase of pre-treated fillets. Based on microbial growth, the shelf life was 7 days for raw 
samples and 9 days for osmotically pre-treated fillets at 5°C. The addition of antimicrobials 
increased shelf life to 15, 17 and 12 days for carvacrol, glucono-δ-lactone and Citrox at 5°C, 
respectively. The non-isothermal experiments indicated the suitability of the models to predict 
the shelf life of fish at the different alternative treatments under non-isothermal conditions. 
Keywords: Osmotic dehydration, fish, carvacrol, glucono-δ-lactone, kinetic modelling  

Introduction 
Spoilage of chilled fresh and minimally processed fish is attributed mainly to bacterial 
activity and it manifests itself as changes in the sensory characteristics (Gram and Huss 
1996). Gilthead seabream (Sparus aurata) is a Mediterranean fish of high commercial value 
due to its desirable characteristics (aroma, taste, white flesh) and has high commercial 
potential if its shelf life can be extended through packaging or minimal processing. Gilthead 
seabream is one of the most cultured species in the Mediterranean area and its production in 
Greece was estimated at 52165 tons in 2008, with Greece being the leading world producer 
with the 40.5% of the total Mediterranean production (FAO 2010). 
Osmotic dehydration (OD) is a technique used to reduce water activity (aw) in order to 
improve nutritional, sensorial and functional properties of food. It consists of an immersion of 
the product into a concentrated solution (i.e. sugar, salt, sucralose etc.). Previous studies for 
osmotic treatment of fish products evaluate the effect of different solutes, mainly sucrose or 
salt, on the equilibrium and mass transfer into fish slices (Collignan and Raoult-Wack 1994; 
Medina-Vivanco et al. 2002; Tsironi et al. 2009). 
Minimal processes offer the potential to further increase the shelf life of fish products. A wide 
range of antimicrobial systems have been examined for their potential use in food 
preservation. Carvacrol is the major component of the essential oil fraction of oregano and 
thyme, responsible for their antimicrobial activity (Mahmoud et al. 2004). Glucono-δ-lactone 
is hydrolyzed to form gluconic acid and is used mainly in acidified meat products, like salami 
and sausages, to reduce the risk of bacterial contamination (Barmpalia et al. 2005). Several 
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studies investigate the potential use of commercial antimicrobial mixes as shelf life extenders 
for meat products. Citrox Biocite AFA001 (ProVigoroTM, Citrox Limited, Middlesbrough, 
UK) is a nutritional food supplement, consisting of bioflavonoid complexes, vitamins and 
naturally occurring organic acids. 
The objective of the study was the kinetic modelling of temperature and osmotic dehydration 
with antimicrobial agents dependence on the shelf life of chilled gilthead seabream fillets and 
the establishment of reliable kinetic equations validated in dynamic conditions. 

Materials and Methods 
Marine cultured gilthead seabream (Sparus aurata) fillets (weight: 90±10 g, capture zone: 
Aegean Sea, Greece), provided by a leading Greek aquaculture company, were cut into 
rectangular slices (3x3x1cm3, 10±1g) in a laminar flow hood. Osmotic solution was prepared 
by dissolving high dextrose equivalent maltodextrin (DE 47, HDM, 50% ww), NaCl (5% ww) 
and distilled water. HDM/NaCl solutions with 0.5% carvacrol, 0.5% glucono-δ-lactone or 1% 
Citrox were also used (coded as HDM+carvacrol, HDM+g-δ-l and HDM+Citrox, 
respectively).  
Sliced samples were osmoticaly treated at 15ºC for 0-360 min, as described by Tsironi et al. 
(2009). The solution to sample ratio was 5:1 (w/w) to avoid significant dilution of the 
medium by water removal. Moisture content, salt content, aw, water loss and solid gain were 
calculated.  
Untreated and pre-treated slices were aerobically packed and stored isothermally at 0, 5, 10 
and 15°C. Quality assessment was based on microbial growth (total viable count, 
Pseudomonas spp., lactobacilli, Brochothrix thermosphacta, Enterobacteriaceae spp., 
Shewanella putrefaciens, yeasts and molds), total volatile basic nitrogen (TVB-N), 
trimethylamine nitrogen (TMA-N), lipid oxidation (TBARs) and sensory scoring (Tsironi and 
Taoukis, 2010). The microbial growth was modelled using the Baranyi Growth Model 
(Baranyi and Roberts, 1995). Quality indices were kinetically modelled and temperature 
dependence of quality loss rates was modelled by Arrhenius equation.  
In order to validate the applicability of the models from the isothermal experiments to real 
conditions, a variable temperature experiment (Var) was applied, that consisted of three, 
repeated isothermal steps (2 h at 5°C, 2 h at 9°C and 2 h at 12°C), corresponding to an 
equivalent effective temperature (Teff) of 8.8°C. The rates of the quality deterioration 
observed by the non-isothermal experiment were compared to the values determined by the 
models developed by the isothermal experiment.    

Results and Discussion  
The treatment with all osmotic solutions caused a significant moisture loss from fish flesh. 
The aw value decreased with the osmotic pretreatment and the final values averaged 0.89. The 
decrease of aw at these levels could lead to more stable products without significant quality 
and nutritional damage, observed with traditional drying methods. Processing time of 45 min 
was selected as the reference pre-treatment used in the shelf life study. At the selected pre-
treatment conditions the fish flesh has 69% moisture, 2.5% solid gain and 0.95 water activity. 
The addition of the antimicrobial agents did not have any effect on the mass transfer into fish 
slices. 
Pseudomonas spp. dominated spoilage in all samples, as also reported by Gram and Huss 
(1996) for aerobically packed fish. After the osmotic pretreatment the microbial population 
was lowered for 0.2-1.3 logcfu/g, depending on the bacteria species, due to decontamination 
induced by high solute concentrations at the product/solution interface (Collignan et al. 
2001). The osmotic pre-treatment led to significantly lower microbial growth rates at all 
storage temperatures. The antimicrobial agents gave additional hurdles on microbial growth. 
Carvacrol and glucono-δ-lactone seem to have stronger antimicrobial action than Citrox, 
especially at the lower storage temperatures. Under this context, osmotic pre-treatment and 
antimicrobial agents can practically extend the shelf life of fish fillets. The untreated samples 
showed increased TBAR values (1.20 mg MDA/kg) after 13 days of storage at 5°C, while 
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osmotic pre-treated samples reached this level after 15 days. HDM+carvacrol samples 
showed significantly lower values than the respective ones for the other pre-treatments. A 
mild antioxidant effect was also observed for Citrox, mainly due to the presence of flavonoid 
compounds.  
TVB-N values increased with storage time following apparent first order kinetics. 
Osmotically pre-treated samples showed lower TVB-N values than untreated fish slices. 
TVB-N values increased from initial values of 13.0±0.6 mg N/100 g and reached relatively 
high levels at the end of storage period (25-50 mg N/100 g, depending on storage conditions 
and treatment of samples). Samples pre-treated with osmotic solutions with the addition of 
antimicrobials led to significantly lower rates of TVB-N production, with carvacrol and 
glucono-δ-lactone showing the stronger effect.  
The sensory scores of untreated and osmotically pre-treated slices were modelled by apparent 
zero order lines. Osmotic pre-treatment maintained the sensory attributes of fish slices, 
indicating freshness for longer times than the untreated samples. Osmotically pre-treated fish 
with the addition of antimicrobial agents exhibited the highest sensory scores in terms of 
odour, taste and overall acceptability, with glucono-δ-lactone showing the stronger 
preservative effect. Carvacrol affected significantly the taste of fish, while Citrox and 
glucono-δ-lactone did not show similar effect on the organoleptic parameters of fish. 
The temperature dependence of the rates of microbiological deterioration, TNB-N changes 
and sensory deterioration was adequately described by Arrhenius kinetics in the temperature 
range 0-15ºC, with Ea values ranging from 48 to 76 kJ/mol. A score of 5 for overall 
impression was judged as the lower limit of acceptability coinciding with slight off odour and 
off taste development. At all storage temperatures, the time of sensory rejection coincided 
with an average TVB-N concentration of 22 mg N 100g-1, being in agreement with the limits 
reported by relevant studies (Koutsoumanis and Nychas 2000; Tsironi et al., 2009; Tsironi 
and Taoukis 2010). Pseudomonas spp. growth was a good quality index for shelf life 
evaluation. The limit of sensory shelf life coincided with a Pseudomonas spp. level of 6 
logcfu/g at all storage temperatures. Based on the limits of acceptability for the selected 
quality indices (Pseudomonas spp. count, TVB-N, sensory scoring) and the temperature 
dependence of their rate constants expressed by the Arrhenius kinetics, the shelf life can be 
determined at any storage temperature (Equations 1-3) 

 
based on Pseudomonas spp. growth  (1) 
 
 
 
based on TVB-N    (2) 
 
 
 
based on sensory scoring   (3) 
 

where tSL is the shelf life (d) of gilthead seabream slices, loNl is the limit Pseudomonas spp. 
load (6 log cfu/g), logNo is the initial Pseudomonas spp. load, CTVB-N,l is the limit TVB-N 
concentration (22 mg N 100g-1), CTVB-N,o is the initial TVB-N concentration, sl and so are the 
limit (sl=5) and the initial sensory scores for overall acceptability, respectively, kref is the rate 
constant of change of each index, at a reference temperature Tref (4oC), Ea is the activation 
energy of each index, R is the universal gas constant. The shelf life determined based on the 
different quality indices showed no significant differences, indicating high correlation 
between the organoleptic deterioration, TVB-N production and Pseudomonas spp. growth 
(Figure 1a). 
The models developed from the isothermal experiments were validated at dynamic 
conditions. The growth rates of the spoilage microflora and the rates of change of the 
chemical indices and sensory parameters derived from the models were compared to the 
observed by the experiment under non-isothermal conditions (Teff=8.8°C), as shown in Figure 
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1b. The model gave satisfactory results with the predictions, as the maximum relative error 
(RE) value (%RE=[(kobserved-kpredicted)/kobserved]x100) was 18.5%, indicating the suitability of 
the models to predict the shelf life of fish under non-isothermal conditions (Gougouli et al. 
2008). 
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Figure 1. (a) Shelf life of gilthead seabream slices based on sensory scoring and (b) Specific 
growth rates (d-1) of spoilage microflora and rate constants of TVB-N and sensory scoring 

calculated by the models from the isothermal experiments and determined by the non-
isothermal experiments: ■ Control, □ HDM, ▲ HDM+carvacrol,  HDM+g-δ-l and ● 

HDM+Citrox. 

Conclusions  
The results of the study show the potential of adding carvacrol, glucono-δ-lactone or Citrox in 
the osmotic solution to extend the shelf life and improve commercial value of fresh chilled 
osmotically pre-treated fish products. Pre-treated samples were found to have improved 
quality stability during subsequent refrigerated storage, in terms of microbial growth, TVB-N 
changes and organoleptic degradation, resulting in a significant shelf life extension at all 
storage temperatures. The non-isothermal experiments indicated the suitability of the models 
to predict the shelf life of fish at the different alternative treatments under non-isothermal 
conditions. 
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Predictive models and tools for food processing 
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Abstract 
Herein we describe an alternative predictive model for microbial inactivation and a novel 
web-tool for the application of predictive microbiology. The developed model enabled the 
identification of a minimum processing condition for a required log reduction, regardless of 
the underlying inactivation kinetics pattern. The developed new web-tool, MRV (Microbial 
responses viewer) provides information concerning growth/no growth boundary conditions 
and the specific growth rates of queried microorganisms. Using MRV, food processors can 
easily identify the appropriate food design and processing conditions. 

Keywords: food processing, inactivation model, web-tool, ComBase  

Introduction 
Predictive microbiology is a well-established and recognised scientific discipline with a 
burgeoning literature. Quantitative evaluation of microbial responses in food environment 
allows us to set an appropriate processing condition and formulation of processed food. 
However, it seems that most of the outcomes of studies in predictive microbiology so far are 
not necessarily converted to practical use in real food processing.  For example, although 
extremely complex mathematical models might be worth evolving basic understanding of 
microbial responses, their application would not be easy in practical. Thus, our research group 
has been conducted for developing predictive models and tools that are intended to contribute 
to practical use in a real food processing. This paper describes our main contributions to food 
industry. 

1. An alternative approach to evaluate effects of microbial inactivation 
Background and objective  
The main concern for the food processor in ensuring microbiological safety is to set 
processing criteria for achieving a required log reduction of the microbial population. This 
point is also the focus of concepts such as the food safety objective (FSO), performance 
objective (PO), and performance criterion suggested by the International Commission on 
Microbiological Specifications for Foods and Codex Alimentarius. The performance criterion 
concept signifies the change required to reach a hazard level at each step of the food chain in 
order to meet a PO or FSO. The determination of the D-value and the z-value has been widely 
applied to thermal inactivation processes to assess the inactivation effect and set a processing 
condition for achieving a required log reduction. These concept values are calculated for 
inactivated microorganisms that follow log-linear kinetics. However, these values are not 
applicable to those microorganisms that display nonlinear inactivation kinetics. The 
calculation of a D-value from nonlinear inactivation kinetics results in an underestimation or 
overestimation of the log reduction, depending on the calculation method used. Furthermore, 
the evaluation of the inactivation effect on the basis of a survival curve is conducted by using 
the difference between the initial cell numbers (normally 6 to 8 log10 CFU) and reduced cell 
numbers induced by some treatments. When the inactivation curve follows log-linear kinetics, 
the same log reduction will be obtained regardless of the inoculum level. For example, 5-log 
reductions from 8 log to 3 log and 6 log to 1 log would show the same treatment time with 
log-linear kinetics. These reductions, however, would not always appear to require the same 
treatment time with nonlinear kinetics. In addition, these two 5-log reductions underlie 
different net reductions of microbial cell numbers. Therefore, we should examine the net log 
reduction to obtain an accurate treatment time for a required log reduction by taking into 
account the initial level. 
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Figure 1: Representation of the survival/death interface 
with respect to the pressure-holding time at 500 MPa with 
the inoculum level predicted by model 1 for C. sakazakii in 
infant formula (IF) at 40°C. The black and white circles 
represent survival and death, respectively, in all three 
replicate experiments. The black and white squares 
represent responses that differed among the three replicate 
trials. The interface with P of 0.5 (50% probability of 
growth) is indicated by the solid lines. The dashed and 
dotted lines represent predictions at P of 0.1 (more 
conservative) and 0.9 (less conservative), respectively. 

Figure 2: Representation of the changes in the probability 
of inactivation with respect to the pressure-holding time 
under different pressure conditions and at different 
inoculum levels. Effect of the medium type on HPP-
induced C. sakazakii inactivation with an inoculum level 
of 5 log10 CFU/ml in TSB and infant formula (IF) treated 
at 500 MPa and 25°C. 

Recently, we developed a survival/death interface model, which is a new predictive modeling 
procedure used to determine bacterial behavior after high pressure processing (HPP) 
inactivation as a probability of survival or death (Koseki and Yamamoto 2007). In this 
procedure, the probability of death after processing is modeled using logistic regression. The 
modeling procedure is used to predict a minimal processing condition to achieve a required 
log reduction, which represents a net log reduction that takes into account the inoculum level 
independent of the underlying inactivation kinetics. In addition, the certainty of the predicted 
inactivation effect under the predicted processing condition can be estimated simultaneously. 
Herein, a probabilistic model for predicting Cronobacter sakazakii inactivation in trypticase 
soy broth (TSB) and infant formula (IF) by high-pressure processing was introduced. 

Highlights of the study 
The developed survival/death interfaces 

model describes the effects of the applied 
pressure and pressure-holding time at 
different inoculum levels (3, 5, and 7 log10 
CFU/ml) in different media (TSB and 
infant formula) at different temperatures 
(25 and 40°C). Overall, the survival/death 
interfaces are consistent with the observed 
data. All variable factors mentioned above 
greatly influenced the pressure-holding 
time required for C. sakazakii inactivation 
induced by HPP. C. sakazakii cells in 
infant formula showed higher resistance to 
pressure than those in TSB, demonstrating 
that the medium type significantly affects 
bacterial inactivation. The representation 
of this model prediction (Fig. 1) permits 
visual determination of a processing time 
for a required arbitrary log reduction with 
arbitrary probability. These survival/death 
interface models enable the identification 
of minimum processing criteria, along 
with the probability for achieving a 
required bacterial log reduction. 

Since the developed model expresses 
the odds ratio of the survival of C. 
sakazakii, the probability of survival can 
be calculated with respect to the pressure-
holding time under different pressure 
conditions and at different inoculum levels, 
as shown in Fig. 2. The results show that 
as the pressure-holding time is increased, 
the probability of inactivation increases. 
Figure 2 illustrates the effects of the 
medium type on the probability of 
inactivation.  

Employment of the new model 
described in this study would be useful for 
food processing in terms of 
microbiological food safety requirements 
based on the concepts of FSO and PO, 
since microbial inactivation conditions that  
cause the required log reduction can be 
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determined, along with the achievement probability. The new model can also be employed to 
determine processing criteria that meet FSO or PO requirements. 

In conclusion, the survival/death interface model enables the prediction and evaluation of 
HPP-induced C. sakazakii inactivation in reconstituted infant formula with a probability of 
achieving a required log reduction that takes into account the effect of plural factors. The 
model will contribute to setting processing criteria corresponding to FSO and/or PO guide- 
lines. Furthermore, the modelling procedure would contribute to progress regarding predictive 
microbiology as a new and different trend for a microbial inactivation model. 

2. Collaboration with ComBase: development of microbial responses viewer (MRV)  
Background and objective  

Predictive microbiology is used to ensure microbial food safety by facilitating the 
selection of appropriate processing and distribution conditions. Several predictive tools have 
been developed such as the Pathogen Modeling Program (PMP) (Buchanan 1993), 
Sym'Previus (Leporq et al. 2005) and ComBase (Baranyi and Tamplin, 2004) which provide 
microbial growth and/or inactivation kinetics. However, in order to establish food processing 
and distribution guidelines, food processors are required to employ processing conditions that 
prevent microbial growth. Exploring targeted bacterial growth or no growth conditions has 
been recognized as an important component in ensuring food safety (McMeekin et al. 2000, 
2002).  

We developed a web-based new database, MRV (Microbial Responses Viewer: 
http://mrv.nfri.affrc.go.jp) (Koseki 2009), consisting of bacterial growth/no growth data 
classified from ComBase using specific criteria. MRV can retrieve bacterial growth/no 
growth data defined under specified environmental conditions of temperature, pH, and aw. In 
addition, MRV simultaneously retrieves growth rate data produced under specified 
environmental conditions. In the present initiative it was important to recognize data visually 
and intuitively, and the growth/no growth and growth rate data were therefore combined to 
make it easy to retrieve the required information. This innovative database facilitates the 
retrieval of growth/no growth data for various kinds of bacteria and will contribute to 
ensuring microbiological food safety. 

Highlights of the study 
We developed a new database, MRV, which enables the collection and retrieval of 

growth/no growth data for 17 kinds of microorganisms. The data in MRV were calculated on 
the basis of temperature, pH, and aw data extracted from ComBase. In addition to growth/no 
growth data, MRV simultaneously provides information on specific growth rate (µmax). The 
interface of the developed database is designed to easily and visually find the required data. 
Accordingly, we have developed a revolutionary predictive tool for determining bacterial 
growth/no growth under specified conditions. 

The retrieval interface was designed to visually understand the effect of environmental 
conditions (Fig. 3). Users can easily find the environmental combination (temperature, pH, 
and aw) that support bacterial growth or not. The change in specific growth rate (µmax) is 
illustrated as a growth curves that follows the µmax changes in real time. Furthermore, users 
can access the detail of the original data by clicking each data point. The growth/no growth 
data extracted from ComBase are derived from a large amount of bacterial growth/death 
kinetics data. The development of a database with the extracted data from ComBase allows us 
to retrieve comprehensively various bacterial growth/no growth data. MRV provides µmax data 
that are modelled on ComBase data. MRV enables the retrieval of growth/no growth 
boundary conditions and µmax, playing an important role in determining various food 
processing and distribution conditions. 

Although the growth/no growth data in the present development were extracted from 
ComBase, modelling the growth/no growth interface has not been implemented. Since many 
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Figure 3: An example of retrieval of E. coli in broth conditions by MRV. Movement of mouse pointer on the 
contour graph of µmax (blue: slow growth, yellow: fast growth) makes it possible to draw growth curve in real time. 

The detail of the data can be seen by clicking on each point on the graph (red and green means growth and no 
growth, respectively). The size of the point on the graph reflects the number of records. The larger the size of 

point, the more number of records indicate. 
 
modelling procedures for the growth/no growth interface have been reported, the data in the 
present study facilitate the examination of various modelling approaches by the user. While 
the ComBase platform consists of microbial response kinetic data, MRV could be a platform 
focused on growth/no growth data that are expected to accumulate as the field evolves. 
Nevertheless, MRV data need to be updated on a continuous basis, incorporating data from 
both the published literature and future studies. In addition, modelling the growth/no growth 
interface would enhance the usability of MRV. Since ComBase contains an ample amount of 
microbial inactivation data, it would also be possible to develop a database of survival data in 
an effort to estimate inactivation effects. The development of MRV is expected to continue in 
the future. 
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 Abstract 
The objective was to develop a mathematical model for predicting growth/no growth of 
psychrotrophic C. botulinum in pasteurised meat products packed in modified atmosphere 
(30% CO2 and 70% N2) for combinations of storage temperature, pH, NaCl, added nitrite and 
sodium lactate. Data for developing and training the ANN (artificial neural network) were 
generated in meat products. A total of 257 growth experiments were carried out in three 
different meat products with different combinations of storage temperature, pH, NaCl, nitrite 
and sodium lactate. The meat batter was inoculated with 104 - 106 spores/g using a 4-strain 
cocktail of gas-producing C. botulinum. The meat products were sliced, packed in modified 
atmosphere (30% CO2 and 70% N2) and stored at 4°C, 8°C and 12°C, respectively, for up to 
8 weeks. The enumeration of C. botulinum was performed when the headspace volume of the 
package was increased by 10% or more, or at the end of the storage period. Each of the 257 
combinations was made in 20 replicates, making it possible to estimate the probability of 
growth in each combination. These 257 estimates and the matching levels of the hurdles were 
used to train the ANN with network architecture of 5 input neurons and 3 hidden neurons. 
The model includes five variables: temperature (4 - 10°C), pH (5.4 - 6.4), NaCl (1.2 - 2.4%), 
nitrite (0 - 150 ppm) and sodium lactate (0 - 3%). On a separate validation data set (n = 60),  a 
bias of 0.008 was obtained, indicating that the model is slightly fail-safe.  
 
Keywords: Psychrotrophic C. botulinum, predictive modelling, meat products  

Introduction 
In mild pasteurised ready-to-eat (RTE) meat products packed in modified atmosphere (30% 
CO2/70% N2) and stored at temperatures below 10°C, there is a possibility of growth of non-
proteolytic C. botulinum if the shelf-life is longer than 10 days. Non-proteolytic C. botulinum 
is a anaerobic and spore-forming bacterium that is capable of forming a neurotoxin even at 
temperatures down to 3.3°C. Thus, it is necessary to ensure that growth is prevented in RTE 
meat products during storage at temperatures below 10°C. EFSA (EFSA, 2005) and FSA 
(2008) recommend that RTE meat products with a shelf-life of more than 10 days are to be 
stored below 8°C, heat-treated at 90°C for 10 minutes, have pH < 5.0, minimum 3.5% WPS 
(water phase NaCl)  or have a water activity < 0.97. Alternatively, a combination of heat-
treatment and preservation preventing growth of non-proteolytic C. botulinum can be used. 
To ensure that the later alternative actually prevents growth of C. botulinum, documentation is 
needed i.e. by developing a mathematical model with relevant variables, as suggested by Peck 
(2006). A predictive model including relevant variables ensures that excessive processing and 
preservation are avoided and that the RTE meat product remains safe. The predictive model 
for growth of non-proteolytic C. botulinum, “Combase Predictor”, only includes temperature, 
pH and WPS. In this study, the objective was to develop a mathematical model that predicts 
growth/no-growth of C. botulinum in relation to temperature, WPS, pH, added nitrite and 
sodium lactate.  

Materials and Methods 
Data: Data for developing and training the artificial neural network (ANN) were generated in 
meat products. A total of 257 growth experiments were carried out in three different meat 
products with different combinations of storage temperature, pH, WPS, nitrite and sodium 
lactate. The meat batter was inoculated with 104 - 106 spores/g using a 4-strain cocktail of gas-
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producing C. botulinum. After heat treatment the meat products were sliced, packed in 
modified atmosphere (30% CO2 and 70% N2) and stored at 4°C, 8°C and 12°C, respectively, 
for up to 8 weeks, each combination having 20 replicates. The enumeration of C. botulinum 
was performed when the headspace volume of the package had increased by more than 10% 
or at the end of the storage period. 
 
Model: Each of the 257 combinations was made in 20 replicates, making it possible to 
estimate a rough “probability of growth” in each combination. The estimated probabilities 
(numbers between 0 and 1) were logit-transformed (Berkson, 1944) in an attempt to linearise 
the regression task prior to training the neural network. 
 
ߩ ൌ ሺܲሻݐ݈݅݃ ൌ log ሺ 

ଵି
ሻ            (1) 

         
Prior to training, each input variable and the measured values for ρ are maximum/minimum 
scaled: 
 
ܺ ՜ ሺܺ െ ܺሻ/ሺܺ௫ െ ܺሻ        (2) 

 
Equation 2 changes the scale of any input variable X to be between zero and one. An ANN 
based model was chosen as we have previously been successful in applying this type of model 
to the problem of modelling bacterial growth (Mejlholm et al. 2010). As a benchmark for its 
performance, the ANN was compared to standard chemometrics PCA/PLS-regression with 
non-linear interactions. The ANN proved to perform significantly better than the PCA/PLS 
based model. 
 
The 257 "probability of growth" values and the matching input variables were used to train 
the ANN with network architecture of 5 input neurons, 3 hidden neurons (with sigmoidal 
response functions) and a single output neuron. An artificial neural network with 5 hidden 
neurons actually performed better on both calibration and monitoring data sets (Borggaard & 
Thodberg 1992). However, the smaller network with fewer resources was selected so that 
outputs are a monotonically decreasing function of the concentration of additives.  
The weight parameters of the neural network were found by training the network 
using the back propagation of error algorithm.    
 
Validation: In order to validate the model, data from 60 other experiments in meat products  
with different levels of WPS (1.9 – 4.2%), pH (5.8 – 6.4), nitrite (0, 60 or 150 ppm) and 
sodium lactate (0.0 - 3.0%), packed in 30% CO2/70% N2 or 20% CO2/80% N2 and stored 
mainly at 5, 8 and 10°C were used. 
 
Before validation, the predicted probabilities of growth are compared to a set of thresholds set 
in such a way that the model displays a bias equal to zero for the calibration set. When 
considering the probability for growth in actual products, it should be kept in mind that the 
initial inoculum in the dataset is many orders of magnitude higher than any contamination 
that could be reasonably expected to occur in a true situation.  

Table 1: Thresholds for the predicted probabilities of growth. 
Estimated probability Assignment Meaning 

P < 0.0045 0 Safe 
0.0045 ≤  P ≤ 0.018 0.5 Uncertain 

P > 0.018 1 Dangerous 
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It is the assigned values that are used for validating the model, as the validation set only 
contains the outcomes 0 (safe) or 1 (dangerous).     
 
The bias of the model is defined as: 
 
ݏܽ݅ܤ ൌ  ∑ ሺ

ௗ െ ܲ
ሻ/݊

ୀଵ

 ௗ

           (5) 
 
Here, and   are the assigned values for the measured and predicted probabilities, 
respectively. 

Results and Discussion  
User-interface: A web based implementation makes the model accessible for QA workers in 
the Danish meat industry.  The user enters the values of the input variables. The intervals for 
the five variables are: 
 
temperature 4 - 10°C, added NaCl in the recipe 1.2% - 2.4%, pH 5.4 - 6.4, added sodium 
nitrite 0 - 150 ppm, added sodium lactate 0 - 3%, water content in the final product 53% - 
78%. 
The maximum temperature is limited to 10°C to avoid interference from mesophilic C. 
botulinum which is capable of growth above 10°C but markedly more resistant to NaCl and 
low pH.   The “added NaCl in the recipe” and ”added sodium lactate” are converted into the 
actual concentrations in the water phase before being entered into the neural network.  Also, 
the “lactate in water” is further adjusted by adding the natural content of L-lactate present in 
meat. The model uses two pre-set values for L-lactate in meat: either 0.7% for recipes 
containing a large amount of meat (select “whole muscle product”) or 0.35% for recipes 
containing a small amount of meat (select “emulsified product”). 
 

 
Figure 1: Contour plot of the user interface 

The estimated “probability of growth” is presented in a contour plot (see Figure 1) over an 
area spanning the allowed values for temperature and WPS. The depicted area is divided into 
3 regions, indicating different “probabilities of growth” (green area: P < 0.0045 = safe, yellow 
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area: 0.0045 ≤ P ≤ 0.018 = uncertain, red area: P > 0.018 = dangerous). A black dot in the 
contour plot represents the product being considered with a given combination of the input 
values. The calculated values of WPS, “lactate in water” and the predicted “probability of 
growth” are shown in a separate table on the web page. 
 
Validation: The performance of the model was validated by comparing predicted and 
observed “probabilities of growth” from a separate validation data set (n=60), obtaining a bias 
of 0.008, indicating that the model is slightly fail-safe.  
Out of the 60 observations, model and observations were in agreement in 52 cases. 
The 8 remaining observations were distributed with 5 “uncertain” predictions and 3 failed 
predictions as shown in Table 2. 

Table 2: 8 validation cases of disagreement between predicted and observed growth. 
Observed  No growth (fail‐safe) Growth (fail‐dangerous) 
Predicted  Growth  Uncertain Uncertain No growth 
Number  2  2 3 1 

 
The fail-dangerous prediction of “no growth”  occurred in a product containing 2% WPS, 0 
ppm nitrite, 3.6% “lactate in water” and pH 6.3 and stored at 8°C packed in 30% CO2/70% 
N2. The actual growth experiment showed weak growth indicated by gas formation, but no 
significant increase in C. botulinum count was found. 
The two fail-safe predictions of “growth”  occurred in products stored at 10°C, product 1 
containing 2.14% WPS, 0 ppm nitrite, 3% “lactate in water” and pH 6.3 and product 2 
containing 2.19% WPS, 60 ppm nitrite, 0.7% “lactate in water” and pH 6.4. In both 
experiments, no growth was detected after 8 weeks storage. 

Conclusion 
A model for predicting growth/no growth of psychrotrophic C. botulinum was developed 
based on an artificial neural network. The predictive model includes five variables: 
temperature (4 - 10°C), pH (5.4 - 6.4), added NaCl (1.2% - 2.4%), added nitrite (0 - 150 ppm) 
and added sodium lactate (0 - 3%). The model has a bias of 0.008, corresponding to the model 
being slightly fail-safe. 
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Abstract 
Refrigerated processed foods of extended durability (REPFED) are a growing group of 
products. This research aims to minimize the heat treatment, to provide higher quality 
products, without compromising food safety. One of the microbial risks in REPFEDs are 
psychrotrophic Bacillus cereus strains due to their high thermal resistance and ability to grow 
under cold storage. Twenty-five psychrotrophic B. cereus strains, isolated from different 
REPFEDs were screened for their time to detection (TTD) under cold storage at three 
temperatures (8, 9, 10°C). The TTD was determined for vegetative cells, spores and heat-
treated spores of these strains using Optical Density (OD) measurements. Results show a 
great inter- and intra-strain variability in TTD. At 8°C only 40.7% of the strains were able to 
grow, compared to 77.8% at 9 and 10°C. Based on these data two strains, exhibiting spore-
growth at 8°C after heat treatment, were selected: a very heat resistant strain (D90°C=90min) 
and a more heat sensitive strains (D90°C=17min). For each strain a full factorial growth/no-
growth model was created with 3 parameters (pH: 5.2–6,4; aw: 0.97–0.99; P90: 0–10 min). 
Results show that the presence of a heat treatment and the pH are the main factors preventing 
the growth of B. cereus under cold storage. The minimal pH for growth increases as the heat 
treatment increases. 
 
Keywords: Bacillus cereus, growth/no growth, heat treatment, pasteurization, REPFED 

Introduction (scope and objectives) 
Refrigerated processed foods of extended durability (REPFED) are a growing group of 
products. Their food safety is assured using a combination of mild heat treatment 
(pasteurization) and cold storage. Because the pasteurization treatments affect the structure 
and the nutritional value of a food product, this research aims to minimize the heat treatment 
without compromising food safety. One of the main microbial risks in REPFEDs are 
psychrotrophic Bacillus cereus strains due to their high thermal resistance and ability for 
growth under cold storage. Most models that are currently available do not take the heat 
treatment prior to storage into account.  The presented models assess the ability of B. cereus 
to grow under cold storage after heat treatment and provide information about the effect of 
product composition (aw, pH) and pasteurization-value on this ability. 

 Materials and Methods 
Screening of psychrotrophic capacity of vegetative cells, spores and heat-treated 
spores 
Twenty-seven psychrotrophic B. cereus strains isolated from various REPFEDs or ingredients 
thereof were screened for their ability to grow under cold storage. This ability was tested for 
three physical states: vegetative cells (VC), spores (S) and heat-treated spores (HS). Six 
replicates for each strain and state were tested at three temperatures (8, 9 and 10°C). These 
temperatures were selected because previous testing of vegetative cells had shown that all 
isolates were able to grow at 8°C but not at 7°C. Growth was monitored using optical density 
(OD) measurement in 96-well polystyrene microplates (Eppendorf, Hamburg, DE). Time To 
Detection (TTD) was used as an approximation of the lag phase and determined as the 
moment when the OD exceeded the detection limit (average OD of six replicates at 
inoculation + three times the standard deviation at inoculation).  Spores were harvested using 
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a method similar to that of Coroller et al. (2001).  Strains were inoculated on sNA plates (i.e. 
Nutrient agar with MnSO4 (40 mg l-1) and CaCl2 (100 mg l-1)) and incubated for five to seven 
days at 30°C. Spores were collected by suspending agar in a NaCl solution (8.5 g l-1) and 
scraping the surface. The resulting spore solution was washed three times by centrifugation 
(10,000g for 15 minutes at 4°C, Sigma Laboratory centrifuges 4K15) and resuspension in 
10mL NaCl solution. After the third washing, the pellet was resuspended in 10 mL of ethanol 
(50% (v/v)) and stored for one hour at 2°C to eliminate vegetative cells. Finally the 
suspension was washed three times by centrifugation and resuspended each time in sterile 
distilled water. Spore solutions were stored at 2°C for no more than 4 weeks. 
 
Vegetative cells and spores were inoculated at 104-5 CFU ml-1 in 200µL of Trypton Soy Broth 
(Oxoid, Basingstoke, UK), and the plates were sealed with a lid and parafilm. For heat-treated 
spores the decrease in concentration during heat treatment was determined in triplicate as 10X 
CFU ml-1. These plates were inoculated at 104-5+10X CFU ml-1. This higher inoculum 
concentration was necessary because TTD depends on the inoculum concentration. Plates 
were sealed with a gastight transparent film (Viewseal nonpiercable, Greiner Bio-one, 
Frickenhausen, DE) to prevent evaporation during heat treatment and subsequently heated 
and cooled to obtain a P90 (pasteurization value at 90°C (Gaze 2006)) of 10 minutes using a 
Thermostat Plus with adaptor for microplates (Eppendorf). After heating the film was 
replaced by a lid and parafilm. Plates were stored at the desired temperature and the OD was 
measured every three days. 
 

Growth/no-growth models for psychrotrophic heat-treated B. cereus spores. 
Based on the screening, two B. cereus strains, able to grow at low temperatures after heat 
treatment were selected: FF140 (D90°C: 90.9 min) isolated from béchamel sauce and FF355 
(D90°C: 17.9 min) isolated from carrots. For both strains a full-factorial growth/no-growth 
(G/NG) model was developed with 3 variables: water activity (0.973-0.980-0.987-0.995), pH 
(5.2-5.6-6.0-6.4) and P90-value (0-4-7-10). This resulted in 64 combinations of aw, pH and P90 
per model. Each combination was tested eight-fold using the same methodology as the 
screening. Spores were inoculated at 104-5+10X CFU ml-1 (X depended on strain and the heat 
treatment) to reach a B. cereus concentration after heating of 104-5 CFU ml-1. After inoculation 
the procedure was identical to that of the screening: the microplates were heated, cooled and 
stored at 10°C. Data was processed using excel (excel 2007, Microsoft, Redmond WA, USA) 
and the logistic regression was performed in SPSS 17.0 (SPSS Inc., Chicago IL, USA). 
Graphic representations of the model were created using Matlab 7.11 (Mathworks, Natick 
MA, USA). All data sets were modeled using a type-I logistic regression model (Ross and 
Dalgaard 2004): 

ሻሺݐ݈݅݃ ൌ ln ൬


1 െ 
൰ 

ሻሺݐ݈݅݃ ൌ ܾ   ܾଵ · ܽ௪  ܾଶ · ܪ   ܾଷ · ଽܲ   ܾସ · ܽ௪
ଶ  ܾହ · ଶܪ   ܾ · ଽܲ

ଶ   ܾ · ܽ௪
· ܪ   ଼ܾ · ܽ௪ · ଽܲ    ܾଽ · ଽܲ ·  ܪ

 

Results and Discussion  
Screening of psychrotrophic capacity of vegetative cells, spores and heat-treated 
spores 
The time to detection (TTD) data were gathered for 27 strains, at different temperatures and 
for different physiological states. The data, given in table 1, show a considerable effect of the 
heat treatment on the ability to grow at the lowest temperature (8°C) but not at the two other 
temperatures (9 and 10°C). Only 40.7% of the strains (11 of 27) were able to grow at 8°C 
after heat treatment. For higher temperatures or for not heat-treated spores or cells, the 
percentage of strains able to grow varied between 74.1 (20 of 27) and 92.6% (25/27). This 
result illustrates that the psychrotrophic characteristics of B. cereus may disappear during heat 
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treatment. Because the TTD was very variable between the six replicates no clear effect of 
physiological state, temperature or heat treatment of the TTD could be established. 

Table 1: Number of B. cereus strains able to grow at specified temperatures. 27 strains were 
tested (V: Vegetative cells; S: Spores; HS: Heat-treated spores) 

Storage 
Temperature 8°C 9°C 10°C 

Physiological state V S HS V S HS V S HS 
Number of strains 
able to grow 20 21 11 20 22 21 21 25 21 

 

Growth/no-growth models for psychrotrophic heat-treated B. cereus spores 
The developed growth/no-growth models for FF140 and FF355 after twelve days at 10°C had 
a high predictive power (98,8% and 95,1%), indicating a good fit of the data. Although the D-
value of strain FF140 is more than five times larger than the D-value of strain FF355, the 
results after twelve days are similar. None of the strains were able to grow at a water activity 
of 0.973 or at a pH of 5.2 and at the highest water activities (0.987 and 0.995) and high pH 
(6.4) both strains were able to grow, even after the highest heat-treatment (P90=10). 
 
The main difference between both models is the size of the growth-zone. The growth zone for 
the more heat-resistant strain FF140 is larger than that of the more heat-sensitive strain 
FF355. This difference is most clear at the higher water activities. At a water activity of 
0.987, nine of the sixteen tested conditions (56.3%) showed growth in all replicates for strain 
FF140, while this was only four of sixteen conditions (25%) for strain FF355. The width of 
the growth boundary, between 10% and 90% chance of growth, increased as water activity 
decreased, and was wider for FF355 than for FF140 at the same water activity 
 
The models for both strains share two important features. Firstly, after 10 days the presence of 
a heat treatment has a greater effect than the actual duration of the heat treatment. This effect 
is shown for strain FF140 in figure 1, the growth zone observed for P90-values of 4, 7 and 10 
minutes are similar in size and smaller than the growth zone for a P90-value of 0 (no heat 
treatment). 

 

 
 (a)  (b) 

Figure 1: growth/no-growth border for B. cereus FF 140 (a) and FF 355 (b) after 12 days at 
10°C.  Conditions allowing growth are situated to the right of the curves. Model predictions 

for p = 0.9: no heat treatment (–•–•); P90 = 4 min (––); P90 = 7 min (---); P90 = 10 min (...). 

Secondly, the effect of pH increases with the intensity of the heat treatment. This effect is 
illustrated for strain FF140 in figure 2 (a and b). At a pH of 6.0 and a water activity of 0.987, 
growth of this strain is possible after all heat treatments. At the same water activity and a pH 
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of 5.6, growth was only possible without heat treatment. This pH-effect became more 
pronounced over time, after 21 days the growth border at pH 6.0 shifter further down (figure 
2 b), while the growth boundary at pH 5.6 shifted very little. 

 
  
 

 
 (a)  (b) 

 
Figure 2: Growth/no-growth boundaries for B. cereus strains FF140 after (a) 12 days and (b) 
21 days at 10°C. The growth zone is situated to the left of the curves. Model predictions: p = 

0.9 (––), p = 0.5 (--), p=0.1 (…). Curves with markers represent pH 6; curves without markers 
represent pH 5.6. 

Conclusions  
This research shows that a heat treatment can alter the psychrotrophic characteristics of a B. 
cereus strains and that cold storage is be crucial to prevent outgrowth of B. cereus after 
pasteurization. The developed growth/no-growth models show that the length of the heat 
treatment has less effect than the presence of a heat treatment, and that a limited decrease in 
pH (0.4) greatly reduces the pasteurization value required (6 min) to prevent growth of B. 
cereus. In future models heat treatment should be taken into account as a variable that 
determines the growth of B. cereus.  
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Abstract 
High hydrostatic pressure (HHP) inactivation curves of Listeria monocytogenes CTC1034 
inoculated (ca. 107 CFU/g) on sliced cooked ham were obtained at seven pressure levels (300, 
373.2, 450, 550, 600, 726.8 and 800 MPa) for several treatment times (from 0.1 up to 900 s). 
Bacterial inactivation was assessed as the difference between L. monocytogenes counts after 
the treatments and the initial inoculum. Different modelling approaches were applied and the 
outputs compared: (i) a classical two-steps predictive microbiology approach with primary 
(log-linear with tail) and secondary (polynomial for both kmax and Nres) models. In addition, 
one-step global modelling was assessed with (ii) combined primary and secondary models 
and (iii) a polynomial model resulting from multivariate linear regression to all results 
obtained for each single pressure and time combination. According to the results, HHP-
inactivation of L. monocytogenes on sliced cooked ham did not follow a log-linear kinetics 
and an obvious tailing shape occurred at pressures from 450 MPa. This behaviour was 
appropriately described using the Log-linear with tail model. The global regression procedure 
was more appropriate than the classical two-steps approach and also superior to the 
multivariate linear regression analysis of the entire dataset.  
 
Keywords: Listeria monocytogenes, high hydrostatic pressure inactivation, cooked ham, 
modelling 

Introduction 
High hydrostatic pressure (HHP) processing can inactivate microorganisms, extend shelf-life 
and improve microbiological safety of food, while undesired changes in nutritional and 
sensory properties are limited. HHP processing can be applied to packaged food products, 
which is important to eliminate post-process contamination and interesting (e.g. as a 
listericidal) treatment for ready-to-eat foods, such as sliced cooked ham (FSIS 2006). HHP 
processed foods are commercially available, but further research is still required to identify 
optimal conditions for microbial inactivation (Rendueles et al. 2011). Importantly, the 
bactericidal effect of HHP largely depends on the physico-chemical characteristics of foods 
and a product-oriented approach seems most relevant to study microbial inactivation kinetics 
(Rendueles et al. 2011; Bover-Cid et al. in press). The aim of the present study was to 
quantify and model the effect of HHP on inactivation kinetics of L. monocytogenes inoculated 
on sliced cooked ham. Inactivation kinetics was quantified at pressures from 300 to 800 MPa 
and modeled by a classical two-steps predictive microbiology approach with primary and 
secondary models (approach i). In addition, one-step global modelling was evaluated with 
combined primary and secondary models (approach ii) and a multivariate linear regression 
model (approach iii). 

Materials and Methods 
Preparation and HHP processing of inoculated cooked ham samples 
A frozen (-80 ºC) stock culture of L. monocytogenes CTC1034, previously grown at 37 ºC in 
Brain Heart Infusion (BHI) broth with 2.5% NaCl was used to inoculate (ca. 107 CFU/g) 25 g 
slices of cooked ham. The product had pH 6.09 and aw of 0.983, 2.75% NaCl, 6400 mg/kg 
lactic acid, < 5 mg/kg sodium nitrite, 18.32% of protein and 4.55% lipid content. Inoculated 
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slices were vacuum-packed and HHP treated at 300, 373, 450, 550, 600, 726.8 and 800 MPa 
at different time intervals ranging from 0.1 to 900 seconds. HHP treatments were carried out 
at an initial fluid temperature of 15 ºC. A commercial (Wave6000, NC Hyperbaric, Burgos, 
Spain) and a pilot (Thiot ingenierie - NC Hyperbaric, Bretenoux, France) HHP units were 
used for pressure treatments up to and above 600 MPa, respectively. The average pressure 
come-up rate was 220 MPa/min whereas the pressure release was almost instant. For each 
pressure level, 12-36 samples were analysed at 6-12 time points, resulting in a total of 231 
data points for the seven HHP treatments.  

Microbiological analysis 
Inoculated and HHP treated 25 g-samples were homogenised and 10-fold serially diluted in 
physiological saline (0.85% NaCl and 0.1% Bacto Peptone). L. monocytogenes was 
enumerated on Chromogenic Listeria Agar (CLA, 37ºC for 48 h). To achieve a quantification 
limit of 4 CFU/g, 2.5 ml of the 1/10 diluted homogenate was spread on CLA plates with a 
diameter of 14 cm. For samples with expected concentration of L. monocytogenes below this 
quantification limit, the presence/absence of the pathogen was investigated by enrichment of 
the 25 g-sample in 225 ml tryptic soy broth with 0.6% yeast extract (TSBYE) (37 ºC, 48 h). 
After enrichment L. monocytogenes was detected on CLA and colonies were confirmed by 
PCR (Aymerich et al. 2005). For modeling purposes, positive results below the quantification 
limit were recorded as 0 Log CFU/g while absence in 25g was computed as -1.4 Log CFU/g. 

Primary modelling 
Inactivation data (Log CFU/g vs. time) for each pressure level were fitted using the Log-
linear, the Log-linear with tail, the biphasic and the Weibull models (Geeraerd et al. 2005). 
Curve fitting was carried out with the Solver Add-in of MS Excel and evaluated visually. The 
root mean squared error (RMSE) was calculated as a measure for goodness-of-fit. Fitted 
models were compared pair-wise through an F-test.  

Secondary modelling 
The effect of pressure (MPa) on the key kinetic parameters (kmax and Nres) of the selected 
primary inactivation model (i.e. Log-linear with tail) was described by simple secondary 
models, fitted using the MS Excel Solver Add-in. 

One-step global modelling  
The selected primary and secondary kinetic models were combined and fitted to the entire set 
of 231 data points in a one-step global regression procedure (Martino and Marks 2007). To 
eliminate small differences in initial inoculation concentrations between experiments, data for 
the global modelling were expressed as Log (Nt/N0) with N0 being the initial inoculum of 
L. monocytogenes and Nt the pathogen concentration after the HHP treatment. A second 
degree polynomial model was also obtained by multivariate linear regression (with Statistica 
v8; StatSoft) to describe the effect of time and pressure on L. monocytogenes inactivation. 

Evaluation and product validation of the developed models 
For each modeling approach, the residual sum of squares (RSS) and the RMSE of the fitting 
were calculated and compared. Observed vs. fitted data (in terms of Log Nt/N0) were also 
compared graphically for the three approaches followed. In addition, data from the literature, 
including inactivation of different strains of L. monocytogenes in liquid laboratory media and 
in different foods, were compared with the predictions provided by the one-step global model 
(approach ii). 

Results and Discussion  
Inactivation kinetics and primary modelling 
The HHP-inactivation kinetics of L. monocytogenes inoculated on sliced cooked ham were 
appropriately described by a Log-linear model with tail (Fig. 1, Eqn. 1). It is worth noting that 
HHP processing could not totally eliminate L. monocytogenes, which was detected even after 
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15 min at 800 MPa. The Log-linear and the Weibull models did not fitted inactivation curves 
appropriately, especially at HHP of 600 MPa and above. Moreover, F-tests showed the Log-
linear with tail model (Eqn. 1) to be the most appropriate, being superior to the biphasic 
model with one more parameter (P <0.05). For individual inactivation curves, RMSE values 
between 0.05 and 0.92 were obtained for Eqn. 1. The corresponding R2-values were 0.94 and 
0.80. Therefore, for estimation of the kinetic parameters kmax and Nres, Eqn. 1 was used, with a 
value of Log (N0) fixed as equal to the average inoculation concentration in an experiment. 
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Figure 1: Inactivation of L. monocytogenes inoculated on sliced cooked ham during HHP 
treatments at 300 MPa (open squares), 550 MPa (open circles) and 800 MPa (open triangles). 

Lines show the fitted Log-linear with tail model (Eqn. 1). 
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Secondary modelling 
For Log-transformed values of kmax and Nres, secondary models obtained using observed data 
showed a linear relationship with pressure ([P] in MPa, Eqn. 2 and 3). 
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                                          (2) 
 

 

One-step global modelling 
When Eqn. 1, 2 and 3 where combined into one model with four parameters, the one-step 
global regression procedure resulted in RSS of 352 and RMSE of 1.246 for the entire set of 
231 data. In comparison, the classical two-steps predictive modelling approach had RSS of 
450 and RMSE of 1.407. The one-step global regression procedure (approach ii) resulted in a 
slightly better average datafit as also reported by Martino and Marks (2007) (See Fig. 2). 
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Figure 2: Plots of observed values versus fitted values corresponding to the: (i), two-steps 
procedure; (ii), global regression procedure and (iii), multivariate linear regression. 

Multivariate linear regression (iii) resulted in a second-order polynomial model (Eqn. 4, 
where [P] is the pressure level in MPa and [t] is the treatment time in min). This six-
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parameter model had RSS of 572 and RMSE of 1.574 and thus provided a fit inferior to the 
four parameter kinetic model (approach ii). A polynomial model with four parameters 
(resulting from a regression with the linear and interactive term but without the squared terms, 
equation not shown) had an RSS of 718 and RMSE 1.763 and did not seem appropriate. 

/ሺܰ݃ܮ ܰሻ ൌ 12.690 െ 3.791  
ଵ

 0.184 · ቀ 
ଵ

ቁ
ଶ
െ 0.894  ݐ  0.037  ଶݐ  0.030  

ଵ
· t          (4)  

  

Validation of the developed model 
Figure 3 shows the comparison between the predictions provided by the developed global 
model (approach ii) and the observed inactivation data from the literature (broth, milk, fruit 
juices and dry-cured ham) as well as data obtained in experiments with mortadella 
(unpublished results). The model performed well for mortadella and raw milk. Probably, the 
product characteristics (e.g low pH for fruit juice, low aw for dry-cured ham) could be the 
reason for the discrepancy between predicted and observed HHP inactivation of 
L. monocytogenes. 
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Figure 3: Evaluation of the developed model (one-step regression, approach ii) by comparison 
of observed data from the literature and the model predictions. 

Conclusions   
This works shows the Log-linear with tail model as the most appropriate primary model to fit 
HHP inactivation kinetics of L. monocytogenes on cooked ham, and reinforces the idea that 
the global modelling procedure combining primary and secondary models fits better than the 
two-steps procedure or multivariate linear regression. Furthermore, the product-oriented 
approach followed in the present study seemed justified. 
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Abstract 
The use of non-thermal methods of food preservation is due to consumer demand for 
microbiological safe products, without changes in the sensory and nutritional qualities of the 
product. High pressure has emerged as an alternative to traditional thermal processing 
methods for foods. Listeria monocytogenes CECT 5672 was treated under high-hydrostatic 
pressures (HHPs) (350, 400 and 450MPa) for 3, 16 and 23 min. The effects of pH (5, 6 and 7) 
and sodium chloride concentration (0, 0.5 and 1.0) of the recovery medium were studied on 
single cells of Listeria monocytogenes. The kinetic parameters of the single-cell were 
estimated by the method described by Metris et al. (2006). From results obtained, histograms 
of the lag phase were generated and distributions were fitted. The duration of the lag phase of 
HHP damaged cells increased with the application of additional stresses. Histograms showed 
a shift to longer lag phases and an increase in variability with high stress levels in the 
recovery medium. Using a primary model together with Monte Carlo simulation, predictions 
of time to growth (100 cfu/g) of L. monocytogenes were established and they were compared 
with deterministic predictions. It was evident that deterministic predictions do not give a good 
indication of the probability of a certain level of growth. 
 
Keywords: Listeria, high hydrostatic pressure, frequency distribution, Monte Carlo simulation  

Introduction 
Consumers have increased their demand for high-quality foods that are convenient and 
nutritious, that have fresh flavor, texture, and color and minimal or no chemical preservatives, 
and above all, that are safe. Although conventional thermal processing ensures food safety 
and extends the shelf life, it often leads to detrimental changes in the sensory and nutritional 
qualities of the product. With nonthermal processing technologies, more fresh-like products 
can be obtained. High hydrostatic pressure is considered to be a promising alternative to 
thermal pasteurization for fruit juices and other products when this process is used alone or in 
combination with traditional techniques. 
The major benefit of pressure is its immediate and uniform effect throughout different media, 
avoiding difficulties such as nonstationary conditions typical for convection and conduction 
processes. HHP is an attractive nonthermal process because the pressure treatments required 
to inactivate bacterial cells, yeasts, and molds have a minimal effect on the sensory qualities 
associated with fresh-like attributes such as texture, color, and flavor. HHP involves the use 
of pressures of approximately 300 to 700 MPa for periods of approximately 30 s to a few 
minutes to destroy pathogenic bacteria such as Listeria, Salmonella, Escherichia coli, and 
Vibrio and other bacteria, yeasts, and molds that cause foods to spoil. 
Monte Carlo analysis is a general method to deal with stochastic models. Monte Carlo 
simulation has been proposed as a tool to establish the probability of growth or inactivation of 
microorganisms under certain conditions (Ferrer et al. 2007; Poschet et al. 2003). 
The aim of this study was to compare the effect of environmental conditions in the recovery 
medium on individual cells of Listeria monocytogenes previously treated under high 
hydrostatic pressure. Combinations of pH and NaCl in the recovery medium were used in our 
experiment and the variability of kinetic parameters were contrasted using frequency 
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distribution. The time to achieve a certain level of growth of L. monocytogenes was 
established using a Monte Carlo simulation. 

Materials and Methods 
Preparation of cell suspensions for pressurization 
The strain used in the experiments was Listeria monocytogenes CECT 5672 (from Spanish 
Type Culture Collection, CECT, Valencia, Spain). Listeria monocytogenes was stored on 
tryptic soy agar (TSA) slopes at 6 ºC and subcultures were grown in tryptic soy broth with 
addition of 0.6 % yeast extract (TSYB). 
Overnight cultures of L. monocytogenes were centrifuged at 3,000 x g for 15 min at 5 ºC and 
the pellets were resuspended in 100 mL of TSYB. Eppendorf tubes were filled with 1.5 mL of 
the cell suspensions (approximately 109 cfu/mL) and were placed in polyethylene bags.  

High hydrostatic pressure treament 
For each time and pressure condition, three of the Eppendorf vials were placed in 
polyethylene bags. The bags were filled with water and heat-sealed (MULTIVAC 
Thermosealer) before being placed in the high hydrostatic pressure unit (High Pressure Food 
Processor; EPSI, Belgium). The pressurization liquid was a mixture of water and glycol. The 
pressure level, pressurization time, and temperature were controlled automatically. The 
pressure increase rate was 300 MPa/min and the depressurization time was less than 1 min. 
The treatment time described in this study does not include come-up and comedown times. 
The cells were pressurized at  350, 400, and 450 MPa for specific times of 3, 16 and 23 min at 
a maximum temperature of 30 °C (initial temperature 25 °C). Immediately after 
pressurization the samples were transferred to an ice-water bath and used for enumeration of 
colony-forming units. The unpressurized cell suspension was enumerated as a control. 

Recovery, growth curves and determination of the lag phase 
Recovery of pressurized cells was carried out in TSYB at three different NaCl concentrations 
(0, 0.5 and 1%) combined with three different pH values (pH 5, 6 and 7). For each recovery 
medium, serial dilutions of bacterial cultures were made and, aliquots (400 μL) were added 
into the wells of a microwell plate. The plates were incubated in the Bioscreen C automatic 
reader (Labsystems, Helsinki, Finland) at 37 ºC and optical density (OD) was measured at 
600 nm. The kinetic parameters of the single-cell lag times were estimated by the method 
described by Metris et al. (2006). The individual cell lag times (λ) were calculated from the 
following formula (Baranyi and Pin, 1999): 
 
td  =  λ + (ln(Nd) - ln (No))/μ                                                                                                      (1) 
 
where Nd is the bacterial number at td obtained by means of calibration curves and N0 the 
number of cells initiating growth in the considered well. 

Statistical data processing and distribution fitting 
Statistical data processing was performed and histograms were made from every set of 
conditions showing the distribution of the lag phases. From each histogram, the most common 
statistical parameters (mean value, standard deviation, etc.) were determined.  
Distributions were fitted to time to growth and were ranked using the χ2 and the Anderson–
Darling (A–D) goodness of fit statistics. Monte Carlo simulation was performed to predict the 
time to growth to a certain microbial concentration (102 cfu/mL, in this case). Equation (1) 
was used to analyse the dependence of N0 and λ on the times to reach 100 cfu/mL. The 
individual cell lag times were assumed to follow a Gamma distribution of shape parameter β 
and scale parameter α. The parameters of the Gamma distribution and the growth rate, μ, in 
each environmental condition were calculated from the detection times. On the other hand, 
the initial number of cells in a well followed a Poisson distribution with an average of 1 cell 
per well according to Metris et al. (2006). 
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Results and Discussion  
Recovery of cells treated under HHP 
The effect of NaCl concentration (0, 0.5 and 1%) and pH (5, 6 and 7), single or in 
combination, in the recovery medium of cells of L. monocytogenes CECT 5672 previously 
treated by high hydrostatic pressure was studied. 
The mean lag phase duration for the strain pre-treated under pressure increased when the 
environmental conditions became more severe, a trend that can be confirmed for both NaCl 
concentration and pH. Also the standard deviations were calculated and increases were found 
with the combination of both stresses. The duration of the lag phase of L monocytogenes 
CECT 5672 increased significantly with the decrease of the pH in the recovery medium e.g., 
after 3 min at 350 MPa, the mean individual cell lag phase was increasing from 1.78 h to 29.6 
h when pH decreased from 7 to 5. The effect of increasing NaCl concentration was also 
significanted as the mean individual lag phase was increasing from 29.5 h to 42.5 h when the 
%NaCL was from 0 to 1.0% at a pH 5. 
The largest increase of lag phase was found with combinations of acid pH (pH 5) and 1% 
NaCl  in the recovery medium, reaching lag values of 102.5 and 232.7 h for L monocytogenes 
CECT 5672  treated at 450 Mpa for 3 and 16 min, respectively. 
On the other hand, increased exposure to HHP resulted in a significantly increased level of 
injury, and subsequently a longer lag phase. Values of individual cell lag phase for cells of L 
monocytogenes CECT 5672 pre-treated at 450MPa for 3 min were significantly (p ≤ 0.05) 
higher than the corresponding values for L monocytogenes treated at 350MPa for 3 min but 
the effect of the stress conditions were similar.  
Histograms of the lag values for different treatments are shown in Figure 1  
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Figure 1: Histograms of distribution of lag phase of individual cells of L. monocytogenes 

exposed to HHP and recovered in the conditions indicated 

Increases in the variability of histograms representing the lag phase of individual cells were 
observed and shifts of the histograms to the right were detected.  It can also be observed that 
the variance of the lag time is generally higher with longer lag and the width of histograms 
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varied depending on the level of stress during the growth of the cells. There was less 
dispersion with optimal conditions than at lower pHs or higher salt concentrations or 
combinations of them.  The shape of the histogram changed when stress levels increased. The 
highest density of the curve was situated at the left side for moderate stress levels, whereas it 
shifted to the right one for more severe conditions. 

Effect on distribution fitting 
Weibull, Gamma and Normal distributions were selected as they have been described in other 
studies and they covered the whole range of observed dataset and gave a good description of 
the experimental data. When the most severe stress conditions were applied, both Weibull and 
normal distribution fitted the data for lag times. Weibull has been used to fit high levels of 
stress conditions before (Francois et al. 2005, 2007) and also normal distribution (Delgado et 
al.,2004; Wu et al. 2000; Francois et al. 2005). 

Prediction of the time to a certain growth  
A simulation was performed to establish the time to growth to a concentration of 100 cfu/mL 
of Listeria monocytogenes. The mean value of time to a specific growth provided by the 
Monte Carlo simulation was very close to the deterministic values obtained in all cases (less 
than 10% variation) and the prediction limits (95% confidence interval) gave a good 
description of the experimental observations and the probability associated. 
The Monte Carlo analysis gave information of the variability and distribution over the time of 
the predictions. 

Conclusions  
High pressure-treated L. monocytogenes showed evidence of damaged cells, with an increase 
in lag duration with stressful recovery conditions for both pH and NaCl stresses. The 
incidence of damaged cells increased at the higher pressure treatments tested and so did the 
spread of the time to recover of L. monocytogenes cells.  

Acknowledgements  
Marina Muñoz acknowledges Fundacion Cajamurcia for awarding her a post-doc grant. This 
project was funded by Spanish “Ministerio de Ciencia e Innovación”, ref. AGL 2010-22206-C02-
02/ALI and Fundación SENECA, CARM, Spain ref 08795/PI/08. 

References  
Baranyi J. and Pin C., (1999) Estimating growth parameters by means of detection times. Applied and 

Environmental Microbiology 65, 732–736. 
Delgado B., Fernandez P.S., Palop A. and Periago P.M.  (2004) Effect of thymol and cymene on Bacillus cereus 

vegetative cells evaluated through the use of frequency distributions. Food Microbiology 21 , 327-334. 
Ferrer C., Rodrigo D., Pina M.C., Klein G., Rodrigo M. and Martínez A. (2007) The Monte Carlo simulation is 

used to establish the most influential parameters on the final load of pulsed electric fields E. coli cells. Food 
Control 18, 934–938. 

Francois K., Devlieghere F., Smet K., Standaert A.R., Geeraerd A.H., Van Impe J.F. and Debevere J. (2005) 
Modeling the individual cell lag phase: effect of temperature and pH on the individual cell lag distribution of 
Listeria monocytogenes. International  Journal Food Microbiology, 100, 41–53. 

Francois K., Valero A., Geeraerd A.H., Van Impe J.F., Debevere J., García-Gimeno R.M., Zurera G. and 
Devlieghere F. (2007) Effect of preincubation temperature and pH on the individual cell lag phase of Listeria 
monocytogenes, cultured at refrigeration temperatures. Food Microbiology, 24, 32-43 

Métris  A., George S.M. and Baranyi J. (2006) Use of optical density detection times to assess the effect of acetic 
acid on single-cell kinetics. Applied and Environmental Microbiology 72, 6674–6679. 

Poschet F., Geeraerd A.H, Scheerlinck N., Nicolai B.M. and Van Impe J.F. (2003) MonteCarlo analysis as tool to 
incorporate variation on experimental data in predictive microbiology. Food Microbiology, 20, 285-295. 

Wu Y., Griffiths M. W. and McKellar R. C. (2000) A comparison of the Bioscreen method and microscopy for 
determination of lag times of individual cells of Listeria monocytogenes. Letters in Applied Microbiology 30, 
468–472. 

 

189



Growth of Listeria monocytogenes, Salmonella Typhimurium and 
Escherichia coli in the presence of sodium chloride following a mild 
thermal process 

I. Mytilinaios1, R. J.W. Lambert2 
1 Cranfield Health, Cranfield University, Cranfield, Bedforshire, MK43 0AL, UK (i.mytilinaios@cranfield.ac.uk) 
2 Cranfield Health, Cranfield University, Cranfield, Bedforshire, MK43 0AL, UK (rjwlambert@cranfield.ac.uk) 

Abstract 
There is significant interest in applying milder processing technologies in order to increase 
the shelf life and ensure the safety of foods. Thus, a major focus of predictive modelling has 
been on the models which accurately predict the effect of combining multiple processes or 
hurdles. Among the various processes used by the Food Industry to control microbial growth, 
heat treatment represents the most common. Obtaining data for the construction of a 
combined thermal injury model with a growth inhibition model, i.e. a stochastic with a 
deterministic, was a goal of this project.  
 
Keywords: predictive modelling, thermal injury, NaCl, TTD method 

Introduction 
Foodborne disease is a common and serious threat to public health all over the world. There 
are several consumer trends that may have an impact on foodborne disease. Now days, there 
is a trend towards more natural, fresh, less preserved and processed foods (Newell et al. 
2010). The aim of hurdle technology is the deliberate and intelligent combination of different 
hurdles in order to improve the microbial stability and the total quality of foods (Leistner 
2000; Leistner and Gorris 1995). The food industry uses various processes to control 
microbial growth. Heat represents a common form of preservation (Gould 1989). Also, with 
predictive microbiology all the knowledge of microbial responses in different environmental 
conditions is summarized as equations or mathematical models (McMeekin et al. 1997). In 
this research, the effect of a mild thermal injury on the growth of Listeria monocytogenes, 
Salmonella Typhimurium and Escherichia coli in the presence of different salt (NaCl) 
concentrations using the method of time to detection (TTD) was studied. 

Materials and Methods 
All analyses were performed in a Bioscreen Microbiological analyser (Labsystems Helsinki, 
Finland). Two (10x10) microtitre plates were prepared identically: from a standardised 
culture tenfold serial dilutions were prepared which were subsequently half-fold diluted 
across the plates, giving up to 100 different initial inocula (range 1x109 to less than 1organism 
per well) per plate. Both plates were initially incubated at either 30 or 37oC together. After a 
given time (allowing up to 1/3rd of the wells to reach the detection limit), one plate was 
chosen and placed in a preheated oven at 60oC for 25 minutes and then replaced back into the 
Bioscreen incubator for the remainder of the experiment. In some experiments specific wells 
were ‘sacrificed’ to enable the distribution of injury to be gauged from colony sizes on spread 
plates. The effect of the thermal treatment was studied in TSB with different concentrations of 
NaCl (0.5, 3, and 6% ). 
The time to detection (defined as the time to reach an optical density = 0.2 at 600nm in the 
Bioscreen) was obtained for each well. From the control plate (without thermal injury) the 
method of Cuppers and Smelt (1993) was used to obtain growth rates. 

Results and Discussion  
The effect of a mild thermal injury was studied using the Bioscreen, in conjunction with the 
methods developed for the analysis of the initial inoculum size on the TTD. L. monocytogenes 
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252(industrial isolate), Salmonella Typhimurium and E.coli were examined. Figure 1.1 shows 
the TTD in relation with the initial populations of L.monocytogenes 252 at 30oC and 37oC, 
Salmonella Typhimurium and E.coli at 30oC in the presence of different NaCl concentrations, 
respectively.  
The data obtained using the Bioscreen before the heat treatment showed that as the NaCl in 
the media increased, the gradient obtained increased, hence the growth rate decreased. 
Following the heat treatment, at the lowest salt concentrations used, for L. monocytogenes the 
gradient of the data was essentially the same as that before the treatment, but had a higher 
degree of variability. Further, a step in the TTD plot following the heat treatment was 
observed. The variability and the size of the step increased with increasing salt concentration 
and was more pronounced in the E.coli and Salmonella Typhimurium data than the Listeria 
(which is more salt tolerant). The observed discontinuity after a period of thermal injury was 
interpreted as a heat induced lag, before growth recommenced. Table 1.1 summarises the 
results obtained.  
A major focus of the research was to obtain an understanding of the injury profile of a 
population following a mild thermal process. From the results obtained, a low level thermal 
injury (short time at a mild inhibitory temperature) gave little apparent lag, but an increase in 
the variance of the data was noted. One method to model the distribution of injury throughout 
the population is to assume that the injury process is a Poisson process. Lambert and Ouderaa 
(1999) considered the injury process following an injurious or inimical procedure to be a rate 
process with multiple injured states, populated by given rates. The model was therefore 
strictly deterministic, based on, essentially chemical kinetics. In the case of a thermal injury, 
the model of Lambert and Ouderaa could be used, but given the ubiquitous nature of the 
thermal energy applied, a process modelled by the simple Poisson birth process may be a 
more practicable method. 
The Poisson birth process is governed by a factor, which regulates the proportion of a 
population changing from one state to another. The process itself is strictly random, and is 
known as a ‘no-history’ process, since events which have already occurred bear no relation on 
the probability of another event occurring. When the inimical process is stopped, we 
hypothesise that the injured population distribution is fixed, and it is from this distribution 
that recovery occurs. The Bioscreen data therefore describes the times taken for an injured 
population (or portions of the injured population) to recover the ability to reproduce. This 
must be dependent on the ratios of the sub-populations. If the inimical process is ‘low level’, 
then few sub-populations will have substantial members. As the process becomes more 
inhibitory, more sub-populations become populated and there are few or no members in the 
uninjured or least injured states. Thus it is predicted that the population within each well, after 
recovery, grows at a rate dictated to by the environment in which it is immersed (i.e. will 
grow at the rate dictated by the given temperature and salt concentration in these cases).  
By half-fold diluting specific wells after the thermal process, we have shown that the gradient 
obtained is equivalent to that obtained from the controls and has a variability equivalent to the 
control. 
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Table 1: Parameters describing the relationship between TTD with the initial populations of 
Listeria monocytogenes No.252, Salmonella Typhimurium and Escherichia coli in  different 

concentrations of NaCl, as estimated from the primary growth data at 30oC or/and 37oC, 
before and after heat treatment at 60oC for 25min. 

 

 
 

 
Figure 1: Relationship between TTD with the initial populations of A) and  B) Listeria 

monocytogenes No.252 at 30oC and 37oC respectively, C) Escherichia coli grown at 30oC and 
D) Salmonella Typhimurium at 30oC, grown in TSB with 0.5% NaCl (,), 3% NaCl 

(▲,) and 6% NaCl ( , ). The closed symbols represent the observed data before the 
heat injury while the opened symbols represent the observed data after the heat injury in a 

preheated oven at 60ºC for 25 min. 
 
 
 
 

 

Strain NaCl 
(%) T(oC) Heat 

treatment 
Gradient 
(hours) 

Gradient    
- CI 

Gradient 
+CI 

Intercept 
(hours) 

Intercept   
-CI 

Intercept 
+CI 

252 0.5 30oC Before  -2.07 -2.18 -1.94 18.71 17.89 19.52 
252 0.5 30oC After  -2.29 -2.46 -2.12 21.66 21.18 22.14 
252 3 30oC Before  -2.62 -2.70 -2.54 23.43 22.86 23.99 
252 3 30oC After  -2.58 -2.73 -2.44 24.26 23.83 24.69 
252 6 30oC Before  -3.98 -4.15 -3.81 37.66 36.52 38.81 
252 6 30oC After  -3.94 -4.48 -3.41 39.94 38.34 41.54 
252 0.5 37oC Before  -1.80 -1.81 -1.78 16.00 15.90 16.10 
252 0.5 37oC After  -1.90 -2.15 -1.65 18.02 17.48 18.56 
252 3 37oC Before  -2.14 -2.16 -2.12 19.37 19.23 19.52 
252 3 37oC After  -2.18 -2.39 -1.96 22.05 21.35 22.75 
252 6 37oC Before  -3.44 -3.55 -3.34 30.47 29.79 31.15 
252 6 37oC After  -3.41 -3.79 -3.03 35.28 34.01 36.56 

Salmonella T. 0.5 30oC Before  -1.77 -1.80 -1.74 15.27 15.13 15.41 
Salmonella T. 0.5 30oC After  -1.59 -2.09 -1.08 21.43 20.24 22.62 
Salmonella T. 3 30oC Before  -2.66 -2.76 -2.55 22.76 22.06 23.47 
Salmonella T. 3 30oC After  -2.66 -2.39 -1.92 33.96 31.56 36.37 

E.coli 0.5 30oC Before  -1.66 -1.72 -1.60 13.45 13.09 13.82 
E.coli 0.5 30oC After  -1.57 -2.05 -1.08 17.07 15.90 18.24 
E.coli 3 30oC Before  -2.09 -2.12 -2.05 18.16 17.92 18.39 
E.coli 3 30oC After  -2.18 -2.90 -1.46 29.99 27.93 32.05 

D

0 2 4 6 8 10

A

TT
D 

(m
in

)

0

500

1000

1500

2000

2500
B

LogNo (cfu/ml)

C

0 2 4 6 8 10

TT
D 

(m
in

)

0

500

1000

1500

2000

2500

LogNo (cfu/ml)

192



Conclusions  
The mild thermal injury induced a lag before growth recommenced, with a distribution of 
injury dependent on the time of the thermal treatment. On recovery the population grew at a 
rate dictated by the environment present, i.e. at the same rate as observed for the control. The 
rate of recovery can be modelled by a Poisson ‘Death process’ – the opposite to the birth 
process. We can hypothesise that this process occurs in a similar manner to the Birth process 
– recovery occurs in stages governed by a rate constant (λ). 
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Abstract 
Clostridium perfringens is responsible for foodborne diseases often associated with processed 
meats in institutions. This study investigated the behavior of C. perfringens in beef-in-sauce 
products in a French hospital. Before their distribution to patients, these products undergo a 
final linear reheating step making inactivation of vegetative form of C. perfringens possible. 
An inactivation of three log10 was targeted to obtain a final C. perfringens concentration in 
food low enough to reduce probability of food borne illness using published dose response 
models. The aim of this study was to combine microbial and thermal modeling to propose, for 
this reheating step, three control measures based on duration above 53°C (DA53), final 
temperature in food (FTF) and sum of temperatures-minutes above 53°C (ST53) required to 
achieve this target microbial inactivation. Temperature threshold for inactivation was fixed at 
53°C, the estimated maximum temperature for C. perfringens growth, in order to prevent any 
residual growth.  
In order to estimate acceptable values of DA53, FTF and ST53, two sources of variability 
were taken into account : variability on refD10log  (with refD  the D  value at CTref °= 60 ) 
and variability on temperature increase rates observed in hospital. Temperature increase rates 
and refD10log –values were randomly selected from their estimated distributions in order to 
simulate C. perfringens inactivation under realistic dynamic linear temperature profiles from 
53°C. Each simulation was stopped as soon as the microbial inactivation target was reached. 
These simulations provided distributions of acceptable values for the three control measures, 
making it possible to define thresholds from an upper percentile (in this study the 97.5th 
percentile) : 18 minutes for DA53, 68.7°C for FTF and 1082°C.min for ST53. The 
applicability of the three control measures, single and combined, was then compared by 
estimating the proportion of estimated inactivation below the target and the duration required 
to reach measure threshold. If their efficiency is quite equivalent, duration required differs 
significantly from a control measure to the other and the combination of FTF and DA53 
appears as the less time-consuming one. 
 
Keywords: Clostridium perfringens, thermal inactivation, control measures  

Introduction 
Clostridium perfringens is responsible for foodborne diseases often associated with processed 
meats in institutions (Crouch and Golden 2005). This study investigated the behavior of C. 
perfringens in beef-in-sauce products in a French hospital. Beef and other ingredients undergo 
first a cooking step before their cooling down. Products are then kept refrigerated at 4°C 
during two or three days. During the cooling, C. perfringens spores can germinate and grow. 
Immediately before their distribution to patients, these products undergo a final linear 
reheating step making inactivation of vegetative form of C. perfringens possible. French 
regulation prescribes a final temperature at 63°C or more and reheating from 10°C to 63°C 
within one hour or less. In the hospital, because of the difficulty in controlling the speed of 
temperature increase during reheating, some of the reheated meals did not comply with 
French regulation in terms of speed of temperature increase and could theoretically not be 
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distributed in the absence of other control measures. The aim of this study is to propose and 
compare other control measures, easier to apply than French regulation, taking into account 
potential sources of variability. 

Materials and Methods 
Inactivation model 
Evolution of microbial concentration under dynamic thermal conditions was predicted using a 
linear model whose parameter D  was described as a function of temperature by the Bigelow 
model (Bigelow, 1921) : 

z
TT

DTDwith
TD
tNtN ref

ref

−
−=−= 101001010 log)(log

)(
log)(log  

Variability on refD10log  was estimated from the fit of a linear mixed-effects model on 

published data collected from various studies (Jaloustre et al. submitted). refD10log  

variability distribution was described by a normal distribution ),(log 0,10 DrefDN σ  with Dσ  
resulting from random effects related to strains, vegetative cell culture conditions before 
inactivation and other uncontrolled experimental factors. 

Thermal model 
209 time temperature profiles of the final reheating step were registered in a French hospital. 
As they were linear from 20°C until the end of reheating step, these profiles were fitted by 
linear regression using the following model:  

tkTT ×+= 0  
with T  the temperature [units : °C] at time t  [units : hours], 0T  the initial temperature and k  
the temperature increase rate [units : °C.hours-1]. 209 k  values were estimated and fitted by 
the normal distribution )2.22,8.75(N  characterizing variability on temperature profiles. 
French regulation prescriptions, which correspond to a reheating from 10°C to 63°C within 
less than one hour, correspond to a k  value above 53°C.h-1. This k  value is the 15.2th 
percentile of the fitted normal distribution, indicating that around 15% of observed 
temperature profiles could not respect French regulation because of a too low temperature 
increase rate. 

Definition of control measures 
In order to reduce probability of food borne illness, a low final C. perfringens concentration 
in food was targeted using published dose response models (Golden et al. 2009) and 
modelling portion size. Considering that potential growth during the first part of the process 
could induce a cell number increase at three log10 or more if cooling down step was delayed 
(Jaloustre et al. 2011), an inactivation of three log10 (performance criterion) was targeted to 
obtain this low final concentration. Three control measures were then proposed: duration 
above 53°C (DA53), final temperature in food (FTF) and sum of temperatures-minutes above 
53°C (ST53) required to achieve the target performance criterion. Temperature threshold for 
inactivation was fixed at 53°C, the estimated maximum temperature for C. perfringens 
growth, in order to prevent any residual growth (Jaloustre et al. 2011). French regulation 
prescriptions, defined as a reheating from 10°C to 63°C within one hour, correspond to 
DA53 = 11.3 min, FTF = 63°C and ST53 = 694°C.min. 
To define thresholds for each control measure that allow to comply the target performance 
criteria, temperature increase rates and refD10log –values were randomly selected from their 
estimated distributions in order to simulate realistic dynamic linear temperature profiles 
starting from 53°C and C. perfringens corresponding inactivation kinetics. Each simulation 
was stopped as soon as the target performance criterion was reached. These simulations 
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provided distributions of acceptable values for the three control measures and thresholds for 
each control measure were defined from the 97.5th percentile of these distributions. 

Comparison between control measures 
The applicability of single or combined control measures was compared, as presented in 
Table 1. Efficiency and duration required to achieve each control measure threshold were 
compared. A set of 15000 temperature increase rates and refD10log –values were randomly 
selected from their estimated distributions such as to simulate C. perfringens inactivation 
from 53°C until each control measure threshold was achieved (when two control measures 
were combined, simulations were stopped when one of the thresholds was achieved). As soon 
as each control measure threshold was achieved, both C. perfringens final concentration and 
duration required to reach this threshold were estimated. These simulations provided 
distributions of C. perfringens final inactivation and duration required to reach threshold for 
all the tested control measures. 

Results and Discussion  
Control measure thresholds 
Table 1 synthesizes the control measure thresholds required to achieve the target performance 
criterion. 95% variability intervals of the three single control measures ([4,18] min for DA53, 
[58.3,68.7] °C for FTF and [226,1082] °C.min for ST53) are huge, both due to variability on 

refD10log  and temperature increase rates. From those distributions, it is possible to define a 
threshold, for the control measure, that must be reached to stop reheating. Such thresholds 
were defined for each control measure using the 97.5th percentile, as reported in Table 1.  

Table 1: Comparison between control measures. Median duration required to reach threshold 
is reported with the 95% variability interval between brackets. 

Control measure Threshold Percent of 
simulations below 
the target criterion 

Duration required 
to reach threshold 

(min) 
    
French regulation 63°C and k  > 53°C.h-1 60.89% 7.6[5,11] 
DA53 18 min 2.37% 18 
FTF 68.7 °C 2.35% 12.5 [7.9,28.8] 
ST53 1082 °C.min 2.39% 18 [16,19] 
DA53 & FTF 18 min or 68.7 °C 4.76% 12.5 [7.9,18] 
DA53 & ST53 18 min or 1082 °C.min 2.80% 18 [16,18] 
FTF & ST53 68.7 °C or 1082 °C.min 4.48% 12.5 [7.9,19] 

Comparison between control measures  
Efficiency of all the control measures and durations required to reach them are reported in 
Table 1. Simulations of inactivation along temperature profiles respecting French regulation, 
i.e. stopped when 63°C is reached and accepted if temperature increase rates is over 53°C.h-1, 
lead to a very low efficiency as only 39.11% of accepted simulations reached the target 
performance criterion. If efficiency of DA53, FTF and ST53 appears equivalent as expected 
by construction of the threshold, durations required to reach their thresholds, reported in 
Fig.1, differ from a measure to the other. Variability on duration required to reach ST53 
appears low, as all the estimated values are between 16 and 20 minutes. On the opposite, 
variability on duration required to reach FTF threshold clearly appears huge. If FTF threshold 
is often quickly reached, even before the ST53 and the DA53 ones in respectively 77% and 
85% of the cases, for some temperature profiles FTF threshold is reached after a long time : in 
4.5% of the cases, duration required to reach FTF threshold exceeds 25 minutes.  
As reported in Table 1, while reducing required duration, combinations of control measures 
do not seem to excessively penalize efficiency insofar the estimated proportion of incomplete 
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inactivation stays below 5%. As the less time consuming one and the easiest one to apply, 
combination of FTF and DA53 appears particularly interesting. If caterers found it necessary 
to reach a higher efficiency of that combination, higher FTF and/or DA53 thresholds could be 
defined. With FTF fixed at 71°C and DA53 at 19 minutes, that combination becomes as 
efficient as each control measure taken alone for a median duration at 14.4 [8.8,19] minutes. 

 
Figure 1: Distributions of durations required to reach DA53 (vertical dotted line), FTF (solid 

line) and ST53 (dashed line) thresholds.  

Conclusions  
As French regulation prescribes measures, which appear difficult to apply and sometimes 
inappropriate, three other alternative control measures were defined to reach a performance 
criterion of three log10 C. perfringens inactivation during the final reheating step of a beef-in-
sauce product. For these control measures, distributions of acceptable values were estimated 
taking into account biological variability on refD10log  described in a mixed-effects model 
and observed variability on temperature increase rates. After estimating thresholds for the 
measures, the three single measures appear equally efficient but with very different durations 
required to reach their thresholds. With needle probe thermocouples able to perform real-time 
temperature measures, caterers could easily use any of these three control measures, more 
easily than French regulation as they do not depend on temperature increase rate. The 
combination of FTF and DA53, defined as the final temperature in food and the duration 
above 53°C, seems to be an interesting combination of control measures both efficient and far 
less time consuming than each control measure taken alone. 
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Abstract 
This study presents the development of a probabilistic simulation framework that integrates a 
combined energy-flow physical model with a microbiological inactivation model to estimate the 
minimum required heat treatment that would ensure microbiological safety and stability of 
aseptically processed soups. The framework accounts for the natural variability and uncertainty 
in processing and microbiological inputs to develop a risk-based sterilisation process design. 
The following inputs were used in the analysis: (1) concentration distribution of naturally 
occurring bacterial spores in ingredients, (2) heat-resistance distribution of these spores, and (3) 
product-temperature distribution during processing. Inputs (1) and (2) were obtained from an 
internal ingredient database. Input (3) was obtained from the energy-flow physical model, which 
in turn used probabilistic inputs to characterise parameter uncertainty and expected operational 
variability of key processing parameters. The model output was the concentration of surviving 
spores per pack. The main criterion used for decision-making was the probability of spore 
survival being less than 1 x 10-6 when benchmarked against a Performance Objective of < 1 
spore/pack. Simulation results supported reductions of 4 and 5°C in the temperature set-points 
for a soup containing particulates and a creamy vegetable soup, respectively. Such processes 
were implemented in pilot plant conditions followed by microbiological analyses to support the 
validity of results.  
 
Keywords: risk-based design, integrated engineering-microbiological modelling, probabilistic 
modelling, thermal processing  

Introduction 
Current regulations governing the safety of low-acid ambient-stable foods require “commercial 
sterility” of the product, but do not actually define a required safety level. As such, food 
companies have flexibility in designing their own processes to ensure “commercial sterility”, 
which in most cases rely on inactivation of microorganisms by heat as the only control measure. 
With that aim, companies have historically adopted ‘blanket’ process criteria (e.g. F0 values 
ranging between 6-15 min) as design targets for thermal processes for this type of product. This 
approach has been convenient for industry because it allows for processes to be established 
without detailed knowledge of raw material contamination, variability in process, and variability 
in the heat resistance of microorganisms, it has a low risk of misinterpretation in operational 
settings, and it has proven to be effective. However, the approach is hazard- and not risk-based, 
and its apparent benefits are hindered by the negative impact that its practical implementation 
may have on product quality and environmental sustainability (i.e. it relies on worst-case 
assumptions about microbiological, product and process parameters, which often leads to over-
designed processes). The aim of this study is to propose a risk-based approach to set the 
required heat-treatment for aseptically processed soups. This was achieved by: (i) using the 
ICMSF (i.e. International Commission on Microbiological Specifications for Food) conceptual 
equation (ICMSF 2002) as the main risk-based framework, (ii) developing an integrated 
physical and microbiological model (which underpins the ICMSF equation) to predict the total 
required reduction in the levels of microorganisms to meet a target Performance Objective (PO), 
and (iii) by setting relevant microbiological and process model inputs at their realistic 
distribution of levels rather than their worst-case levels. 
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Materials and Methods 
Risk-based conceptual framework 
To determine the operational design target for inactivation of microorganisms based on risk, we 
used the concept of Performance Objective (ICMSF 2002), which offers a conceptual 
framework for risk-based product/process design, and can be expressed by Eq. 1 
 

∑ ∑ <+− POIRH0         (1) 

 
The elements of Eq. 1 are described as follows:  
H0:  initial level of spores before the heat treatment (log10 spore kg-1). The quantity has been 

adjusted as function of the unit of finished product (i.e. 1 kg soup cartons). The value of H0 
was given by mesophilic aerobic spore counts (after a heat treatment of 80°C for 15 min), 
for each ingredient in the soup formulation. These were obtained from a database collected 
over 10 years in a soup factory, reflecting variability of naturally occurring spores. A 
prevalence of 100% was assumed (Membré and van Zuijlen 2011). 

ΣR:  total log-reduction, by heat inactivation, required to meet the PO. This was deduced from 
H0, ΣI and PO (i.e. ΣR ≥ H0 + ΣI – PO). The mathematical calculation ΣR will be described 
later (see Microbiological inactivation model section). 

ΣI:  total increase in spore levels (expressed in log10 units) before heat treatment. It was 
assumed that ΣI = 0 since growth or recontamination before heat treatment is unlikely. 

PO: Performance Objective after the heat-treatment (log10 spore kg-1). In our context, we set the 
PO as the maximum concentration of spores which needs to be achieved to ensure a stable 
product, defined as absence of mesophilic aerobic spores per pack, i.e. PO < 0 log10 spore 
kg-1 (i.e. < 1 spore pack-1). 

Microbiological inactivation model 
The calculation of the sterilisation value required to meet the PO was based on the classical 
Bigelow inactivation kinetics (Bigelow 1921), which describe death of spores by a log-linear 
relationship. This can be expressed by Eq. 2 
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where T is the product temperature (°C), Di

121 is the decimal reduction time at 121°C (min) for 
ingredient i, and zi is the so-called ‘z-value’ (C°) for ingredient i. The values of Di

121 and zi were 
obtained from the same ingredient database used to define H0, where the same ingredients were 
heat treated at 100 and 110°C for 15 min. The methodology for estimating Di

121 and zi has been 
previously reported by our group (Membré and van Zuijlen 2011).  

Physical model 
The product (fluid + particulates) temperature, T, in Eq. 2, was predicted by means of an 
energy-flow model. For a multiphase food product sterilised in an aseptic processing line, 
assuming a radially well-mixed system, the energy balance on the fluid phase at any cross 
section along the tube can be expressed by Eq. 3 (Sastry and Cornelius 2002) 
 

 )()(, f
surf
ppfppfeffw

f
ffpf TTAhnTTlh

dt
dT

AC −+−=ρ     (3)

  
where ρf is fluid density (kg m-3), Cp,f is fluid heat capacity (J kg-1 °C-1), Af is cross-section area 
through which the product flows (m2), Tf is fluid temperature (°C), t is time (s), hfw is overall 
heat transfer coefficient between heating/cooling medium and fluid (W m-2 °C-1), lf is perimeter 
of cross-section area (m), Te is external heating/cooling medium temperature (°C), np is number 
of particulates per unit length of tube (m-1), hfp is fluid-particulate convective heat transfer 
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coefficient, Ap is surface area of a single particulate (m2), and Tp
surf is temperature at surface of 

particulate (°C). To solve Eq. 3, each unit (e.g. a heat-exchanger) in the aseptic processing line 
was discretized into M small elements, and solved for the steady-sate temperature in each 
element.  The solution was then moved on time (explicitly) by iterating over the entire length of 
each unit using the values of Tf, Te, Tp

surf at the current element M (or time level) to update the 
solution at the next element M+1.  With the exception of Tp

surf, all the inputs in Eq. 3 were 
obtained either from geometrical considerations or experimental data.  The value of Tp

surf was 
calculated by solving numerically (i.e. finite differences) for unsteady-state heat conduction 
(with convective boundary conditions) within a particulate. The coefficient hfw lumps the overall 
energy transfer between external media and fluid in a single parameter, and it is estimated as an 
average value for each unit of the aseptic processing line based on the measured inlet and outlet 
temperatures of the carrier fluid. The coefficient hfp is defined as an uncertainty distribution (a 
uniform distribution – see next section), whose minimum and maximum values are defined 
from published data for similar products (Sastry and Cornelius 2002).   

Simulation framework and decision rules 
Since the PO is a single value, the output distribution of surviving spores (logN) was deemed to 
give an acceptable scenario when the probability of having a surviving spore was less than 
1x10-6 compared against the PO (i.e. { } 6101logPr −×<≥ PON ). Additionally, for 
microbiological safety assurance, a minimum F0 3 min in the holding tube was required for an 
acceptable scenario. Seven model inputs (i.e. H0, zi, hfp, Te, Ap, ratio of maximum to average 
fluid velocity, and product mass flow rate) were defined by probability distributions (from data, 
measurements or expert opinion). The complete model was solved by running Monte Carlo 
simulations implemented in Matlab R2009a (The Mathworks, Natick, MA, USA). A baseline 
simulation was run with standard process conditions. Optimisations were subsequently run with 
the aim of reducing controllable process parameters towards milder conditions, whilst still 
meeting the criteria for an acceptable scenario. 

Results and Discussion  
The proposed risk-based design framework was evaluated with two different types of soup: (i) a 
creamy vegetable soup (without particulates), and (ii) a clear bouillon containing large 
particulates. In both cases, the baseline model (i.e. simulating the process implemented 
currently) resulted in conservative distributions of surviving spores (logN) and F0 values in the 
holding tube, thus providing sufficient opportunities for process optimisation. Simulations for 
optimised processes focussed on reducing the severity of the heat-treatment with a view to 
improve product quality and to reduce environmental impact (i.e. reduced energy usage). 
Optimisation options focussed on two main strategies: (a) a reduction of the temperature set-
point for product at the inlet of the holding tube, and (b) a reduction of the total length (i.e. heat 
transfer area) in the main steriliser. Simulation outputs for the distribution of surviving spores 
(logN) and F0 in the holding tube are illustrated in Table 1 for the two types of soup.   

Table 1: Simulation results for two types of soup formulations evaluated 
Simulation Percentile Creamy vegetable soup  Bouillon with particulates 
  logN (log spore/kg) F0 (min)  logN (log spore/kg) F0 (min) 
Baseline  5th  -41.48 12.59  -28.89 13.34 
 50th  -19.36 15.73  -16.67 17.09 
 95th  -11.87 19.62  -11.44 21.75 
Strategy (a) 5th  -10.32   4.11    -8.17   4.34 
 50th    -6.27   5.19    -5.68   5.56 
 95th    -3.96   6.54    -3.58   7.06 
Strategy (b) 5th  -13.36   5.24    n.d.a   n.d. 
 50th    -7.89   6.50    n.d.   n.d. 
 95th    -5.14   8.05    n.d.   n.d. 
a n.d. = not determined (see discussion below) 
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The recommended optimised processes were implemented in a pilot aseptic processing plant, 
followed by sensory evaluation and microbiological analyses. For the creamy vegetable soup, 
the simulation strategy (a) resulted in a reduction of 5°C in the product temperature (i.e. fluid 
temperature) set-point as compared to the baseline process, whilst strategy (b) resulted in a 
reduction of 20% in the total steriliser length. In the case of the bouillon with particulates, 
strategy (a) resulted in a reduction of 4°C in the product temperature (volume-averaged 
temperature for particulate phase) set-point; however, from a practical implementation 
viewpoint, it was not possible to implement any reductions in the steriliser length due to 
instability of product flow rate in pilot plant conditions. A representative simulation output is 
depicted in Figure 1 for the creamy vegetable soup. 
 

 
Figure 1: Output distributions of surviving spores (logN) –left plots– and F0 value in the holding 
tube –right plots– obtained after Monte Carlo simulation procedure; illustration with the creamy 

vegetable soup (baseline and optimised, i.e. strategy (a), simulations). 

For both formulations, microbiological analyses confirmed absence of mesophilic aerobic 
spores per pack of finished product, supporting the validity of the risk-based design approach. 
Sensory evaluation results, both at expert panel level and in consumer preference tests, indicated 
that the optimised processes resulted in better organoleptic quality products.  
The proposed risk-based approach for process design and optimisation illustrates an extension 
of application of the ICMSF conceptual equation to spoilage microorganisms. As such, we 
propose a tiered decision criteria approach for setting design targets for aseptic processed soups 
as follows: (i) control of spoilage microorganisms decided by output of simulation so 
that { } 6101logPr −×<≥ PON , and (ii) assurance of food safety (i.e. control of pathogens) by 
constraining the process setting to F0 ≥ 3 min in the holding tube. 

Conclusions  
The proposed risk-based approach is promising to support the design of milder thermal 
processes, moving away from worst-case scenarios without compromising microbiological 
stability and safety. The main benefits for industry are increased product quality (due to milder 
processing) whilst reducing the environmental impact (green house gas profile). 
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Abstract 
A model was constructed from literature data for thermal inactivation of Listeria 
monocytogenes in liquid food products based on 735 sets of literature data. Significant 
variables were pH, sugar and fat content and the time and temperature of growth or storage 
before inactivation, as well as a heat shock. The model reduces the variability in the dataset 
due to these variables (known or controllable in practice), while keeping the variability of 
heat resistance of the 58 strains (unknown and not controllable in practice).  
 
Keywords: pasteurisation, food matrix, processing, Monte Carlo analysis 

Introduction 
The variability of the efficacy of thermal inactivation of L. monocytogenes (e.g. during 
pasteurisation) can be estimated by a model that is based on literature data. Differences in 
food composition, process conditions and other variables can influence thermal inactivation. 
When calculating inactivation of L. monocytogenes for a specific food and process using 
Monte Carlo simulations, there is likely an overestimation of the variability of the thermal 
inactivation efficacy. On the other hand, using inactivation data in a certain food based on a 
limited number of L. monocytogenes strains may lead to underestimation of the variability of 
strain resistance to heat. The objective of this research was to generate a multivariate 
regression model to predict (variability of) thermal inactivation from literature data while 
accounting for effects of food composition and processing conditions. As specific data on 
food composition is lacking in most literature on heat inactivation in solids (fish, sea food, 
meat, vegetables), the model was limited to fluids.  

Materials and Methods 
Inactivation data and some condition variables were present in a database constructed from 
literature as described by Van Asselt & Zwietering (2006). Data on more variables were 
collected from the original papers they cited and from the cited reviews of ICMSF (1996) and 
Doyle et al. (2001). The database was further supplemented with other, mostly more recent 
literature (Edelson-Mammel et al. (2005), Hassani et al. (2005a, 2005b, 2007), Huang (2004), 
Ignatova et al. (2007), Juneja & Eblen (1999), Maisnier-Patin et al. (1995), Van der Veen et 
al. (2007)). Missing data on pH and concentrations of fat, salt and sugars in growth media, 
dairy, juices and egg (parts) were estimated from other literature or the internet. Data sets (26) 
with antimicrobials (peroxide, lactoperoxidase, nisin and ethanol) were not included. In total, 
the 801 data sets from 53 papers included 58 L. monocytogenes strains or cocktails (7). 
Statistical analysis was performed using GenStat 13.2 (VSN International Ltd.). 
Concentrations of fat (0 – 83%), sodium chloride (0 – 20%) and sugars (0 – 58%) were 
10-logarithmically transformed to approach a normal distribution, as was the duration of the 
last temperature phase (0 – 336 h, culturing or storage, excluding heat shock). Zero values 
were transformed to -5 (% sodium chloride), and -4 (% fat and sugar). The highest, 
acceptable, colinearity found was between 10log(sodium chloride) and 10log (fat), with a 
correlation coefficient of 0.24 (-0.06 when zero values were excluded). The ‘all-subsets 
regression’ procedure was used to attain the basic linear model without interaction terms. 
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Results and Discussion  
Preliminary multivariate modelling could not reduce unequal variance over the temperature 
range, the variance at 60 – 70 °C remained too high. High 10logD (D = time to 10-fold 
reduction) was linked to 5-20% sugar and/or sodium chloride added to liquid egg products. 
Low 10logD was linked to long cold storage in chicken gravy. As inclusion of 10log(sodium 
chloride), 10log(sugars) and 10log(duration of last temperature phase) in the model could not 
reduce this high variance at mid temperatures, chicken gravy data (40 data sets) were 
removed from the data set, as were liquid egg products with added sugar or sodium chloride 
(26 sets). This limited the concentration range of sodium chloride to a maximum of 8.8% 
(initially 20%), but stabilised the variance. Figure 1 shows the variability of all 10logD values, 
not corrected for food or process variables. The univariate model of 735 datasets (logD = 
9.07 – T / 6.74) had an R2 of 0.77 and a standard error of 0.409. 
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Figure 1: Variability of inactivation times (D = time to 10-fold reduction) of Listeria 
monocytogenes per heating menstruum as a function of the heating temperature. Inactivation 
times are not corrected for effects of other variables. Total number of data sets is 801 and 66 

of these were excluded for further modelling (chicken gravy and liquid eggs with added sugar 
or sodium chloride). Fruit juices are apple, orange and white grape. Dairy includes milk, 
cream, butter and ice-cream. Liquid eggs are separated in whole, white and yolk. Media 

include deionised water, physiological saline, phosphate buffer, brain heart infusion, tryptose 
phosphate broth and trypticase soy broth (with or without yeast extract). 

 
To select variables for the basic multivariate model including processing conditions and 
menstruum composition, all possible combinations of variables were tested, including leaving 
out one or more variables. To limit the complexity of the initial model, individual menstrua 
(17 groups) were not included at first. The selected best model had an R2 of 88.3% and a 
standard error or 0.292 and is presented as model A in Table 1. Allowing for interaction 
between heating temperature and menstruum groups, i.e. allowing different slopes per 
menstruum group, did not change R2 or standard error, and consequently interaction terms 
were not included. 10log(sodiumchloride) was not significant (p = 0.055), had little effect on 
R2 (88.4%) and the standard error (0.292) and was not included in model A. 
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Table 1: Coefficients (and standard error) of models of the effect of heat and other variables 
on 10log D (D = time in minutes for 10-fold inactivation). Significance levels are p < 0.001 

unless indicated otherwise: ** p < 0.01, * p < 0.05, # p < 0.1, & p > 0.1.  
Variable Model A  Model B 
Intercept 
Heating temperature (°C) 
pH 
10log(sugars % wt/vol) 
10log(fat % wt/vol) 
Last temperature phase (°C) a 

10log (last temp. phase (h)) a 

Heat shock difference (°C) b 

Heating method 2 c 

Heating method 3 c 

Heating method 4 c 

Liquid egg d 

Beef gravy d 
Cabbage / fruit juice d 
Media d 
Estimated standard error 
R2 
Number of data sets 
 

9.33 (0.189) 
-0.161 (0.0025), z = 6.21 

0.165 (0.011) 
0.081 (0.018) 
0.063 (0.014) 

0.0053 (0.009) 
-0.220 (0.028) 
0.0153 (0.018) 
-0.189 (0.047) 

-0.078 (0.037)* 

0.078 (0.049)& 

-0.142 (0.064)* 
0.516 (0.073) 

0.216 (0.077)** 
0.071 (0.051)& 

0.292 
88.3% 

735 

 9.01 (0.170) 
-0.157 (0.0023), z = 6,37 

0.167 (0.011) 
0.090 (0.017) 
0.060 (0.014) 
0.0060 (0.009) 
-0.249 (0.027) 
0.0138 (0.018) 

 
 
 

-0.074 (0.060)& 

0.414 (0.073) 

0.116 (0.071)& 

0.069 (0.050)& 

0.298 
87.8% 

735 

a  Duration and temperature of last temperature phase, either during culturing or storage, not heat shock.  
b Heat shock (54 sets) temperature difference with the last temperature phase (culturing or storage). 
c Heating method 1 = lab scale pasteuriser with flow (n = 93), 2 = low culture volume in large volume 

pre-heated menstruum (n = 211), 3 = low volume in submerged glass capillary tube or coil (n = 350), 
4 = large volume in glass vial in water bath (n=81). Reference method is heating method 1. 

d Reference menstruum is dairy 
 
 When all 17 individual menstrua were included in model A (instead of menstruum groups), 
milk, cream and some media were significantly different from other menstrua, R2 was 89.9% 
and standard error 0.271. Whereas there could be merits in considering all menstrua 
separately, doing so would result in considerable increase of model complexity and general 
applicability, which is undesirable. Allowing polynomial effects of variables and interaction 
between variables in model A, the model would improve slightly (R2 = 89.4, s.e. = 0.278),  
the polynome of 10log(sodium chloride) would be included, as would the product of 
10log(sodium chloride) and 10log(sugars). In this model, however, an increase of the 
10log(sodium chloride) terms would have a lowering effect on logD and this is contradictory 
to results in individual papers (Jorgensen et al. (1995), Juneja & Eblen (1999) and Edelson-
Mammel et al. 2005). Furthermore, these changes would result in a lower and more uncertain 
intercept, only a low increase of R2 and low decrease of the estimated standard error, as well 
as in increased complexity. Therefore, this change is suboptimal and model A is preferred. An 
even simpler model with a relatively high R2 and low standard error also excludes the effect 
of the heating method from model A, resulting in model B (Table 1). This model is overall 
preferred,  as the effect of heating method does not seem to follow logic; the best heating and 
cooling method (1: lab scale pasteuriser with flow) gives results that are not significantly 
different from the worst heating and cooling method (4: large volume in water bath). Model B 
is applied for inactivation of L. monocytogenes in raw milk (without pre-heating, i.e. no heat 
shock), described in Formula 1 (standard errors are given in Table 1). 
 
10logDraw milk  = 9.01 - 0.157 heating temperature (76 °C) + 0.167 pH (6.5 - 6.7)  
 + 0.090 10log(sugar (4.5 - 4.7%)) + 0.060 10log(fat (3.8 - 4.2%))  
 + 0.0060 temperature last storage phase (5-7 °C)   
 - 0.249 10log(time last storage phase (16 – 80 h)) ± 0.298    (1) 
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Sanaa et al. (2004) estimated mean concentrations of L. monocytogenes in raw milk from two 
areas in France at 0.3 and 0.8 cells/l, with their mean being 0.55 cells/l. Assuming a 
distribution of the concentration of Poission(Gamma (1;0.55)) cells/l, the P99.9999 in raw 
milk is 13 cells/l (10 million iterations). With the univariate model of 735 data sets, 
uncorrected for the effect of food composition and processing conditions, there is a calculated 
probability of  5.10-5 of the presence of a surviving L. monocytogenes cell in a litre of milk 
pasteurised at 76 °C for 20 s (assuming equal variance at all temperatures). Using the 
preferred model B, and assuming uniform distributions of  variables with ranges described in 
Formula 1, the calculated probability is reduced to less than 1.10-7, due to the lower variability 
resulting from the inclusion of the effect of product and process variables.  

Conclusion 
A practical multivariate regression model from literature data can be used to predict heat 
inactivation of L. monocytogenes in fluids like dairy (milk, cream, butter), fruit and vegetable 
juices and liquid eggs without additives. The model includes variability of strain tolerance to 
heat and limits the variability for specific processing conditions and food composition. 
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Abstract 
One-step regression was used to estimate the dynamic microbial inactivation parameters of E. 
coli K12 using the differential form of three different models. Previously published microbial 
data were used in which samples of 100 µl with initial microbial concentration ~109 cfu/mL 
were heated at three different rates (1.64, 0.43, or 0.15°C/min), in duplicate, from 49.5 °C to 
60°C over a total experimental time from 11 to 60 min. The best-performing models based on 
their statistical assessment were, in order: Geeraerd et al. (6 parameters), Weibull (6 
parameters), and the first-order model (5 parameters).  The statistics used to evaluate the 
models were: minimum root mean square error (RMSE); distribution of residuals; asymptotic 
standard errors of parameters; scaled sensitivity coefficients; and sequential estimation.  
RMSE for first-order model was nearly twice that for Geeraerd et al., showing that the first-
order model was inappropriate for these data. The optimum reference temperature (Tref) for 
the secondary model (Bigelow type) was interpolated by estimating all the other parameters 
for different fixed Tref values, and choosing Tref that minimized the correlation coefficient 
between AsymDref and z.  The advantage of finding optimum Tref was that it minimized the 
confidence interval for AsymDref.  Scaled sensitivity coefficients of the Geeraerd al. model 
revealed that a) none of the parameters was linearly correlated with others, and b) that the 
most easily estimated parameters were the three initial microbial concentrations logN(0), 
followed by z, AsymDref and logC(0). Sequential estimation was also applied which derived 
parameter values after successively adding each data point. Sequential results showed that a) 
each parameter except from one of the logN(0)s nearly reached a constant half-way through 
the experiment, and b) parameter values were affected by heating rate.  These results show 
that dynamic microbial inactivation parameters can be estimated accurately and precisely, 
directly from few experiments, potentially eliminating the need to apply isothermal 
parameters to dynamic industrial processes.  
  
Keywords:  Microbial inactivation modeling, parameter estimation, non-isothermal, optimum 
reference temperature 

Introduction 
Transposition of results obtained from static to dynamic conditions has shown that adjustment 
of the initial mathematical structure is required (Valdramidis et al. 2007; Bernaerts et al. 
2002). Dolan (2003) and Valdramidis et al. (2008) have also shown that even if the results are 
excellent by the use of isothermal inactivation parameters one does not know the actual 
values of non-isothermal estimates. This highlights the importance of further studying 
parameter identification techniques under dynamic conditions representative of a realistic 
(processing) environment.  
The objectives of this work were: 1) to demonstrate that non-isothermal microbial 
inactivation kinetic model parameters could be accurately and precisely estimated using one-
step nonlinear regression following an ordinary least squares and a sequential approach; and 
2) to determine based on statistical indices the best-performing out of three differential 
models. 
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Figure 1:  Temperature histories, performed 
in duplicate. 

Materials and Methods 
Experimental 
Previously published data (Valdramidis et al. 2008) were used. Briefly, samples of 100 µl 
with initial microbial concentration ~109 cfu/mL were heated at three different rates (1.64, 
0.43, or 0.15°C/min), in duplicate, from 49.5 °C to 60°C over a total experimental time from 
11 to 60 min. 

Data Analysis 
Three different types of models were used for this study: a log-linear, a Weibull (refer to its 
differential form) and the reduced model of Geeraerd et al. (2000) not incorporating the so 
called tailing effect. The latter reads as follow: 
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and kmax is given by the Bigelow model 
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N is the microbial cell density cfu/mL, Cc is related to the physiological state of cells [-], kmax 
is the specific inactivation rate [1/min], AsymDref is the asymptotic decimal reduction time at 
reference temperature Tref, and z is the degrees Celsius temperature change causing a 10-fold 
change in AsymDref.  Parameters were estimated both for all the heating rates simultaneously 
and for each heating rate alone using Ordinary Least Squares (OLS) minimization in Matlab 
(Version 2010a), nlinfit or lsqnonlin (statistical and optimization toolbox, respectively), and 
ode45 for the differential equations for each of the three models.  Sequential estimation was 
performed in Matlab using the algorithm presented by Beck and Arnold (1977). 

Results and Discussion  
The temperature histories were approximated 
with nearly-linear curve fits (Figure 1).The 
optimum reference temperature Tref was 
dependent on the model, even though the data 
were exactly the same.  Tref = 57.98, 58.68, 
and 58.1°C, in the Bigelow secondary model 
for the first-order, Weibull, and Geeaerad et 
al. models, respectively.  Tref was determined 
by minimizing the correlation coefficient 
between AsymDref and z by using all the 
experimental data sets (Figure 2).   

Parameter estimation by OLS 
The model fit of the Geeraerd et al. model is 
given in Figure 3.  The RMSE= 0.435, 0.291, 
and 0.221 for the first-order, Weibull, and 
Geeaerd et al. models, respectively. The two 

6-parameter models, with 3 representing the logN(0)s (Weibull and Geeaerd et al. with 
integrated Bigelow model) gave significantly better fits than the 5-parameter model (first-
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Figure 2:  Correlation coefficient of AsymDref and 
z vs. reference temperature for Geeaerd et al. 

model. 

Figure 3:  log(microbial concentration) vs. 
time.  Observed (markers) and estimated 

(lines) for Geeaerd et al. model. 

order integrated with Bigelow model), as assessed by the reduced RMSE and verified by 
AICc. The parameter estimates and other statistical results for the Geeaerd et al. model are 
shown in Table 1.  The condition number of the Jacobian = 9.3, a desirable low value 
indicating a very stable system for parameter estimation.  The residuals (Figure 4) indicate 
that the errors met the following standard statistical assumptions: additive errors, zero mean, 
constant variance, uncorrelated (except for the slowest heating rate, Figure 1), and normal 
distribution (data not shown).  The correlation coefficient between the two Bigelow 
parameters was nearly zero, due to choice of the optimum Tref.  The other parameters were not 
highly correlated.  The relative standard errors for all parameters were small, under 7% (Table 
1), giving desirable small confidence intervals.  The scaled sensitivity coefficients were 
estimated as follows: 

  
log ( )

i i
i

N tX β β
β

∂′ =
∂

 (5) 

where βi  is the ith parameter, are 
shown in Figure 5.  None of the X′ was 
linearly dependent, thereby allowing 
each parameter to be separately 
estimated.  All of the X′ were large, 
except logC(0), which correspondingly 
had the largest relative standard error = 
7% (Table 1).  X′ for parameters 
AsymDref and z were significantly 
larger for the slowest heating rate 
(Figure 5), showing that it was these 
data that most influenced their 

estimation. The parameter estimates 
for individual heating rates b and c 
were significantly worse than those for 
all the data. Parameters would not 
converge for heating rate a.  

Table 1:  Parameter estimates for Geeaerd et al. model. 

RMSE (log (cfu/mL)) 0.221 
    

parameters estimate std error 
95% conf 
interval cov (%) 

AsymD58.117 C (min) 2.20 0.05 2.09 2.30 2.5% 
z (oC) 5.14 0.08 4.98 5.31 1.6% 
logC(0)  1.83 0.13 1.57 2.08 7.1% 
logN(0)1  (log (cfu/mL)) 9.42 0.05 9.33 9.52 0.5% 
logN(0)2 (log (cfu/mL)) 9.23 0.05 9.14 9.32 0.5% 
logN(0) 3 (log (cfu/mL)) 9.38 0.05 9.28 9.48 0.5% 
 

 
Sequential estimation 
Sequential results were plotted vs. –logN(t) to 
determine how the parameters were continually 
updated with each datum addition as the log 
reductions increased.  The results were favorable 
(Figure 6 is an example), in that they all 
reached a constant by half-way through the 
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Figure 5:  Scaled sensitivity coefficients  
for Geeaerd et al. model. 

Figure 4:  Residuals for Geeaerd et al. 
model. 

Figure 6: Sequential estimates of 
AsymDref vs –logN(t). 

experiment, except for one of the 
logN(0).  Therefore, the experiment could 
be stopped when logN(t) was 
approximately 7 (i.e., following 2.5 log 
reduction) with minimal loss of accuracy 
in the parameters.  The final sequential 
estimates were very similar to those from 
OLS. 
  

Conclusions  
This work demonstrates that non-
isothermal microbial inactivation 
parameters can be estimated accurately and 
precisely with a minimum of experiments and 
nonlinear regression.  The slower heating rate 
allowed for more accurate estimates, while the faster heating rate would not allow 
convergence alone. The larger value of the scaled sensitivity coefficients also confirmed that 
slower heating rates give more accurate estimates, especially for the z parameter, because the 
temperature was still changing while microbe survivor numbers were decreasing. These 
methods (OLS and sequential estimation) can be used as alternatives to numerous isothermal 
experiments and multiple-step linear regression, which typically have too few degrees of 
freedom to attain desirable small standard error for the Bigelow z parameter. Additionally, the 
performance of three different inactivation models widely used in the literature was compared 
based on statistical indices. Further studies will focus on assessing the specific structural 
properties of these models (e.g., parameter interpretation, time dependency).  
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Abstract 
Recently, phytochemical constituents have attracted a lot of interest as potential sources of 
bioactive ingredients in food product formulations. However, before being incorporated into 
foods or beverages, the stability of these bioactive constituents during both processing and 
storage must be considered. This presentation will focus on recent work in our laboratory 
concerned with developing a non isothermal model to accurately predict the effects of both 
storage and thermal processing conditions on the stability of phytochemical bioactives, in 
particular to the case of pH-catalysed degradation of parthenolide in acidified feverfew 
beverages. It will be shown that this mathematical model for non-isothermal bioactive 
degradation has many advantages as it mimics well the industrial heat-treatment processes 
while minimising the number of experiments necessary to its validation. Also, its 
implementation leads to a full understanding of the complex influences of time, temperature 
and pH on bioactive stability, thereby allowing the accurate prediction of bioactive shelf-life. 
 
Keywords: non-isothermal degradation, bioactive, shelf-life, prediction model 

Introduction 
The incorporation of bioactive compounds into functional foods is a rapidly growing market 
(Bech-Larsen and Scholderer 2007) matched by an increased consumer interest in traditional 
products has lead recent studies to focus on the potential of phytochemicals as natural sources 
of health promoting ingredients for functional foods and beverages (Gruenwald 2009). 
Despite these promising opportunities, one of the main issues associated with the 
incorporation of natural phytochemicals in beverages is related to the inherent thermal 
instability of these bioactive molecules, and their potential degradation during either the 
traditional heat treatments necessary to inactivate food-borne pathogens or during the 
typically long non-refrigerated shelf-lives of these food products.  
The use of a non-isothermal model based on the works of Dolan (2003) has been found to 
allow rapid access to all kinetic parameters of the degradation processes, while helping to 
mimic the heat processes encountered in the food industries (Harbourne, Jacquier, Morgan 
and Lyng 2008). Here, this model is presented in the case study of acidified beverages 
fortified with feverfew (Tanacetum parthenium), a medicinal herb used traditionally to treat 
various conditions including prophylaxis of migraine headaches, relief of pain and 
inflammation from arthritis. Pharmacological studies indicate that a sesquiterpene lactone, 
parthenolide is responsible for the biological activity of feverfew preparations (Kang, Chung 
and Kim 2001), but this bioactive is known for its lability in acidic media (Fonseca, Rushing, 
Thomas, Riley and Rajapakse 2006). In addition, feverfew contains phenolic compounds 
which have been reported to possess anti-inflammatory activity (Williams, Harborne, Geiger, 
and Hoult 1999), but due to latent Polyphenol Oxidase (PPO) activity, these phenols have 
been shown to degrade quite rapidly in pH neutral solutions and lead to substantial browning 
of the beverages upon storage.  
Therefore, the objectives of this study were first to determine the thermal degradation kinetics 
of parthenolide using a non-isothermal method in feverfew infusions, at pH levels 
representative of those that are commonly encountered in beverage products. Secondly to 
establish a model unifying the combined influence of time, temperature and pH on 
parthenolide degradation in order to predict the loss associated with heat processing in 
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acidified beverages. Lastly, to use the model to predict the loss of the parthenolide bioactive 
upon storage and to optimise the acidification level of the beverage in order not only to 
minimise bioactive degradation, but also to minimise browning, leading to an acceptable 
shelf-life of the final beverage. 

Materials and Methods 
Beverage preparation and analysis. 
Organically grown feverfew was harvested in Roscommon, Ireland. The aerial parts were 
frozen at -20 ºC and subsequently freeze-dried and then ground into a moderately fine powder 
before being extracted in water at 100 ºC for 10 mins as described in detail by Marete et al. 
(2009). The pH of the infusions was then adjusted using various concentrations of citric acid 
and sodium citrate to achieve a pH of 2.9, 3.7, 4.6 and 6.0 with a final citric/citrate 
concentration of 0.06 M to mimic the citric content in fruit beverages. 1.5 ml aliquots were 
then filtered using 0.2 μm GHP membrane into small HPLC vials closed with a Teflon 
septum thus preventing any liquid loss even at high temperature. After heat treatment or 
storage, with temperature recordings inside the sample vials using fast response type K 
thermocouples, HPLC analysis of parthenolide content was carried out as described in detail 
in Marete et al. (2009).  

Results and Discussion  
The non-isothermal method is based on a single experiment in which the temperature is 
recorded as a function of time. Thus the kinetic parameters can be determined from this single 
experiment that covers the desired temperature range (Dolan 2003). For this case study, the 
samples were submitted to non-isothermal heat treatments such as those presented in figure 1. 

 

Figure 1: Examples of the temperature profiles of the heat treatments subjected to the 
samples. 

These heat-treatments clearly show the temperature profiles achieved by the samples which 
allowed for a fast heating rate (up to 80 °C/min) to the desired temperature, followed by the 
required holding time. The temperature of the sample then dropped sharply due to the fast 
cooling of the samples in ice to stop further thermal degradation. 
From these curves, the independent variables time (t) and sample temperature (T) were 
combined into one variable, the thermal history (β), according to Eq. (1): 

( )∫





















−−=
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ref
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TtTR
E

0

11expβ dt    (1) 

where Tref is the arbitrary reference temperature and T(t) is the temperature T at time t. 
The measured C/C0 values indicating the ratio of bioactive left in the sample after heat 
treatment could then be plotted as a function of β as shown in figure 2. 
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In view of the exponential decay of the parthenolide concentration ratio with thermal history 
(figure 2), first-order kinetic rate constants (k) were calculated according to equation 2: 

 
Figure 2: Parthenolide degradation in beverages at pH 2.9 (●), 3.7 (▲), 4.6(■) and 6.0 (♦) 

against thermal history (β) at a reference temperature of 100°C. The lines are non-linear fits 
calculated according to equation 2. 

( )βk
C
C

−= exp
0

     (2) 

The experimental and calculated values showed a good fit as evidenced by good correlation 
coefficients (r2 > 0.98). Infusions at pH 6.0 exhibited a slow degradation rate constant of (8.0 
± 0.4) x 10-3 min-1 increasing to (259 ± 39) x 10-3 min-1 at pH 2.9. The time required to cause 
a 10 % degradation of parthenolide at pH 6.0, 4.6, 3.7 and 2.9 were 13.2, 8.6, 2.6 and 0.3 
minutes respectively, indicating low degradation during heat treatment except for the most 
acidic beverages. There was no major effect on the calculated activation energies (Ea) with 
pH (88.5 to 89.6 kJ/mol) indicating a similar reaction mechanism in the chemical reactions 
involved at all the pH levels studied. The evolution in acidic media (pH≤ 7) of the rate of 
degradation of parthenolide k with pH was then modelled according to equation 3  

[ ]++= OHA 3
0kk pH      (3) 

where k0 is the first order rate constant for parthenolide degradation at neutral pH and A is a 
constant which indicates the pH dependency of the degradation rate.  
By combining the degradation at a reference temperature (equation 1) and reference pH 
(equation 3), the kinetic parameters of parthenolide degradation as a function of combined pH 
and temperature can therefore be estimated according to equation 4: 

[ ] ( ) 















−−×+= +

ref

a
Tref TtTR

EkpHTk 11exp)OHA(),( 3

0   (4) 

where 0
Trefk  is the degradation rate at the reference Temperature Tref and neutral pH. 

This equation enabled the drawing of a “master curve” of parthenolide degradation at pH 4.5 
and a reference temperature of 100 °C as shown in figure 3a. Together with all experimental 
points at various pH, temperature and time treatments, this figure also shows the predicted 
residual parthenolide concentrations according to equation 4 at these reference temperature 
and pH values (represented by the line). Considering the extent of experimental variations in 
terms of pH, time and temperature encompassed in this figure, the goodness of fit of the 
model is excellent (r2 > 0.99 and Standard Error of Estimates 0.03 on all 47 independent 
samples) and can readily be used to predict the optimum pH and time-temperature profile 
required for retaining the parthenolide content during heat processing e.g. pasteurisation 
processes. For example, a mild acidic (~pH 4.5) beverage can be processed at 100 °C for up 
to 2 mins holding time and retain parthenolide content of more than 95%.  
Despite this apparent stability of parthenolide to the classic heat treatment processes 
(pasteurisation, sterilisation), excessive degradation can be predicted at room temperature 
(figure 3b). For example, one can estimate the storage time required to degrade 10% 
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parthenolide at pH 4 (5.4 ± 0.4 d) or the minimum pH to ensure less than 20% degradation 
over 30 days (pH > 4.74). In order to protect bioactive stability for a reasonable shelf-life, 
refrigeration is shown to be necessary (figure 3b). For example, refrigerated storage of 
acidified feverfew beverages to a pH value of 4.5 will retain 90% of parthenolide for 
approximately 3 months while room temperature storage for the same period will result in a 
65% loss in bioactive.  
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Figure 3: (a) Parthenolide degradation in feverfew infusions at pH 2.9 ( ●), 3.7 (▲), 4.6 (■) 
and 6.0 (♦) at various temperatures (5-100 °C) and reported at a reference pH of 4.5 and a 
reference temperature of 100°C. The line is the estimated degradation loss calculated from 

equation 4. (b) Prediction of parthenolide degradation upon storage at 5 °C (hatched line) and 
22°C (solid line) in pH 4.5 beverages. 

Conclusions  
These results provide very important information for the development of functional 
beverages. The development of a unified degradation model combining pH, time and 
temperature is likely to be a useful tool not only to estimate the impact of traditional heat 
treatment processing on the degradation of bioactives, but also to assess the bioactive loss 
during storage.  
This model can therefore predict the need for alternative heat treatment protocols and for 
refrigerated storage at an early stage in the development of functional beverages in order to 
ensure maximum retention of bioactive compounds is delivered to the consumer. 
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Abstract 
The formulation of foodstuff and the storage condition have great influences on water activity 
(aw) value and its evolution during its shelf life. The aim of this work is to study the effect of 
food composition and storage conditions on the aw and moulds development (growth rate) on 
bakery products. Firstly, the impact of the formulation of foodstuff on the aw was studied 
using AwDesigner ® computer program for aw simulation integrating the vaporization during 
baking. Secondly, we modeled the influence of storage conditions (relative humidity of 
storage, temperature, time) and water permeability of the packaging on the evolution of the 
water activity in bakery products. Nine different packaging, different temperature conditions 
(for 10 to 40°C) and different relative humidity (from 40 to 85%) were studied. Packaging 
water permeability and aw evolution are greatly influenced by storage conditions (temperature 
and relative humidity). Storage conditions on textural properties were also studied. The 
impact of aw on the development of five moulds species was studied: Aspergillus flavus, 
Cladosporium cladosporoïdes, Eurotium herbariorum, Penicillium chrysogenum, and 
Wallemia sebi. Potato Dextrose Agar was adjusted with glycerol in order to obtain a wide 
range of aw. In addition, temperature was studied in the range of 10 to 40°C. Fungal 
development shows two parameters: the growth rate (which is expressed as the increase of 
colony diameter per day) and the lag time (or moulds apparition time). Rosso model (1993) 
was used to describe the influence of temperature and aw on growth rate. This model allows to 
evaluate the cardinal values of water activity (awmin, awopt and awmax) and temperature (Tmin, 
Topt, Tmax) for each studied moulds. Such models allow to predict the shelf life of the products 
integrating formulation, baking, packaging permeability and environmental storage 
conditions. 
 
Keywords: water activity, shelf life, bakery  

Introduction 
Food shelf life is directly influenced by the aw of the product. The shelf life can be defined 
either by microbiological criteria or by sensory criteria. During its lifetime, transfers of water 
take place between the baked products and the surrounding air. And the physical properties 
may change. Initially, we have determined the impact of storage conditions (temperature, 
relative humidity and type of packaging) on the evolution of the aw of the product. Then we 
modeled organoleptic shelf life by evaluating critical organoleptic aw value. We have also 
modeled the impact of water activity on moulds development.  

Material and methods 

Formulation of the bakery products 
The formulation of the studied cake is composed of flour meal (29%), rapeseed oil (18%), 
sucrose (24%), whole egg (18%), sorbitol (3%), water (6%), glucose syrup DE 60 (2.1%), salt 
(0;5%) and baking yeast (0.4%). The cakes have been cooked in a bakery oven 11 minutes at 
180°C, using a 25g cake mold. Cooked cakes were ground before aw measurements.  
The sorption isotherm of the cake was realized using salt concentrated solutions method, 
using 7 saturated salt solutions in a range for aw from 0.113 to 0.900. Then we have used the 
Ferro-Fontan model to fit the sorption isotherm. The Ferro-Fontan parameters for the sorption 
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isotherm are: α=1,0882; β=0,07627; С=-1,0983 (Chirife et al. 1980). The accuracy of the 
model were evaluated using eq 2 is 6.1%. 
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Permeability of packaging 
9 different packaging were studied during this work, most of the packaging was bi-oriented 
polypropylene base with different induction (PVDC, EVOH, aluminum). Equation 2 gives the 
permeability of the packaging (K) as a function of the flux of water across the packaging 
(dm/dt), the gradient of water activity (daw) and the total area of the packaging (A).  
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The accuracy of the model is calculated using Root Mean Square Value (RMS, eq 3). 
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Texture Measurement 
The textural properties was measured on different cakes stored at different conditions using a 
texturometer TAXT2 in compression test (speed: 1mm/s, cylinder of 2.5mm diameter). 

Growth simulation of moulds 
The impact of aw on the development of five moulds species was studied: Aspergillus flavus, 
Cladosporium cladosporoïdes, Eurotium herbariorum, Penicillium chrysogenum, and 
Wallemia sebi. Potato Dextrose Agar was adjusted with glycerol in order to obtain a wide 
range of aw (from 0.78 to 0.998). Otherwise, temperature was studied in the range of 10 to 
40°C. The temperature and aw cardinal values for growth has been defined by using Rosso 
model (Sautour et al. 2001, eq 4). 
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Results and discussion 
Development of models for the simulation of the packaging permeability 
The normalized method to evaluate permeability of the packaging requires calculating the 
permeability of packaging at 38 ° C and 90% relative humidity. This value is not useful in 
industry because the storage of pastry products is generally carried out at 15 to 22°C. 
 

ܭ ൌ .ிܭ 0,9. 1,9
ቀషయఴభబ ቁ            (5) 

 
We have evaluated the permeability of each studied packaging in several conditions of 
temperature and relative humidity.  The results show that the permeability of the packaging is 
strongly influenced by temperature and gradient of relative humidity across the packaging. 
Equation 5 shows the influence of temperature (T) on permeability of packaging (K). KF is 
the permeability value from providers. The parameter (1.9) is obtained by fitting experimental 
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value with the model. Because of the very weak value of water permeability at 8°C, the RMS 
is 59%. At 40°C, the RMS of the fitting is 19.8%. At 20°C, the RMS is 27.7%. 

Evolution of the water activity of the cake during the shelf life 
During the storage and independently of the storage temperature, cakes aw and cakes water 
content changes on the sorption isotherm (fig. 1).  
The evaluation of the water content of the cake during the storage is given by eq 6. This 
equation is obtained from eq 1 where Xi is the initial water content and Xt is the water content 
at t time and take into account the storage conditions. Using eq 5 and sorption isotherm (eq 1) 
of the cake, we can evaluate the aw of the cake during the storage. We have developed a 
program on Matlab® in order to simulate aw during the shelf life of the cake. 
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Figure 1: superposition of sorption isotherm (---) and evolution of the aw and water content of 
the cake during storage (Δ: at 8°C, ○ at 20°C, ● at 40°C). 

 

Evolution of texture as a function of aw 
Figure 2 shows the impact of water activity on textural properties of the cake. Sensory 
analysis shows that the critical value for textural properties is 1000 g/mm, the critical value 
for aw is 0.71. Under this value, the cake is not smooth enough. By modeling the evolution of 
water activity, we can determine the storage time needed to obtain this value. 
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Figure 2: Impact of water activity on textural properties of the cake 

 

Modeling moulds development 
In order to define the impact of water activity on microbiological shelf life, we have studied 
the growth of five species of molds, using Zwietering (Zwietering et al. 1991) and Rosso 
(Sautour et al. 2001) models. This work has identified the cardinal values for temperature 
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(Topt, Tmax and Tmin) and aw (awmin, aw opt). Figure 3 shows the impact of temperature and aw on 
appearance time of the molds. The microbiological shelf-life of pastry product is generally 
regarded as the time of appearance of mold on the surface of the products. This work shows 
that aw and storage temperature have a great impact on microbiological shelf life of food 
products. 
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Figure 3: Appearance time of molds as a function of aw and temperature. 

Conclusion 
The shelf life of bakery products depends on two main factors: moulds development and 
textural properties. We can evaluate critical aw for each of these two factors.  
To ensure food safety and organoleptic properties, producers have to find the intermediate aw 
values and keep it at a stable value. The science of formulation and use of several ingredients 
(like polyol) with strong ability to depress water activity is a great way to reduce water 
activity and molds development. The use of packaging with low water permeability is a 
solution to increase the life of pastry products. This work also enables the development of a 
software designed to simulate the evolution of aw depending on storage conditions. 
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Abstract 
Copper sulphate is the active component of Bordeaux and Burgundy mixtures, fungicides 
used for vineyard treatments. This study aimed to investigate the effect of copper sulphate 
(from 0 to 8 mM) on radial growth rate and lag time of two moulds responsible for vine 
grapes spoilage: Penicillium expansum strain 25.03 and Botrytis cinerea, strains BC1 and 
BC2. By modeling the effect of copper on the radial growth rate, the concentrations at which 
µ = µopt/2, (Cu50), were in the range of 2.2 to 2.6 mM. P. expansum exhibited a linear 
correlation (r = 0.84) between the radial growth rate and the reciprocal of the lag time. In 
contrast, in the range 0-4 mM, the radial growth rate of B. cinerea decreased whereas the lag 
time was constant. In the range 4-8 mM, the radial growth rate of B. cinerea was almost 
constant (c.a. 1 mm d-1) while the lag time was increased. Therefore, the minimum inhibitory 
concentration, MIC, was not defined as the concentration at which no growth was observed, 
but as the concentration at which the lag time was infinite. The MIC values that depended 
significantly on the moulds were 4.7 mM for P. expansum, 8.2 and 7.3 mM for B. cinerea 
strain BC1 and BC2 respectively.       
 
Keywords: Penicillium expansum, Botrytis cinerea, inhibition, growth, copper  

Introduction 
Penicillium expansum and Botrytis cinerea are fungi which commonly infect grape berries 
(Laforgue et al. 2009). Bordeaux and Burgundy mixtures are fungicides based on copper 
sulphate that are necessary to prevent from the growth of these moulds in vineyards. 
However, due to regular treatments with these fungicides, copper can be accumulated in the 
soils up to 250 mg/kg (Pietrzak and McPhail 2004). In order to ensure the sustainability of 
vineyards, it is necessary to limit the quantities of copper applied to these cultures. Little 
information is available on the inhibitory effect of copper sulphate on these two grape rot 
fungi. The aim of this study was to assess the influence of copper sulphate on radial growth 
rate and lag time of one strain of P. expansum and two strains of B. cinerea. The minimum 
inhibitory concentration, MIC, for copper sulphate, was determined for these fungi by means 
of predictive models.  

Materials and Methods 
Penicillium expansum (strain 25.03) and Botrytis cinerea (strain BC1 and BC2) were isolated 
from cv. Pinot grapes in September 2007 (Burgundy, France). Moulds were maintained on 
Potato Dextrose Agar medium (PDA) at room temperature, from 17 to 25°C.   
Fungi were inoculated on PDA medium and incubated at 25°C for 7 days. Sporulating 
cultures were flood with 4.5 ml of a saline solution (NaCl, 9 g.l-1) that contained Tween 80 
(0.1 % vol/vol). Suspension counts were determined by a Malassez cell and standardised to 
106 spores ml-1. 10 µl of the spore suspensions were used to inoculate the centre of the dishes.  
The PDA medium, pH 5.7, 0.99 aw, was used for assessing the influence of copper sulphate 
on radial growth rate and lag time. Copper sulphate was added to PDA medium as a solid salt 
(CuSO4 · 5 H2O) to final concentrations from 0 (control cultures) to 8 mM of copper (II) ions 
with a 1 mM increment. The incubation temperature was 25°C. 
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Growth was evaluated daily by measurement of the diameter of the fungal colony along two 
perpendicular diameters. The mean radius was plotted against time and radial growth rates, µ, 
(mm day-1) were evaluated from the slopes by linear regression. The lag time, λ (h), was 
determined from the intercept of the straight line with the initial radius of the inoculated 
droplet (ca 4.5 mm). All experiments were carried out in triplicate at least for a maximum 
period of 8 weeks. Prior to fitting a square-root (Dantigny and Bensoussan, 2008) logarithmic 
(Zwietering et al. 1994) transformations were used to stabilise the variance of µ and λ, 
respectively. 

Models 
The influence of copper sulphate on the radial growth rate was assessed by the following:  

p
opt

50Cu
Cu1 






+

µ
=µ

         (1) 

where µopt (mm d-1) is the radial growth rate at Cu = 0 mM; Cu50 (mM) is the copper sulphate 
concentration at which µ = µopt/2 and p, a design parameter.  
 
The influence of copper sulphate on lag time was determined by the reciprocal of a re-
parameterized Monod-type equation : 
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where λopt (h) is the lag time at Cu = 0 mM; Cu200 (mM) is the copper sulphate concentration 
at which λ = 2λopt and MIC (mM) is the minimum inhibitory concentration of copper sulphate 
at which the lag time is infinite.  

Results and Discussion 
Effect of copper sulphate on growth 
The optimum growth rates, µopt, were determined at 0mM copper. The copper sulphate 
concentrations at which the growth rate was equal to µopt/2, Cu50 were estimated by the 
growth inhibition model.  The optimum radial growth rate of P. expansum strain 25.03 was 
equal to 2 mm d-1 (Table 1) and characterized by a narrow confidence interval (ca. 10 % 
error). At Cu50 = 2.41 mM, the radial growth rate was equal to half the optimum growth rate, 
1 mm d-1. The design parameter was significantly greater than 1. The low RMSE value 
showed the suitability of the model for describing the effect of copper sulphate on the radial 
growth rate of P. expansum 25.03.  
 At 0 mM copper B. cinerea strains BC1 and BC2 exhibited µopt values equal to 15.9 
and 14.3 mm d-1 respectively, Table 1. The confidence intervals overlapped, therefore the µopt 
values of the strains BC1 and BC2 did not differ significantly. The model provided a good 
estimation of this parameter, (less than 10 % and 7 % error for BC1 and BC2 respectively). 
The p values were 3.04 and 3.59 respectively.  
 The optimum radial growth rates of B. cinerea strains BC1 and BC2 were greater 
than that for P. expansum 25.03. But, the Cu50 values were no significantly different between 
the studied strains (ca. 2.4 mM). The Cu50 did not depend on the radial growth rate. B. cinerea 
strains were characterized by smaller p values than P. expansum although the differences 
were not significant. Model proved less accurate for B. cinerea than for P. expansum (see 
Table 1).  
 Usually the decrease of the growth rate with increasing the concentration of the 
inhibitor can be represented by a model exhibiting an upward or a downward concave shape 
(Dantigny et al. 2005). In such a case the minimum inhibitory concentration, MIC, can be 
determined as the concentration of the inhibitor at which no growth occurs. In contrast S-
shape curves exhibiting an inflection point were observed for the influence of copper sulphate 
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on the radial growth rate of B. cinerea. Accordingly, a new model equation was developed to 
fit the experimental data. However, the MIC, could not be determined by this model, because 
the growth rate was almost constant for copper sulphate in the range 4-7mM or 4-8mM for 
the strains BC1 and BC2 respectively. 

Table 1: Parameter estimates and RMSE values for modelling the influence of copper on 
growth, 95 % confidence intervals in brackets. 

Mould µopt (mm day-1) Cu50 (mM) p (-) RMSE 
   
P. expansum 25.03 1.99 [1.79; 2.19] 2.41 [2.19; 2.63] 4.43 [3.39; 5.48] 0.070 
B. cinerea BC1 15.9 [14.4; 17.4] 2.21 [1.92; 2.50] 3.04 [1.79; 3.04] 0.254 
B. cinerea BC2 14.3 [13.3; 15.2] 2.60 [2.39; 2.82] 3.59 [1.79; 3.59] 0.181 
 

Effect of copper sulphate on lag time for growth 
Because an infinite lag time results in an absence of growth, the MIC was defined as the 
copper sulphate concentration at which the lag time for growth was infinite. The second 
model was therefore developed to fit the lag time as a function of copper sulphate 
concentration and to estimate the MIC. P. expansum strain 25.03 was characterized by λopt 
equal to 13.6 h at 0 mM of copper, Table 2. The Cu200 value was less than the Cu50 estimated. 
Accordingly, at 0.8 mM the lag time was twice that at 0 mM copper, whereas the effect of 
copper sulphate on the growth rate was not detectable (Figure 1). At 4.65 mM the estimation 
of the lag time of P. expansum strain 25.03 was infinite, therefore no growth could occurred. 
Accordingly this value was defined as the minimum inhibitory concentration.  
 The optimum lag time estimated for B. cinerea, strains BC1 and BC1 was about 30 h. 
The Cu200 values, 3.31 and 3.42 mM for BC1 and BC2, respectively, were not significantly 
different. These values were greater than the respective Cu50 values, although not significant. 
The MIC value for B. cinerea was greater than the MIC value for P. expansum. In addition, 
the MIC value for the strain BC1 was less than that estimated for the strain BC2 (Table 2).  
 B. cinerea strains exhibited λopt values greater than that of P. expansum. However, the 
confidence intervals for λopt did overlap between P. expansum and B. cinerea strain BC1 due 
to a wide confidence interval for the latter strain (Table 2). The estimated Cu200 values were 
greater for B. cinerea strains BC1 and BC2 than for P. expansum. The estimated MIC values 
were also greater for B. cinerea than for P. expansum thus suggesting that the latter fungus 
was more sensitive to copper sulphate than B. cinerea.  
  

Table 2: Parameter estimates and RMSE values for modelling the influence of copper on the 
lag time for growth, 95 % confidence intervals in brackets. 

Mould λopt (mm day-1) Cu200 (mM) MIC (mM) RMSE 
   
P. expansum 25.03 13.6 [8.59; 18.7] 0.809 [0.422; 1.19] 4.65 [4.26; 5.05] 0.244 
B. cinerea BC1 29.6 [17.9; 41.3] 3.31 [1.84; 4.79] 8.22 [7.99; 8.44] 0.532 
B. cinerea BC2 32.0 [26.1; 37.9] 3.42 [2.67; 4.17] 7.28 [7.14; 7.42] 0.257 
 
The model was fit to the experimental data for P. expansum 25.03, Figure 1. A correlation (r 
= 0.84) was observed between the radial growth rate and the reciprocal of the lag time. In 
contrast, for B. cinerea strains BC1 and BC2, in the range 0-4 mM, the radial growth rate 
decreased whereas the lag time was constant. Beyond 4 mM of copper until their respective 
MIC concentrations, the radial growth rate was constant whereas the lag time was increased 
(Figure 1). 
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Figure 1: Effect of copper on radial growth rate and lag time of Penicillium expansum strain 

25.03, Botrytis cinerea strains BC1 and BC2 (from left to right). 

Conclusions  
Copper tolerant fungi were defined as being capable of growth at approximately 100 mg/kg, 
1.6 mM (Wainwright and Gadd 1997). The moulds examined in this study showed a great 
tolerance at high copper concentrations added in the PDA medium. However, comparisons of 
our data with MIC values from the literature are difficult because the methods and the 
experimental conditions may be different. The tolerance of the species to copper should be 
assessed both in the ability to germinate and hyphal extension after germination (Phelan et al. 
1990). These biological responses can be evaluated from the lag time for growth, because 
germination occurred during that time, and from the growth rate respectively. The radial 
growth rate and the lag time are though important indicators of metal tolerance.  
P. expansum exhibited an increase in the lag time for growth with increasing copper 
concentration. This indicated that germination was affected by copper.  
 The lag time for growth of B. cinerea was not affected by copper concentrations from 
0 to 4 mM. It is suggested that, in contrast to growth, the germination did not depend on these 
copper concentrations. In contrast, at greater concentrations (i.e., above 4 mM) copper 
delayed germination of B. cinerea spores. Copper may bind on the surface of the spores 
during germination so some time is necessary for a detoxification process and a selection of 
surviving spores. More time was required for detoxification of the medium by binding copper 
at the surface of some spores, thus preventing them from germination. However, it is 
suggested that this mechanism allow the other spores to germinate once the medium is 
sufficiently detoxified.  
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Abstract 
An assessment of the performance of an EC 1441/2007 microbiological criterion (MC) was 
conducted based for the first time on the new Poisson-gamma modelling framework used to 
characterise within-batch and between-batch variability in Enterobacteriaceae counts on pre-
chill sheep carcasses. Since the model does not assume within-batch constant variance but 
instead represents an association between within-batch means and dispersion measures, the 
operating characteristic (OC) curves could be constructed with confidence intervals arising 
from the uncertainty in the within-batch spread conditional to the within-batch mean. The 
model predicted that in Ireland the MC would categorise the hygiene of sheep processing as 
‘satisfactory’ (below mT=1.5 log CFU/cm2) and ‘acceptable’ (between mT and MT=2.5 log 
CFU/cm2) on average 98.6% (95% CI: 84.6 – 100%) and 1.4% (95% CI: 0 – 14.8%) of the 
times a batch is tested. Batches produced beyond 3120 CFU/cm2 of mean Enterobacteriaceae 
concentration would have at least 95% confidence of being spotted by the ‘unsatisfactory’ 
criterion (>MT), although under the existing contamination levels virtually no tested batch 
will prompt the revision of hygiene procedures in the Irish sheep abattoirs. Most importantly, 
this work proposes the definition of microbiological limits in arithmetic means, as by 
simulation this approach was found to lead to sampling plans that are both more effective (i.e., 
reduced uncertainty around the acceptance probabilities as a result of the between-batch 
variability) and with more discriminatory power than those based on the common mean log 
scale.  
Keywords: Microbiological criteria, Enterobacteriaceae, Poisson-gamma, sampling plan, 
operating characteristic curve  

Introduction 
Historically, in the development or evaluation of acceptance sampling plans by attributes (van 
Schothorst et al. 2009; Whiting et al. 2006; Legan et al. 2001) and by variables (Smelt and 
Quadt 1990; Malcolm 1984), two simplifying assumptions have been always made: that the 
true concentration of microorganisms is log-normally distributed, and that the variance of the 
samples is the same for a low or highly contaminated lot. Gonzales-Barron and Butler 
(2011a,b) showed however that these assumptions do not necessarily hold and that the 
Poisson-gamma model has the ability to overcome these two simplifying assumptions, and as 
a result the capacity to incorporate the quantification of between-batch variability. On the 
other hand, procedures to assess the performance of MC are more documented for attributes 
sampling plans than for variables sampling plans, albeit EC No 1441/2007 also implies the 
use of the latter. Thus, this study aimed to present a methodology to assess the performance of 
a MC based on a variables sampling plan (Enterobacteriaceae on sheep carcasses) by the 
construction of operating characteristic (OC) curves that for the first time bring together the 
Poisson-gamma assumption and the dependence of the within-batch variance (dispersion) on 
the within-batch mean. Finally, a procedure for establishing a variable sampling plan based on 
the a-priori knowledge of the overall contamination of the process is illustrated. 

Materials and Methods 
Plate count data was available in duplicate for twenty pre-chill sheep carcasses swabbed on 
each of the four sampling visits to five large Irish abattoirs (n=400, j=20 batches). The 
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between-batch and within-batch variability in Enterobacteriaceae was modelled by a 
Poisson-gamma regression with correlated random effects of the within-batch mean (mj) and 
the within-batch dispersion parameter (kj) using the procedure (and notation) described in 
Gonzales-Barron and Butler (2011b). OC curves for the variables sampling plan for 
Enterobacteriaceae on sheep carcasses (mean of the samples, n=5; mT=1.5 log CFU/cm2, 
MT=2.5 log CFU/cm2) were constructed calculating the probability of ‘accepting’ a batch (Pa) 
or probability that a samples’ mean is below a microbiological limit (mT) for a given batch of 
mean microbial concentration m. However, in the Poisson-gamma model, the within-batch 
dispersion factor k is allowed to vary for a fixed within-batch mean m (Fig. 1). Therefore, the 
uncertainty in k given m will produce uncertainty in Pa given m, and hence the resulting OC 
curve may be displayed with confidence intervals. For a given within-batch mean m, the 
family of within-batch dispersion factors (k|m) conditional to that mean was computed using 
the conditional distribution of the bivariate normal distribution for the random effects of the 
dispersion v given the random effects of the mean u, as follows, 
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To estimate Pa as P(λ <mT/MT), it is necessary to translate the within-batch true distribution 
(λ) to a distribution of the samples’ mean (λ ). From this point, two approaches were used: 
the first approach, solved by simulation, mimics the common practice of taking the average of 
the logs of the individual samples while imputing the limit of quantification (LoQ) of the 
microbiological analysis to the zero counts. The second approach utilises the property that the 
arithmetic mean of the samples taken from a gamma population distribution follows another 
gamma distribution, and was therefore solved by calculation. These methods will be 
respectively referred to as the common approach of the mean log (or geometric mean) and the 
approach of the arithmetic mean. At a producer’s α risk and consumer’s β risk of 5%, the 
mean acceptable quality level (AQL) and 95% confidence intervals, and the mean limiting 
quality level (LQL) and 95% confidence intervals, respectively, were extracted from the OC 
curves. 

Results and Discussion  
The five parameters of the Poisson-gamma model turned out to be significant with the 
Pearson’s correlation coefficient ρ of the random effects for log(m) and log(k) of -0.62. Thus, 
the two parameters of the within-batch true distributions (gamma) appeared to be moderately 
correlated: the higher the contamination level within a batch, the lower the dispersion (and the 
proportion of zero counts) (Fig. 1). Assuming that this model is representative for all Irish 
sheep abattoirs (Fig. 1), the performance of the MC was assessed. Under the current hygiene 
conditions in the production of sheep carcasses in Ireland, the EC MC for Enterobacteriaceae 
would categorise a process as ‘satisfactory’ (below mT=1.5 log CFU/cm2) on average 98.6% 
(95% CI: 84.6 – 100%; Table 1) of the times a batch is tested, and ‘acceptable’ (between mT 
and MT=2.5 log CFU/cm2) with a probability of 1.4% (95% CI: 0 – 14.8%), when the average 
of the results of five samples is computed in mean logs. If instead, arithmetic means of the 
samples were taken and compared against the ‘rescaled’ arithmetic microbiological limits 
mT’=82 CFU/cm2 and MT’=820 CFU/cm2 (Table 1), the probability of labelling the hygiene 
of a process as ‘satisfactory’ and as ‘acceptable’ will be 99.05% and 0.95%, respectively, and 
the sampling plan will be more effective as evidenced by their narrower 95% confidence 
intervals (95.03-100% and 0-4.47%, respectively). Both approaches however predicted that 
virtually no tested batch would prompt revision of the production process and hygiene 
standards as no simulated batch fell within the ‘unsatisfactory’ process (>MT). Furthermore, 
in terms of batch quality levels, under the EC mean log microbiological criterion, Irish sheep 
batches of mean Enterobacteriaceae concentration higher than 538 CFU/cm2 and 3123 
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CFU/cm2 will have at least 95% confidence of being spotted by the lower and upper 
microbiological limits, respectively, while from the producer’s side, batches of mean 
concentrations up to 22 CFU/cm2 and 224 CFU/cm2 have at least 95% probability of leading 
to a ‘satisfactory’ and an ‘acceptable’ process result, respectively. 
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Figure 1: Universe of sheep carcass batches contaminated with Enterobacteriaceae generated by 

simulation from the correlated Poisson-gamma model, along with mean and 95% confidence intervals 
of the within-batch dispersion values conditional to a within-batch mean. 

 
Table 1: Performance of the EC microbiological criterion of Enterobacteriaceae on pre-chill sheep 

carcasses operating under the actual level of contamination in Irish abattoirs. 
Samples’ arithmetic mean Samples’ mean log 

Probabilities and 
QLs (CFU/cm2) 

Mean 95% CI Probabilities and 
QLs (CFU/cm2) 

Mean 95% CI 

P (satisfactory) = 

P(λ ≤m’T) 

0.9905 [0.9503 – 1.0] P(satisfactory)= 

P( Ylog ≤mT) 

0.9859 [0.8465 – 1.0] 

P(acceptable) = 

P(m’T<λ ≤M’T) 

0.0095 [0.0 – 0.0447] P(acceptable)= 

(mT< Ylog ≤MT) 

0.0141 [0.0 – 0.1485] 

P(unsatisfactory) = 

P(λ >M’T) 

0.0000 - P(unsatisfactory)= 

P( Ylog >MT) 

0.0000 - 

AQL, m’T 38 [30 - 51] AQL, mT 26 [22 – 30] 
LQL, m’T 245 [158 - 422] LQL, mT 258 [105 – 538] 
AQL, M’T 429 [347 – 519] AQL, MT 247 [224 – 280] 
LQL, M’T 1973 [1456 – 3054] LQL, MT 1655 [780 – 3123] 

 
In comparison to the samples’ arithmetic mean approach, the samples’ mean log approach 
generates greater uncertainty in acceptance probabilities (see 95% CI in Fig. 2), and hence 
causes a given sampling plan to be less effective. For instance, for a batch whose mean 
concentration is 100 CFU/cm2, the probability that the arithmetic mean of the five samples’ 
results is below the (arithmetically) ‘rescaled’ microbiological limit mT’ of 82 CFU/cm2 
ranges between 0.37 to 0.52 (95% CI) depending on the ‘uncertain’ within-batch dispersion 
value. However, for the same batch, the probability that the mean log (or geometric mean) of 
the five samples is below the microbiological limit of 1.5 log CFU/cm2 is much broader and 
lies between 0.05 to 0.68 (95% CI). One should bear in mind that the heterogeneity in the 
dispersion factor (i.e., a consequence of the between-batch variability) reduces per se the 
effectiveness of a sampling plan, and yet, the samples’ mean log approach appears to further 
undermine the sampling plan’s effectiveness, by producing even greater uncertainty in the 
acceptance probabilities. Another attribute in favour of the samples’ arithmetic mean 
approach is that their OC curves are steeper than those produced using the mean log scale 
(Fig. 2). The steeper the curve, the higher the discriminatory power of the sampling plan. 
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Figure 2: OC curves of the lower microbiological limit for Enterobacteriaceae on sheep carcasses 

(n=5) as modelled under the lognormal assumption with fixed σ and the two variants of the Poisson-
gamma assumption to approximate the samples’ mean distribution. 

 
Considering that the counts of Enterobacteriaceae on Irish sheep carcasses are relatively low 
(overall within-batch mean of 4.5 CFU/cm2) (Fig. 1), it can be deemed from the producer’s 
perspective that batches of concentration up to the 95th percentile (22 CFU/cm2) of the within-
batch means are produced under control in terms of process hygiene. With the premises that 
batches up to that AQL should have at least 95% probability of producing a ‘satisfactory’ 
result, the more discriminatory and effective arithmetic means approach led to a warning limit 
of m’T=60 CFU/cm2, which is more conservative that the m’T of 82 CFU/cm2 (i.e., value 
rescaled from mT=1.5 log CFU/cm2). The probability that a batch exceeds this newly defined 
warning limit with the arithmetic mean of the five samples is expected to be 1.5% (95% CI: 0 
– 16.3%). The use of the lognormal assumption with fixed within-batch standard deviation 
would have led to the derivation of a less conservative sampling plan (Fig. 2). 

Conclusions  
Setting microbiological limits in arithmetic scale lead to more efficient and discriminatory 
sampling plans than those based on the common mean logs. Furthermore, OC curves with 
confidence intervals representing the uncertainty in the within-batch dispersion constitute a 
better tool to assess the effectiveness of sampling plans. They are equally important when 
establishing MC, as it is more conservative to derive a sampling plan based on a more 
cautious upper percentile of a limiting quality level for a given α or β risk than on its mean.  
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Abstract 
Estimating the distribution of microbiological concentrations in products is a key element of 
quantitative risk assessments. The classical bacteriological protocol applies a detection test to 
a set of samples and, for positive results, uses a quantification method such as dilution series 
assays. The most probable number (MPN) of bacteria is then estimated from these assays. 
Recently, Busschaert et al. (2010a) proposed a maximum likelihood approach considering 
censored data to estimate a distribution of bacterial concentration from this kind of protocol.  
Through the use of simulation results we show that this proposed estimation of parameters of 
a contamination distribution from a set of MPN results leads to biased estimates, notably 
when the concentration of bacteria is low. As an alternative, we propose a complete 
likelihood maximization method that integrates in a single pass the MPN evaluation and the 
specification of the parameters of the underlying product-to-product distribution of bacteria, 
and show that this method leads to unbiased estimates. 
The censored data method and our complete likelihood method were applied on a set of 
bacteriological results issued from a survey of Listeria monocytogenes in the US. The 
censored data method led to a bias of ca. 1 log10 in the estimation of the mean concentration.  
The pattern of positive tubes for each dilution of the series assays is needed for the method 
proposed here. Indeed, the MPN is not a sufficient statistic, as considerable information is lost 
compared to the pattern of positive tubes. Reporting of individual tube patterns, or MPN 
values with a sufficient number of decimal points, should be encouraged to facilitate a more 
robust derivation of contamination distributions for risk assessments. 
 
Keywords: MPN, contamination distribution, risk assessment  

Introduction 
In Quantitative Microbial Risk Assessment, exposure assessment models for foodborne 
pathogens usually consider a specified distribution of pathogens in the food at a given step of 
the food supply system. This distribution is frequently derived from a set of bacteriological 
results obtained on a representative set of samples. The classical bacteriological protocol 
applies a detection test to the sample set and, for samples that are positive in the detection 
test, applies an enumeration method. A popular enumeration method is the tube serial dilution 
assay, frequently denoted as Most Probable Number (MPN) method. 
This protocol leads to left censored data (negative detection test), interval censored data 
(positive detection test, no positive tube in the dilution assay), non censored data (positive 
detection test with finite MPN estimates), and right censored data (positive detection test, all 
tubes positive). A maximum likelihood approach has been derived to estimate the parameters 
of a pre-specified parametric distribution from such a dataset (Busschaert et al. 2010a). 
However, a formal statistical evaluation of the properties of the proposed estimators has so far 
been missing.  
Here we show through simulation studies that the estimators from this method (hereinafter 
denoted as CDM for "Censored Data Method") are biased. As an alternative, we derive a 
complete likelihood maximization method. In this latter method, the likelihood considers in a 
single pass the sample-to-sample distribution of bacteria as well as the intra-sample 
distribution of bacteria. The CDM and the Complete Likelihood Method (CLM) are 
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subsequently applied to a set of bacteriological results issued from a survey of Listeria 
monocytogenes in retail foods in the US (Gombas et al. 2003).   

Materials and Methods 
Following others (e.g. Busschaert et al. 2010a; Gonzales-Barron et al. 2010), assume that the 
sample-to-sample variability of the log10 concentration of a given pathogen in a given food 
follows a normal distribution, i.e. log . Let ݂ଵሺߣሻ ~ܰ൫ߠ ൌ ሺߤ, ሻ൯ߪ ሺݔሻ ൌ ߶ ቀ୪୭భబሺ௫ሻିఓ
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 where ߶  and Φ  are the probability density function and the 
cumulative density function of a standard normal, respectively.  

Bacteriological method and results. 
A detection test using vd grams of sample is applied to a set of I representative samples of the 
considered food. If the detection test is positive, an MPN method is applied: dilutions 1 
through r, each with nr tubes, are inoculated with vr grams of sample. A bacteriological 
procedure (assumed to be 100% specific and sensitive) will generate a positive result if at 
least one bacterial cell is present in a given tube.  
In the following simulation and the real-world data, let vd = 25 g , r = 3, v = {1, 0.1, 0.01} and 
n = {3, 3, 3},   

Likelihood estimation 
MPN estimation: Under the assumption of a Poisson distribution of the bacteria at each 
dilution and independence among dilutions and replicates, the likelihood with which a 
random vector ܲ ൌ  of positive tube is observed is  



 
The most probable number (MPN) is the maximum likelihood estimator (MLE) of the 
likelihood function. 
CDM: Let Mmin and Mmax equal the minimal and maximal finite MPN value achievable with 
the MPN protocol. In the CDM (Busschaert et al. 2010a), a set of four likelihood functions 
describes the set of possible outcomes: i) for left-censored results ܮ ; ii) for 
interval-censored results, ܮሺߠ i) for right-censored results ܮሺߠሻ ൌ

 finite MPN results M, ܮሺߠሻ ൌ ization of the overall 
likelihood function yields the MLEs ̂ߤ and ߪො.  
For our simulation example and in the real-world data, ݒ  = 0.04 cfu/g, Mmin = 0.30 MPN/g 
and Mmax = 110 MPN/g 
CLM: Clearly, 
 

is the likelihood function for samples negative in detection, and 


is the likelihood function of all other samples. ̂ߤ and ߪ can again be estimated by 
maximization of the overall likelihood function. 

Simulations to evaluate the behavior of the tests 
To evaluate and compare bacterial concentration estimates generated using the CDM and the 
CLM, one thousand sets of I = 2 000 samples were simulated. Two different contamination 
levels were compared, with ߣ~  or ߣ~ . To evaluate the 
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asymptotic behavior of the estimators, the tests were also applied to one set of I = 500 000 
samples.  

Test on real-world data 
The dataset consists of Listeria monocytogenes detection and MPN results from a market 
basket sampling of ready-to-eat foods (RTE) performed in the US. Sampling protocol, 
bacteriological testing protocol and results have been described previously (Gombas et al. 
2003), and the raw data for five food categories are available on the FoodRisk.org website. 
Mean and standard deviation of the assumed underlying log normal distributions of L. 
monocytogenes concentrations were evaluated separately for each category of RTE (Table 2). 
Two tests were used to evaluate the goodness-of-fit of the models: i) a chi-square test using 
three categories (no detection, detection with negative MPN, detection with positive MPN) 
with p-values computed using a Monte-Carlo procedure; ii) a chi-square test using all possible 
categories (i.e., each of the 65 possible outcomes of the experiment) with p-values computed 
using a Monte-Carlo procedure.  
R (© The R foundation for Statistical Computing) codes are available from the authors on 
request.   

Results and Discussion  
Table 1 shows the simulation results for both methods. The CDM provides clearly biased 
estimates, with the bias tending to overestimate µ by approx. 1 log10 for the values tested and 
underestimating σ by approx. 0.3 log10 for the values tested. Importantly, these estimators for 
µ and σ are not asymptotically unbiased, and the bias does not appear to decrease as sample 
size increases. On the contrary, the complete likelihood method is unbiased. 

Table 1: Simulation results. 
   Censored Data Method Complete Likelihood Method 
(µ, σ) n tests  ̂ߪ ߤො ߤ ̂ߪ  ො 
(-5; 2) 500 000  -4.1 1.7 -5.0 2.0 
 1 000 sets 

of 2 000 
samples 

Mean -4.2 1.7 -5.0 2.0 
 Median -4.2 1.7 -5.0 2.0 
 [Q0.025 ; Q0.975] [-4.8 ; -3.7] [1.4 ; 2.1] [-5.7 ; -4.7] [1.7 ; 2.4] 
(-7; 3) 500 000  -6.0 2.6 -7.0 3.0 
 1 000 sets 

of 2 000 
samples 

Mean -6.0 2.6 -7.0 3.0 
 Median -6.0 2.6 -7.0 3.0 
 [Q0.025 ; Q0.975] [-7.2 ; -5.1] [2.1 ; 3.2] [-8.2 ; -6] [2.4 ; 3.6] 

Table 2: Actual data sets 
Product category  Number of observed samples  

(expected using the complete likelihood method) 
Censored 

data method  
ሺ̂ߤ; σෝሻ ̂ ;  σ 

Complete 
likelihood 

method ሺߤ ෝሻ 

χ2 test,  
3 cat.  

(p-value) 

χ2 test,  
all cat.  

(p-value)  Detection 
Neg. 

Detection Pos.  
MPN Neg. 

Detection Pos. 
MPN Pos. 

Bagged salad 2 944 (2 944) 17 (13) 5 (8) (-8.1; 2.7) (-9.2; 3.0) NS (0.27) NS (0.29) 
Fresh soft cheese 2 926 (2 926) 2 (2) 3 (3) (-21; 6.7) (-23; 7.3) NS (1.0) NS (0.10) 
Soft cheeses 2 933 (2 933) 30 (27) 7 (10) (-5.4; 1.8) (-6.5; 2.1) NS (0.58) NS (0.21) 
Smoked seafood 2 530 (2 531) 67 (52) 47 (61) (-6.6; 3.1) (-7.6; 3.4) 0.03 0.002 
Seafood salads  2 331 (2 332) 82 (75) 33 (39) (-4.4; 1.8) (-5.2; 2.0) NS (0.47) 0.021 

 
As expected from the simulation results, the MLE ̂ߤ obtained when applying the CDM on 
real-world data is always greater than the one obtained using the CLM (Table 2), and ߪ is 
always lower.  

ො

A significant Chi-square test using three categories indicates a higher than expected number 
of samples positive in the detection test while negative in the MPN method. This observation 
may indicate that the Poisson distribution between detection sample and MPN samples does 
not hold. Results (Table 2) shows that the number of detected samples with a negative MPN 
is always higher than expected under the parametric model, suggesting a possible departure 
from the Poisson assumption; nevertheless, the Chi-square test rejects goodness of fit only for 
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one category (smoked seafood). Two RTE foods out of five did not pass the chi-square test 
using all categories. Looking to the raw data in more details, it seems that this lack-of-fit is 
linked to the observation of few improbable combinations of positive tubes in the MPN test. 
As an example, an MPN outcome P = (1,3,0) is obtained for one smoked seafood sample: the 
"improb" (i.e. the sum of the probabilities of all outcomes as likely as or less likely than the 
observed one (Blodgett 2010)) for this pattern is 0.0018 at its MPN value, and 0.00017 in the 
log normal-Poisson model at its MLEs. These significant Chi-square test results might 
therefore rather indicate a larger number of improbable MPN outcomes than an overall lack-
of-fit.  
Our study suggests that the use of aggregated data (i.e. enumeration results) could lead to a 
bias and that the use of raw data (i.e., number of positive tubes in a MPN experiment) should 
be preferred, even for a simple parametric model. Indeed, the MPN is not a sufficient statistic, 
as some information is lost compared to the complete pattern of positive tubes. The pattern of 
positive tubes for each dilution of the series assays is needed for the method proposed here. 
These patterns, or individual MPN values with a number of decimal points sufficient to 
uniquely deduce the pattern, should be made available to risk assessors for a more robust 
derivation of contamination distribution. The transfer of raw data on dedicated website, such 
as FoodRisk.org should be encouraged.    
More complete and complex Bayesian models have been described for the analysis of similar 
contamination data for risk assessment (e.g. Crepet et al. 2007; Busschaert et al. 2010b; 
Gonzales-Barron et al. 2010). However, the method proposed here may be easier to 
implement. Further studies are clearly needed to better describe the goodness-of-fit of the 
model proposed here, to evaluate test power, and to test alternative parametric models (e.g., 
gamma-Poisson, zero-inflated models). Nevertheless, our study suggests a 1 log10 bias in the 
mean of the log normal distribution estimated using the CDM compared to the CLM. In a risk 
assessment framework, this bias could lead to significant differences in the final risk, notably 
if the average pathogen concentration is low.   

Conclusions  
Our study shows that, whenever the raw data is available, the Complete Likelihood Method 
should be preferred over the Censored Data Method when applied to MPN results, because 
the latter leads to biased estimates.    
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Abstract 
At the 6th ICPMF Gauchi et al. (2009) considered the issue of the identification of complex 
microbiological dynamic systems and the possibility offered by particle nonlinear filtering to 
tackle this problem. As the computations involved in this identification approach are rather 
sophisticated, it is crucial for microbiologists to have access to a user-friendly software for 
managing them. We present in this 7th ICPMF the FILTREX software, based on Matlab 
language (Bidot et al. 2009) for reaching several objectives in the predictive microbiology 
context. 
 
Keywords: FILTREX software, particle nonlinear filtering, Bayes factors, sequential optimal 
designs, predictive modeling, microbiology  

Introduction 
In the present release of the software are proposed: (i) parametric identification by particle 
filtering of microbiological dynamic systems, based on primary models (growth or thermal 
inactivation models); (ii) statistical model comparison and selection among several primary or 
inactivation models through particle estimation of Bayes factors (e.g. primary Baranyi and 
Roberts (1994), here referred to as the BR model, and the delay-logistic model (Rosso et al. 
1996), here referred to as the DL model; (iii) computation of sequential optimal sampling 
designs (counting of cells on Petri plates, or counting of bacteria by means of flow 
cytometry). These three functionalities are based on a well established theory published 
elsewhere (see references in the next sections). Hereafter, only the main principles of these 
functionalities are recalled and screen outputs of the FILTREX software are displayed. 

Materials and Methods 
Parametric identification 
This FILTREX identification functionality is based on the implementation of a new nonlinear 
particle technique using a convolution kernel approach (Rossi and Vila 2005, 2006). Let us 
just recall here that for this efficient particle filtering procedure, the only a priori information 
needed for the parameters is their respective possible variation ranges. The coding of this 
functionality in FILTREX has been developped from an open source code of the convolution 
particle filter (Choquet and Rossi 2005). 

Model comparison and selection 
This second functionality computes the so called Bayes Factor, for deciding which of two 
models better fits a given set of data (see Vila and Saley 2009, for details). This Bayes Factor 
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is the ratio of the respective marginal likelihood functions of the two competing models. It is 
not a genuine statistical test but it has been proved to be one of the best indices for comparing 
two nonlinear models. Its particle estimation in FILTREX does not need the knowledge of the 
model likelihoods as required by the usual statistical selection procedures (e.g. Akaïke 
criterion). 

 Optimal sequential designs 
Several approachs were proposed to tackle this difficult question, where the difficulty is due 
to both the nonlinearity and dynamic aspects of the involved microbiological models. We 
propose in his Conference a poster where a new method is detailed (Gauchi and Vila 2011b). 

Results and Discussion 
The following FILTREX outputs are based on the BR model and on both the BR and the DL 
models for the model comparison subsection. For these computations a growth kinetic was 
used (given in Gauchi et al. 2009). 

Parametric identification 
In this subsection an example of estimation of seven parameters of the dynamic system is 
given: not only the four usual parameters (N0, μmax, λ , Nmax) are estimated, but also the three 
Coefficients of Variation (CV) characterizing the weighting errors, the pipette errors, and the 
diluting errors. These CV cannot be estimated with the usual nonlinear regression tools. At 
the initial step of the filtering process prior parameter probability distributions are simulated 
as uniforms laws on a priori membership intervals for these parameters. All other needed 
procedural informations are introduced as shown in the left panels of Figure 1. 
 

Figure 1: Parameter Identification Option, initial step. 
 
Figure 2 displays the estimated posterior densities for the seven parameters – from which 
means and confidence intervals can be computed – at the final 10th step (ten sampling times 
were considered, as given in the first line of Table 1). 
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Figure 2: Parameter Identification Option, last step. 

We also show in Figure 3 an example of estimated inactivation dynamics for the Weibull 
model obtained with FILTREX (more details during the talk). 

 
Figure 3: Estimated Weibull cinetics with data. 

Model comparison and selection 
The BR and DL models were compared. The following results have already been given in 
Gauchi and Vila (2011a). The estimated marginal likelihood of the DL model was put in the 
numerator of this Bayes Factor ratio and that of the BR model in the denominator. The 
FILTREX software provided the results of Table 1 for a chosen number of 105 particles.  
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Table 1. Bayes factor estimates at successive sampling time (hour). 
t 0 72 120 168 240 264 288 336 408 504 
BF(t) 1.07 1.07 1.06 1.06 1.06 1.08 1.12 1.08 1.7 1.22 

 
One can notice the relative stability of the successive Bayes Factor estimates as time goes on. 
However as the numerator and denominator values become smaller with the successive 
introductions of the sampling times, the BF, as a tendency, fluctuates slightly for numerical 
reasons. To interpret the BF, Kass and Raftery (1995) proposed the following rule of thumb: 
from 1 to 3 the competing models are not really discriminitable, from 3 to 20 the model in the 
numerator sensibly fits the data better, and above 20 it is strongly better. It can be concluded 
here that the successive BF estimates, all close to one, confirm the equivalence of the two 
models, rather than a clear-cut superiority of the DL model over the BR's one, on this kinetic.   

Optimal sequential designs 
For details on this topics see Gauchi and Vila (2011b) in the same congress proceedings. 

Conclusions  
Some of the present features of the FILTREX software have been discussed.  The next release 
(by the end of 2011) will propose an extension of the available functionalities to the 
hierarchical models (i.e. secondary models nested in the primary models) and new prediction 
facilities for the bacterial evolution. In the long term, dynamic regulation and control facilities 
(for example by means of temperature) of microbiological systems are planed to be 
introduced in FILTREX. 
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Abstract 
In predictive food microbiology, full factorial designs are still more the rule than the 
exception, despite the huge experimental workload and cost related to this method. This work 
evaluates the performance of different experimental designs with respect to three criteria: (i) 
number of experiments, (ii) goodness-of-fit statistics with respect to the original model 
structure, and (iii) accuracy and uncertainty of the parameter estimates. Full factorial, 
fractional factorial, central composite, Latin-square and Box-Behnken designs are evaluated 
and compared to randomly selected datasets. As a guideline, a full factorial design should be 
preferred for rather simple model structures and a limited number of levels per environmental 
factor. For more complex cases, a Latin-square design is an attractive alternative as it does not 
require a priori model knowledge and provides relatively accurate and reliable parameter 
estimates while keeping the experimental efforts to a minimum. 
 
Keywords: experimental design, secondary square-root-type model, parameter estimation 

Introduction 
In predictive microbiology, as with other scientific disciplines, the collection of high-quality 
data forms the basis of scientific exploration. Both the selection of an appropriate model 
structure and the identification of accurate model parameters are data -driven processes, i.e., 
the efficiency and accuracy of these procedures are determined by the quality of the 
experimental data. When the impact of several environmental factors on the microbial 
response is investigated, as is the case in the development of secondary models and 
(probabilistic) growth/no growth models, the experimenter is confronted with a huge 
experimental workload. With respect to the experimental design, full factorial designs are still 
mostly used. This approach considers all combinations of the different explanatory variables, 
is very simple and easy to handle statistically, but also very labor-intensive and costly, 
certainly when a high number of variables and/or an extended range of levels are considered. 
Avoiding such excessive experimental work can be achieved through careful selection of the 
experimental conditions, i.e., by adopting a well-founded design-of-experiment (DOE) 
strategy. Based on certain statistical principles, various fractional factorial designs have been 
developed, e.g., Box-Behnken design, central composite design, Latin-square design.  
Despite the significant reduction in the number of experiments obtained through these 
specific designs, full factorial designs are still more the rule than the exception in predictive 
microbiology and this observation forms the rationale for the present study. As such, this 
study aims at investigating the impact of different types of experimental designs on the 
reliability of secondary model parameter estimates. More specifically, a simulation-based 
approach was adopted to evaluate the performance of different designs with respect to two 
square-root-type secondary models, i.e., the model of Wijtzes et al. (2001) (developed for 
Lactobacillus curvatus) and the model of Ross et al. (2003) (developed for Escherichia coli). 

Materials and Methods 
Selection of secondary models and experimental conditions 
Case study 1: the general form of the model of Wijtzes et al. (2001) is: 

 

µmax = b ⋅ aw − aw min( )⋅ pH − pHmin( )⋅ pH − pHmax( )⋅ T −Tmin( )2    (1) 
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with μmax the maximum specific growth rate [1/h], aw min the theoretical minimum aw for 
growth, pHmin and pHmax the theoretical minimum and maximum pH for growth, and Tmin the 
theoretical minimum temperature for growth. This model was originally developed for an 
overall range of environmental conditions: pH 4.6 - 9.0, aw 0.932 - 0.990, and T 1 – 30 °C. 
For the present study, the ranges considered were: pH 5.0 - 8.0, aw 0.937 - 0.985, and T 7 -27 
°C. 

Case study 2: the general form of the model of Ross et al. (2003) is: 

 

µmax = c ⋅ T −Tmin( )⋅ 1− exp d T −Tmax( )( )( )
⋅ aw − aw min

⋅ 1−10pHmin − pH ⋅ 1−10pH − pHmax

⋅ 1−
LAC

Umin ⋅ 1+10pH − pKa( )
⋅ 1−

LAC
Dmin ⋅ 1+10pKa − pH( )

     (2) 

with Tmax the theoretical maximum temperature for growth. LAC is the total lactic acid 
concentration [mM], Umin and Dmin [mM] respectively the minimum concentration of 
undissociated and dissociated lactic acid that prevent growth when all other factors are 
optimal, and pKa the pH for which concentrations of undissociated and dissociated lactic acid 
are equal, i.e., 3.86. The model is based on data in the ranges: pH 4.02 - 8.28, aw 0.951 - 
0.999, temperature 7.6 - 47.4 °C, and lactic acid 0-500 mM. For the present study, the 
selected ranges were: pH 5.2 - 7.6, aw 0.969 - 0.997, temperature 10 - 42 °C, and lactic acid 0-
120 mM. 

Selection of experimental designs 
For each environmental factor included in the models, a maximum of five levels was 
considered for the present study. The different types of experimental designs considered 
included the following: full factorial (FF), fractional factorial (FRF), central composite (CC), 
Latin-square (LS) and Box-Behnken (BB). Based on the FF-design, the fractional factorial 
design (FRF) was developed such that the selection of sets of conditions was based on the 
underlying model structure. More specifically, the design included five levels for temperature, 
three levels for pH, two levels for aw, and, for the Ross-model, three levels for lactic acid 
concentration. All designs were also compared to random sets of combinations of conditions 
(RA), selected by MatLab Version 7.9 (The MathWorks, Inc., Natick). 

Simulation strategy 
For both case studies, the simulation strategy consisted of the following steps. 
1. Calculation of μmax from model equations (1) and (2), by using the original parameter 

estimates and the environmental conditions and experimental designs as stated above. 
2. Based on obtained μmax values, simulation of growth curves with the primary model of 

Baranyi and Roberts (1994). For this, fixed values for n0 (natural logarithm of initial cell 
count), nmax (natural logarithm of maximum cell number) and λ (lag time) were used. 
Simulation of growth curves resulted in a data set n(t) for each combination of conditions. 

3. Based on n(t), creation of new fictitious data set n’(t) with the addition of noise at each 
sampling time t: 

 

n'= n + noise = n + 3.27 ⋅10−2 ⋅ r  with r pseudorandom values drawn from 
the standard normal distribution with variance taken equal to 3.27·10-2 [CFU/mL] 
(determined in the lab as the experimental error related to plate count measurements). For 
each set of conditions, two data sets n’(t) were generated. 

4. Determination of a new value for the maximum specific growth rate μmax’ by fitting n’(t) 
data sets with the model of Baranyi and Roberts (1994). 

5. Estimation of new secondary model parameters by fitting μmax’ values with equations (1) or 
(2). To homogenize variance, the square root transformation of μmax was used. 
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Model fits were performed in MatLab using the lsqnonlin routine of the Optimization 
Toolbox Version 3.0.2 (The MathWorks, Inc., Natick) to minimize the sum of squared errors 
(SSE). The RMSE was used to evaluate the performance of the secondary models. 

Results and Discussion  
In order to select a suitable experimental design, a trade-off should be made between the three 
different criteria considered in this study. 
(i) Number of experiments. As shown in Tables 1 & 2, all the specific designs yield a similar 
reduction in workload compared to a 5-level FF-design, with exception of the BB-design for 
the Wijtzes-model (larger reduction in experimental workload) and the FRF-design for the 
Ross-model (smaller reduction in experimental workload). Evidently, the benefit of choosing 
a reduced design is larger when more environmental factors are involved. 
(ii) Goodness-of-fit statistics. The RMSE was chosen as the criterion because it can be 
considered as the most simple and informative goodness-of-fit measurement for (non)linear 
models. However, as shown in Tables 1 & 2, for both models, discrimination between the 
different experimental designs is not possible on the basis of this value, since all designs 
performed equally well. 

Table 1: Experimental designs considered for the model of Wijtzes et al. (2001) 
Experimental design FF5 FRF CC LS FF3 BB RA 
# levels per factor 5 max. 5 5 5 3 3 5 
# experiments 125 30 24 25 27 15 24 
RMSE 0.0036 0.0041 0.0041 0.0040 0.0039 0.0033 0.0031 

Table 2: Experimental designs considered for the model of Ross et al. (2003) 
Experimental design FF FRF CC LS RA 
# levels per factor 5 max. 5 5 5 5 
# experiments 625 90 36 25 36 
RMSE 0.0091 0.0088 0.0099 0.0059 0.0056 

 
 (iii) Reliability of parameter estimates. Contrary to the previous criteria, large differences 
occurred between the designs when considering the accuracy and uncertainty of the parameter 
estimates. All experimental designs performed well with respect to aw min, for which an almost 
perfect fit was obtained, and the parameters related to the pH-effect (results not shown). The 
most difficult parameters to estimate, i.e., the parameters with the lowest accuracy and the 
highest degree of uncertainty on the estimated value, were the ones related to the temperature 
effect and, for the Ross-model, also the lactic acid concentration (as illustrated in Figure 1). 

Overall, the 5-level FF-design performed best for both case studies, as was expected from 
the high number of necessary experiments involved. At the other end of the spectrum, the CC-
design proved to be inadequate, not particularly with respect to the accuracy of the parameter 
estimations in comparison to the original values, but more importantly, because of the high 
levels of uncertainty involved with this method (as illustrated in Figure 1 for some parameters 
of the Ross-model). Despite the occasional use of this design in predictive microbiology, the 
present results clearly indicate that it is certainly not a reliable method. In the same context, it 
can be stated that a random selection of conditions is clearly not advisable either. Although 
random designs yield realistic parameter values with acceptable estimation errors for some 
cases, this approach can not guarantee a good outcome. In general, the performance of the 
other 5-level designs (i.e., LS and FRF) with respect to the parameter estimates was 
acceptable (Figure 1). As the FRF-design relies on a priori knowledge of the underlying 
model structure, it can be stated that the LS-design, with its highly reduced number of 
experiments and overall good performance, is a good competitor for the FF-design. 
Particularly for the Ross-model, the experimental benefit is enormous, i.e., the number of 
experiments decreases from 625 to 25 when going from a FF- to a LS-design. For the 
Wijtzes-model, which has a model structure with a significantly lower degree of complexity, 

236



the 3-level FF- and BB-designs appeared to be only slightly less suitable than the 5-level LS-
design (results not shown). In this case, it is worth mentioning that the very low number of 
experiments (i.e., 15) for the BB-design resulted in relatively good parameter estimates. 

 

Figure 1: Ross-model parameter estimates. (Left) Dmin estimates and standard error bars, 
expressed relative to the values of the original model. (Right) Uncertainty of parameter 

estimates, expressed relatively to the 5-level full factorial design (right). 
 
The previous considerations were based on the deviation of individual parameter estimates 
from the originally published values and their degree of uncertainty. It is also important to 
keep in mind that differences exist between interpolation regions of models developed from 
different experimental designs and thus, comparison is often not possible at all investigated 
combinations of conditions, particularly near the edges of the design space. As such, the 
selection of a specific design may have consequences for the final use of the model. 

Conclusions  
The following general conclusions and guidelines can be drawn for square-root-type models: 
(1) For rather simple model structures and a limited number of levels per environmental 
factor, full factorial designs are preferable because these designs guarantee accurate and 
reliable model parameters. (2) However, for more complex cases, a Latin-square design can 
be considered as an attractive alternative, as it does not require a priori knowledge on the 
model structure (as is the case for a typical fractional factorial design), and provides relatively 
accurate and reliable parameter estimates while keeping the experimental workload and cost 
to a minimum. In contrast, central composite designs should be avoided due to the high 
degree of uncertainty on the parameter estimates. 
In addition, it would be of interest to explore the applicability of these guidelines towards 
other types of models, e.g., polynomial-type models. 
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Abstract 
In predictive microbiology, secondary models, for example the Gamma model or cardinal 
models, evaluate the detrimental effect of food conditions (pH, water activity, etc.) on the 
growth rate of bacteria, compared to optimal conditions. The purpose of this study is to link 
such models with cell physiology in case of osmotic stress, using systems biology approaches. 
Bacteria adapt to osmotic stress by accumulating osmoprotectants in their cytoplasm. The 
effect of NaCl on the growth rate of E. coli depends on the presence and nature of 
osmoprotectants in the medium. We measured, by optical density, the growth yield and the 
growth rates during exponential growth of E. coli in glucose minimal medium with a range of 
NaCl concentrations and different osmoprotectants. In the absence of osmoprotectant, the 
growth yield decreased because some of the glucose was used to metabolise trehalose. The 
growth yield, in the presence of glycine betaine or choline, did not vary with NaCl 
concentration up to close to the growth/no growth boundary. With proline in the medium, the 
growth yield also decreased because some trehalose was metabolised. The specific growth 
rates depended strongly on the nature of the osmoprotectant. An analysis of the fluxes of the 
metabolic network model of E. coli was carried out to evaluate the metabolic state of the 
bacteria under osmotic stress in relation to its optimum. The method provides a link between 
empirical secondary models and the physiology of the bacteria during osmotic stress. 
 
Keywords: osmotic stress, growth rate, Escherichia coli, metabolic network, convex space  

Introduction 
In predictive microbiology, secondary models evaluate the effect of environmental conditions 
on kinetics parameters, such as growth rate, of the primary models. Apart from polynomial 
response surface models which are purely empirical, most modelling approaches compare the 
growth rate obtained under a given set of conditions, to an optimum. This is explicit in the 
formulation of the Gamma concept (Zwietering et al. 1992) where the γ functions are factors 
representing the inhibition of each environmental factor on the growth rate, assuming that 
they are independent, compared to its optimum. For the effect of water activity, the proposed 
γ function (Zwietering et al. 1992) is a normalisation of the square root approach at 
suboptimal water activity (McMeekin et al. 1987). The cardinal parameter models (CPM) are 
based on the same idea except that the cardinal functions are more complex than the initial 
gamma functions and include model parameters that have a biological or graphical 
interpretation such as awopt, and awmin and awmax, the minimum and maximum values at which 
no growth occurs (Rosso et al. 1993). These modelling approaches remain empirical and it 
would be desirable to link them to the physiology of the cell (McMeekin et al. 2008). In this 
study, we propose to link these modelling approaches to the metabolic network of 
Escherichia coli under osmotic stress, with NaCl as the humectant. 
Constraint-based analysis of the metabolic network assumes that in balanced growth (the 
exponential phase in batch culture), the cells reach a steady-state governed by mass balance 
and physicochemical constraints (Kauffman et al. 2003). The mass balance constraint is 
determined by the stoichiometry of the metabolic reactions taking place in the cell. These 
reactions are usually derived from the genome annotation and biochemical studies. A flux, ν, 
the concentration of the chemicals weighed by their stoichiometric coefficient per time unit, is 
defined for each reaction. If we call the stoichiometric matrix for the system, S, then, at 
steady state, S.ν=0. The system is underdetermined (there is more than one solution) because 
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there are more fluxes than metabolites. However, each flux is bounded further by the 
physicochemical constraints, so S.ν=0, with νmin<νi<νmax (i=1 … n), defines a convex domain 
in the space of solutions (Kauffman et al. 2003). Because of the convexity of the space of 
solution, the optima lie on the vertices of the convex domain (Palsson 2006). It has been 
shown that E. coli optimises its biomass production in chemostat and that by optimising the 
biomass (the objective function), the growth rate, as well as the distribution of fluxes in the 
central metabolism, can be predicted from the uptake of nutrients (Feist et al. 2007). 
In the case of osmotic stress, bacteria accumulate osmoprotectants to increase their 
cytoplasmic water activity. If there is no osmoprotectant in the medium, they convert glucose 
into trehalose by activation of the ostA and ostB genes (Giaever et al. 1988). This is regulated 
by the general stationary phase stress response σs factor encoded by rpoS (Hengge-Aronis 
1991). Some osmoprotectants, such as glycine betaine or proline can be directly imported into 
the cell. The transport for these two osmoprotectants is through the proP and proU channels 
(Wood 2006). Alternatively, the cell can metabolise some precursors such as choline into 
osmoprotectant, for example, glycine betaine. The two-step-conversion is catalysed by betA 
and betB and is regulated by a specific system which is sensitive to oxygen, osmotic stress 
and temperature (Lamark et al. 1996, Landfald and Strøm 1986). In the case of osmotic stress, 
the metabolic network of the bacteria is modified to accommodate these changes and we have 
shown that additional constraints have to be sought and that biomass optimisation may not be 
achieved (Metris et al. submitted). In this study, similar to secondary modelling, we compare 
the fluxes during osmotic stress and when the cells optimise their biomass without stress. 

Materials and Methods 
 
Culture: Escherichia coli K12, strain MG1655, was maintained in Tryptone Soya Broth 
(TSB, Oxoid CM0129) with 40% glycerol stored at -80°C. The culture was resuscitated in 
TSB at 37°C for 7 hours then subcultured to Basic Minimal Medium, BMM (Zhou et al. 
2011) with 0.05% glucose instead of 4% glucose. Subsequent subcultures were incubated at 
37° for 7 or 17 hours.  
Determination of the biomass yield, glucose uptake and growth rates: Four batches of 
BMM were prepared with no glucose. To three batches 150mM of the osmoprotectants 
glycine betaine, proline, or choline was added. The fourth batch with no added 
osmoprotectant was the control. Each of the four batches was divided into smaller volumes 
and glucose added to give a range of concentrations. Each of these solutions was further 
divided and NaCl added to give a range of water activities. Finally the solutions were made 
up to volume and filter sterilised. Wells of a Bioscreen plate were inoculated with 25µl of cell 
suspensions of different concentrations and filled with 375µl of the above solutions. Plates 
were incubated without shaking for 4 days at 37°C.  
The glucose uptake and biomass yield were determined by plotting the slope of the maximum 
OD as a function of glucose concentration for each condition (Krist et al. 1998). The 
calibration OD/dry weight biomass was linear in the range of ODs studied (up to 0.7). The 
rates of growth in cell number were determined as the inverse of the slope of the detection 
times (for OD(600nm)=0.1) as a function of the cell concentrations in the different conditions 
(Cuppers and Smelt 1993). The growth rates in terms of biomass were obtained by fitting the 
logarithm of OD as a function of time with the Baranyi model (Baranyi and Robert 1994). 
The rates were adjusted to cell numbers in control conditions by multiplying them by a factor 
1.91 (Dalgaard et al. 1994). 
Analysis of the fluxes of the metabolic network:  
The metabolic network of E. coli chosen for this study was that of Feist et al. (2007). For the 
optimum condition, the glucose uptake was adjusted to obtain the specific growth rate, µ, 
found in the control conditions (-7.7 mmol/g dry weight/h, µ=0.71 /h) and the biomass 
objective function optimised. At 3.5% NaCl, the concentration of osmoprotectants in the 
biomass equation was assumed as measured by Cayley et al. (1992). The rate of glucose 
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uptake as well as growth rate was deduced from experiments with the Bioscreen. The uptake 
of oxygen was set to its minimum to obtain the measured growth rate. 
The calculations were carried out with the COBRA toolbox (Becker et al. 2007) in Matlab 
(R2010b, Mathworks, Inc.) equipped with the glpk package 
(http://www.gnu.org/software/glpk/glpk.html). The optimum solutions were obtained by 
linear programming. For non-optimum solutions, the space of solution was sampled 
randomly. The minimum and maximum for each flux were determined by flux variability 
(Reed and Palsson 2004). 

Results and Discussion  
Glucose/biomass yield 
The biomass yield (g of biomass produced per g of glucose used) did not vary with osmotic 
stress when choline or glycine betaine was present in the medium (Figure 1).  
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Figure 1: Yield of E coli in Bioscreen wells as a function of NaCl concentration. 

This shows that energetic demands are not significantly increased by osmotic stress. When 
there was no osmoprotectant in the medium, additional glucose was needed to synthesise 
trehalose (Giaever et al. 1988) so the yield decreased markedly. When proline is present, the 
bacteria use it as an osmoprotectant but also synthesise some trehalose (Cayley et al. 1992) 
which explains why the yield decreases with increasing NaCl concentration. Altogether these 
results are in agreement with the measurements of osmoprotectant accumulated in the cells at 
high concentration of NaCl (Cayley et al. 1992). In this study the yield in the control 
conditions, Y=0.15, was low (0.3 in a batch culture, Fisher and Sauer 2003) perhaps because 
oxygen uptake is limited by the low exchange surface in the wells of the Bioscreen. 

The effect of osmoprotectant and water activity on the growth rate 

Figure 2 shows the effect of the water activity (modelled by ww ab −= 1  on the x axis) on 
the growth rate, measuring the rate of increase in both cell number and biomass.  
They are the same for glycine betaine and proline, whereas, with choline or no 
osmoprotectant in the medium, they are different, showing that the cell size changes 
depending on the nature of the osmoprotectant. These different cell strategies may be linked 
to the different types of regulation of osmotic stress responses. 
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Figure 2: Effects of osmoprotectant on the growth rates as a function of water activity.  

 “Metabolic” distance 
The minimum and maximum fluxes obtained by flux variability analysis were normalised to 
the fluxes going through the biomass (the specific growth rates) and the example with no 
osmoprotectant is shown in Figure 3. By convention, the 0 fluxes were set to -20 on the log 
scale. Some fluxes were the same in stress as in optimum conditions, some changed in the 
stress conditions compared to optimum but the normalised fluxes were the same in all stress 
conditions, typically fermentative pathways not used when aeration is good (optimum). Some 
were specific for each stress (pathways specific to the stress response but also general 
metabolism since the different osmoprotectants have different efficiencies). 
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Figure 3: Logarithm of the minimum (left panel) and maximum (right panel) fluxes obtained 

by flux variability analysis of the convex space formed by E. coli at steady state in MBM with 
3.5% NaCl compared to the optimum control conditions. 

To compare the effect of the different osmoprotectants in the medium, the fluxes of pathways 
of interest can be compared to obtain Z-scores, Zi, for each flux i, quantifying the significance 
of the change in fluxes (Bordel et al. 2010): 
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where the expected values and variances of the fluxes are obtained by random sampling of the 
space of solutions obtained under the different conditions for each flux, i. 
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Conclusions  
The metabolic network of E. coli, constrained by mass balances and physicochemical 
properties at steady-state, results in a convex domain of solutions. This mathematical property 
means that the fluxes can be sampled, and if a suitable objective function is found, the 
physiological state of the cell can be determined (Schuetz et al. 2007). It has been 
demonstrated that the fluxes obtained by minimizing the total reaction flux with the growth 
rate as a constraint, similarly to this study, are in agreement with 13C-metabolic flux analysis 
for Arabidopsis under osmotic stress (Williams et al. 2010). We anticipate that this kind of 
approach can provide a link between empirical predictive models and the cell physiology. 
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Abstract 
The genome sequence of Lactobacillus sakei 23K indicates that the species L. sakei has 
evolved to close adaptation to (fermented) meat environments. Several genes involved in the 
catabolism of non-glucose energy sources present in meat, such as arginine, nucleosides, and 
glycerol have been annotated. Therefore, the effective survival of L. sakei in meat seems to be 
mediated through a versatile use of energy sources other than glucose present in meat. Based 
on these insights, the metabolic potential of L. sakei CTC 494, a meat starter culture, to grow 
on non-glucose energy sources was quantified through modelling, including the use of the 
arginine deiminase pathway and the catabolism of nucleosides. Consumption of glycerol did 
not occur, despite the presence of glycerol-catabolising enzymes and a specific glycerol 
transporter in the genome. A detailed kinetic analysis of the catabolism of inosine and 
adenosine, and its interaction with the conversion of glucose or arginine, was performed and 
expressed as a function of different pH values. Metabolomic analysis revealed that inosine 
and adenosine were converted by L. sakei CTC 494 into a mixture of acetic acid, formic acid, 
and ethanol, suggesting a shift to mixed-acid fermentation when the strain was grown on 
nucleosides. The nucleobases (adenine and hypoxanthine) were excreted into the medium 
stoechiometrically. This indicates that the pentose moiety of adenosine and inosine was 
utilized to sustain cell energy requirements. Real time-PCR was applied to link the obtained 
data to gene expression, indicating a link with the growth phase and the external pH. In 
conclusion, the combined use of genomic, transcriptomic, and metabolomic approaches opens 
perspectives for the quantitative analysis and modelling of the competitive behaviour and 
metabolic traits of bacteria in view of food applications. These data may help the selection of 
appropriate starter cultures for food (meat) fermentations. 
 
Keywords: Lactobacillus sakei, meat, competitiveness, gene expression, metabolite analysis 

Introduction 
Lactobacillus sakei is the most prevalent lactic acid bacterium (LAB) species encountered in 
spontaneously fermented sausages, which demonstrates its competitiveness in and adaptation 
to the meat environment (Leroy et al. 2006). For this reason its use as a starter culture for 
meat fermentation is widespread. The variety of carbohydrates in fresh meat is relatively 
restricted and their amounts are limited, with ribose and glucose being the main fermentable 
carbohydrates (Rimaux et al. 2011). Therefore, a flexible use of all available nutrients and 
energy sources present in meat is of importance. Genes involved in the catabolism of 
arginine, nucleosides, and glycerol (all present in meat) have been annotated in the genome of 
L. sakei 23K (Chaillou et al. 2004). Therefore, it has been suggested that the effective 
survival of L. sakei in meat is mediated through a versatile use of energy sources, other than 
glucose, present in meat. Up to now, no attempt was made to investigate the catabolism of 
these potential energy sources by L. sakei. Therefore, the aim of the present study was to 
investigate the impact these alternative energy sources on the competitiveness and survival of 
L. sakei. A detailed kinetic analysis of the metabolites resulting from the conversion of 
arginine, inosine, and adenosine by L. sakei CTC 494 was performed as a function of 
environmental pH. In addition, a direct link between estimated model parameters and gene 
expression data of the arginine deiminase (ADI) pathway as a function of environmental pH 
was set-up as a validation of the proposed model.  
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Materials and Methods 
Microorganisms, media, and fermentation experiments 
Fermentations were carried out in 10 L customized MRS medium, without glucose and 
supplemented with 3 g/L of arginine, glycerol, inosine, or adenosine in a 15-L BiostatC 
fermentor (Sartorius AG/B. Braun Biotech). The fermentation temperature was kept at 30°C; 
the pH was kept constant through automatic addition of 10 M NaOH and 10 M HCl. Cell 
counts were obtained by plating on MRS agar (MRS medium plus 1.5 % agar, w/v). All 
measurements were performed on three independent samples. 

Modelling 
Following the lag phase λ (in h), the biomass concentration [X] (in CFU mL-1) as a function 
of time t (in h) was modelled with the logistic growth equation (Rimaux et al. 2011): 
d[X]/dt = µmax [X] (1 – [X]/[X]max)     if t > λ      [1] 
 
with Xmax the maximum obtained biomass (in CFU mL-1) and µmax the maximum specific 
growth rate (in h-1). 
 
Arginine [Arg] (in mM) conversion into ornithine [Orn] (in mM), via citrulline [Cit] (in mM), 
was modelled as (Rimaux et al. 2011): 
d[Arg]/dt = -(k1+k2) [X]          [3] 
d[Cit]/dt = k1 [X] – k3 [Cit][X]         [4] 
d[Arg]/dt + d[Cit]/dt + d[Orn]/dt = 0        [5] 
 
with k1 and k2 [mM (CFU mL-1 h)-1], and k3 [(CFU mL-1 h)-1] as biokinetic model parameters. 
 
Nucleoside [N] (in mM; inosine or adenosine) conversion into organic acids [O] (in mM), and 
nucleobase [Nb] (in mM; hypoxanthine or adenine) excretion were modelled as:  
d[N]/dt = -kN [X]          [6] 
d[O]/dt = -YO/N d[N]/dt         [7] 
d[Nb]/dt = -YN/Nb d[N]/dt        [8] 
 
with kN the specific rate constant for nucleoside catabolism [mM (CFU mL-1 h)-1], YO/N the 
yield coefficient for the production of organic acids from nucleoside catabolism [mM organic 
acid (mM nucleoside)-1], and YN/Nb the yield coefficient for the excretion of nucleobase 
resulting from nucleoside catabolism [mM nucleoside (mM nucleobase)-1]. 
 
The equations were fitted to the experimental data with Athena Visual Studio 
(www.athenavisual.com) using a multiresponse approach (Rimaux et al. 2011). 

Metabolic analysis 
Concentrations of arginine, citrulline, and ornithine were determined using LC-MS/MS 
(Waters Corp.) Inosine, adenosine, hypoxanthine, and adenine were quantified using HPLC 
with UV detection (Waters Corp.). Glycerol concentrations were determined using HPAEC-
PAD (Dionex). Concentrations of lactic acid, acetic acid, and formic acid were determined 
using HPAEC-CIS (Dionex). Finally, concentrations of ethanol in end samples were 
determined with GC-FID (CompactGC, Interscience). 

Gene expression analysis 
Several samples (at different time points) were withdrawn from a growing culture of L. sakei 
CTC 494, grown in MRS supplemented with 3 g/L of arginine at constant pH 5.0, 6.0, and 
7.0, for extraction of total RNA. After conversion of total extracted RNA into cDNA, 
quantitative real time PCR (RT-q-PCR) (ABI 7300, Applied Biosystems) was applied to 
determine relative gene expression of the genes coding for the ADI pathway in L. sakei CTC 
494. 
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Results and Discussion  
Genomic analysis 
Several catabolic pathways, involved in the conversion of non-glucose energy sources present 
in meat, have been predicted based on the genome sequence of L. sakei 23K. For example, 
two operons responsible for the conversion of arginine through the ADI pathway have been 
annotated. Furthermore, other energy sources, such as glycerol and nucleosides could be 
effective energy sources, as several transporters and catabolic genes were detected in the 
genome sequence. This indicates that the species L. sakei is perfectly adapted to the meat 
environment, which may explain its dominance throughout the fermentation and drying 
process of fermented dry sausages. However, phenotypic evidence for these potential 
pathways, as well as its contribution to the dominance or survival of L. sakei was lacking. 

Metabolic analysis 
No glycerol conversion was found for L. sakei CTC 494. Arginine conversion was influenced 
by environmental pH. At optimal pH values, arginine was converted into both citrulline and 
ornithine, whereas at low pH values a higher ornithine-to-citrulline ratio was found. Inosine 
and adenosine were both used as energy source by L. sakei CTC 494. Metabolite analysis 
showed that inosine and adenosine were converted into a mixture of acetic acid, formic acid, 
and ethanol (Fig. 1). Only at low pH values production of lactic acid was found as well. This 
suggests a mixed-acid fermentation of the ribose moiety of inosine and adenosine by L. sakei 
CTC 494. For all pH values, adenine and hypoxanthine were not used by the cells and were 
stoechiometrically excreted into the medium. Finally, addition of glucose to the fermentation 
medium showed a delay in the catabolism of nucleosides by L. sakei CTC 494, indicating 
carbon catabolite respression as a regulatory mechanism involved in the catabolism of 
nucleosides. All metabolic profiles were successfully modelled (Fig. 1). 
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Figure 1: Lactobacillus sakei CTC 494 in customized MRS medium supplemented with 3 g/L 

of (A) inosine or (B) adenosine at 30°C and pH 6.5. (A) Cell counts (○), inosine (●), lactic 
acid (x), acetic acid (◊), formic acid (□), and hypoxanthine (Δ). (B) Cell counts (○), adenosine 

(■), lactic acid (x), acetic acid (◊), formic acid (□), and adenine (Δ). Lines are according to 
the model. 

Gene expression 
RT-q-PCR was applied to link the obtained kinetic data (modelled biokinetic parameters) as a 
function of pH to data on gene expression of the ADI pathway. In this way, the proposed 
model for the ADI pathway (Rimaux et al. 2011) could be validated using a more 
fundamental (molecular) methodology. It was found that the expression of the genes of the 
ADI pathway was highest in the middle of the exponential growth phase. Furthermore, the 
influence of the pH had a similar pattern on the level of gene expression as was proposed by 
the model (Fig. 2), with highest gene expression (Fig. 2A, example of arcA) and highest 
arginine-into-citrulline conversion (Fig. 2B, example of kAC) at optimal pH, with a decreasing 
trend towards high and low pH. Finally, a putative transporter was co-expressed with the 
other genes of the ADI pathway, suggesting a role as a citrulline-ornithine antiporter, which 

(A) (B) 
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was proposed in the model for arginine conversion in L. sakei CTC 494 (the biokinetic 
parameter kCO; Rimaux et al. 2011). 
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Figure 2: (A) Relative gene expression of the arginine deiminase gene (arcA) as a function of 
pH (5.0, 6.0, and 7.0) and growth phase. (B) Evolution of the biokinetic parameter kAC 

corresponding with the conversion of arginine-into-citrulline as a function of pH. 

Conclusions  
In this study, the catabolism of arginine, glycerol, inosine, and adenosine by L. sakei CTC 
494 was performed. It was shown that inosine and adenosine were perceived as an additional 
carbohydrate source for L. sakei 494, resulting in the production of a mixture of acetic acid, 
formic acid, lactic acid, and ethanol. Also, the kinetics of arginine catabolism through the 
ADI pathway revealed a similar response to environmental pH as predicted by the kinetic 
model. In conclusion, the combined use of genomic, metabolomic, and transcriptomic 
approaches opens perspectives for the quantitative analysis and modelling of the competitive 
behaviour and metabolic traits of bacteria in view of food applications. These data may help 
the selection of appropriate starter cultures for food (meat) fermentations. 
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Abstract 
To assure applicability of predictive models in general conditions, it is necessary to move 
from the black box methodology to more mechanistically-inspired models. The objective of 
this work is the incorporation of mechanistic, intra-cellular knowledge into a dynamic, 
macroscopic model structure. This will be accomplished through the use of a metabolic 
reaction network, which defines an underdetermined linear system of the intracellular reaction 
rates or fluxes. Flux balance analysis (FBA) uses an objective function to derive, through 
optimization over the solution space of this underdetermined linear system, an intracellular 
flux distribution. The classical FBA technique is, however, not directly applicable in this 
context. To be able to use flux predictions by FBA for a dynamic model, all degrees of 
freedom of the underdetermined linear system need to be removed. In most cases, not all 
degrees of freedom can be fixed through optimization and multiple flux solutions are found. 
Extra information is required to identify the remaining degrees of freedom. A procedure to 
identify a reduced parameter set which can remove all degrees of freedom is described. The 
procedure is illustrated on a small-scale metabolic network for E. coli. The size of the reduced 
parameter set varies for different experimental data sets. These parameter sets guarantee a 
unique identification of the fluxes. A study of the effect of measurement noise on predictions 
is carried out to evaluate the usefulness of these parameter sets, together with the objective 
function, as control variable sets in a dynamic flux balance model.  
 
Keywords: flux balance analysis, metabolic flux analysis, modelling of microbial dynamics 

Introduction 
To assure applicability of predictive models in general conditions, it is necessary to move 
from the black box methodology to more mechanistically-inspired models (McMeekin et al. 
2008). The objective of this work is the incorporation of intracellular knowledge into a 
dynamic, macroscopic model structure. This will be accomplished by using a metabolic 
reaction network. Metabolic network analysis starts from a simple algebraic equation, 

܁ · ܞ ൌ 0 

܁ ሺ݉ ൈ ݊ሻ

ൈ 1ሻ
 rankሺ܁ሻ

rankሺ܁ሻ

with  the  stoichiometric matrix for the metabolic reaction network, with ݉ the 
number of intracellular metabolites and ݊ the number of intracellular and transport reactions, 
and ܞ the ሺ݊  vector of intracellular reaction rates or fluxes. This equation describes a 
subspace of Թ  of dimension ݊ െ  which is the null space of the stoichiometric 
matrix ܁. All points inside this flux space satisfy the stoichiometric constraints imposed by 
the metabolic network and are thus possible metabolic flux states of the cell. 
To characterise one flux vector inside this space, it is necessary to fix ݊ െ  fluxes, in 
specific combinations which are found by performing calculability analysis (Klamt et al. 
2002). These combinations effectively are parameterizations of the metabolic network model. 
In the remainder of this text, a possible combination will be referred to as a MFA parameter 
set. Metabolic flux analysis (MFA) estimates these parameters by measuring transport fluxes 
and/or intracellular isotopic mass distributions and minimizing the least squares residual 
between these measurements and the simulated values by varying the parameter values 
(Wiechert 2001). Simulations are carried out by solving a square system of linear equations: 
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with  the estimated parameter values. 
Another technique to identify solutions inside the flux space is flux balance analysis (FBA), 
which uses linear optimization and an objective function, often chosen “maximize growth 
rate” (Varma and Palsson 1994). This choice can be motivated from an evolutionary point of 
view. FBA simulations are carried out by optimizing the objective function, which is a linear 
function f the fluxes with coefficients ܋. o



Whereas MFA always identifies one unique flux solution, this is not true for FBA. In some 
cases, all degrees of freedom are removed and a unique flux solution is found. However, in 
other cases, the flux space is only brought down to a space of lower dimension. Flux vectors 
in this space of lower dimension can be uniquely described by fewer parameters. The 
objective of this work is to assess the minimality of the parameterization used by MFA, and to 
identify other parameterizations based on the use of an objective function in combination with 
fewer parameters. These parameterizations can generally be described by the following 
optimization problem (constrained flux balance analysis, cFBA): 

   

effectively combining the MFA and FBA approaches. In future work, these parameterizations 
will be used in a dynamic flux balance model. 

Materials and Methods 
Metabolic reaction network and flux data 
The metabolic reaction network used to illustrate the procedure is taken from Ishii et al. 
(2007). It consists of 17 metabolites and 25 reactions. As such, the dimension of the flux 
space is 8 ሺ25 െ 17ሻ, meaning there are 8 degrees of freedom for the regular MFA. Flux 1, 
the glucose uptake flux, was fixed at the experimental value, leaving 7 degrees of freedom 
and a MFA parameter set of size 7. The network is accompanied by four sets of flux data for 
all 25 fluxes, measured with 13C-MFA at four different growth rates (data set 1-4).  

Identification of reduced sets of parameters 
Starting from a MFA parameter set, reduced sets of parameters were identified. Starting from 
a MFA parameter set, an iterative search is carried out by making combinations of the 
parameters. Starting from combination sets with 1 parameter (which are unlikely to give good 
predictions), the size of the combination sets is systematically increased until a set size is 
found for which there exists at least one parameter combination which gives unique and 
correct simulations. Correctness is checked by comparing the least squares distance between 
the simulation data based on the smaller size parameter set with the original experimental data 
for the MFA parameter set. Uniqueness is checked by comparing simulation data for the 
smaller size parameter set based on two LP-algorithms: (i), the simplex algorithm, and (ii), an 
interior point method. The simplex algorithm always finds an optimal basic feasible solution, 
meaning the solution is always on a vertex of the flux space. If there are multiple solutions, 
the simplex algorithm gives one vertex of the optimal face. Interior point methods, on the 
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other hand, approximate the optimal solution following a central path through the interior of 
the flux space. If there are multiple solutions possible, interior point methods converge to the 

olutions are equal, the solution is unique. 

dence intervals on the estimated parameters, a Monte-Carlo 
. 

12.2 was used. The interior-point algorithm used was 
IPOPT (Wächter and Biegler 2006). 

ced to predict unique and correct fluxes, 
whereas in other cases six parameters were needed. 

for data set 1, (b) for data set 3. Starti FA parameter set: (c) for data set 1, 
(d) for data set 3. 

centre of the optimal face, meaning that if both s

Parameter estimation for constrained FBA 
Estimation of the parameters in constrained FBA is difficult due to the optimization problem 
in the cFBA simulation itself. With addition of the upper-level objective of minimizing the 
least-squares residuals, a bilevel optimization problem arises. This problem was solved by 
employing a multi-parametric programming approach for bilevel programs (Faísca et al. 
2007). To estimate the confi
sampling approach was used

Numerical computations 
All simulations and optimizations were carried out in Matlab R2010b. For the simplex 
optimizations, IBM ILOG CPLEX 

Results and Discussion  
Identification of reduced parameter sets 
By employing the described procedure, reduced sets of parameters were found for each of the 
four experimental flux data sets. An example of the results of the identification for flux data 
set 1 and 3 is shown in Figure 1. The size of the reduced parameter set depends on the 
experimental data set and, in some cases, also on the MFA parameter set started from. For 
data set 3, e.g., in some cases five parameters suffi

 
Figure 1: Reduced parameter set identification. Starting from a first MFA parameter set: (a) 

ng from a second M

Evaluation of confidence levels of predictions  
The benefit of this procedure lies in the fact that, with fewer parameters needed to estimate, 
fewer measurements are needed to get the same level of confidence on the estimated 
parameters and also on the simulated fluxes from these parameters. The other way around, 
with the same number of measurements, the variance on estimated parameters is lower as well 
as the variance on the simulated fluxes. To illustrate this, a Monte-Carlo parameter estimation 
was done for the first set of 4 parameters in Figure 1a with data from data set 1, which was 
assumed to be normal distributed with a standard deviation of 5% of the average values. 
Based on the estimated parameters and their variances, fluxes were simulated, both starting 
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from the MFA parameter set of size 7 and the reduced parameter set consisting of 4 
parameters. The results are shown in Figure 2. The variance is considerably reduced by 
reducing the number of parameters. The sum of all confidence ranges is reduced by 75%. 

Fi ) 
and the first Confidence 

intervals were normalized to the mean of the flux predictions. 

macroscopic model structure to be 
able to predict macroscopic dynamics of micro-organisms. 

the Institute for the Promotion of Innovation by Science and Technology in Flanders 
(IWT).  

Faí (2007) Parametric global optimization  

Kla

Mc

ine-search algorithm for 

Wiechert W. (2001) 13C Metabolic Flux Analysis. Metabolic Engineering 3 (3), 195-206. 

 
gure 2: Confidence intervals for simulations based on the MFA parameter set (black bars

 reduced parameter set of Figure 1a (white bars) for data set 1. 

Conclusions  
A procedure to reduce the number of parameters needed to fully describe a flux solution by 
means of optimization of an objective function is presented. The procedure is illustrated for a 
small-scale metabolic network. By simulating flux predictions based on the reduced 
parameter set, significant reductions in prediction variances are accomplished. In further 
research, these parameterizations will be implemented in a 
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Abstract 
The Bacillus cereus group that contains six closely related species among which B. 
weihenstephanensis,  is ubiquitously encountered in soil and may either cause emetic or 
diarrheal types of food-borne illnesses. To prevent bacterial development, food industries use 
preservation techniques such as low pH and cold temperature storage. In this study, the acid 
resistance of the psychrotrophic B. weihenstephanensis KBAB4 strain is investigated using 
microbiological and transcriptomic methods. Standardized protocols were used to determine 
bacterial inactivation during an acid stress with a pH of 4.6. Population evolution was 
followed by CFU enumeration and kinetics were fitted using a mixed Weibull model. In 
parallel, the expression of twelve genes, selected as potential biomarkers, was performed 
using RT-qPCR. Quantification of each gene transcription was relative to three housekeeping 
reporter genes (tuf, gyrA and sigA) which showed stable expression (M value of respectively 
0.414, 0.445 and 0.445).In optimal conditions, exponentially growing cells submitted to an 
acid shock could be divided in two populations, i.e. one sensitive (first decimal decrease after 
1hour of inactivation) and one resistant (first decimal decrease after 3 hours of inactivation). 
In these conditions, gene expression showed up-regulation (4 genes) or down-regulation for 2 
genes (narL and napA). Furthermore for individual genes, the expression profile during the 
inactivation treatment may vary extensively. For instance, sigB encoding general stress sigma 
factor, is up-regulated at the beginning of the inactivation with a peak after 2h (4.9 fold ± 1.3) 
whereas katB, encoding for a major catalase, is up-regulated at the beginning of the kinetic 
and stays constant (around 20 fold) between 3h and 4h of inactivation. Studies on gene 
expression along inactivation kinetics are being carried out under various physiological states. 
These results will allow us to develop a predictive tool that will correlate gene expression to 
the bacterial resistance. The prediction of bacterial history-dependent behavior using gene 
expression will offer a decision making tool adapted to food products. 

Keywords: Food-borne pathogen, Acid stress, Modelling, Resistance, Weibull, Biomarkers, 
RT-qPCR 

Introduction 
Bacillus cereus, a gram-positive rod shaped spore-forming bacteria, is the etiological agent of 
two types of food-borne poisoning, caused by the production of emetic or diarrheal 
toxinsFood poisoning outbreaks are mostly due to the consumption of contaminated food 
such as RTE (ready to eat), vegetables, dairy, rice and pasta. Most of the time the 
contaminated products have been subjected to temperature abuse, yielding to the germination 
and multiplication of toxigenic strains in food. B. cereus is also known for its ability to cause 
food spoilage. Industrial issues therefore mainly concern the presence of spores and their 
survival to heat processes or cleaning procedures which lead to their persistence in the 
industrial environment. Nowadays, thermal processes need to ensure food organoleptic 
properties, food safety as well as the prevention of food spoilage. Minimal thermal processes 
are now used in combination with preservatives. For instance, weak organic acids and cold 
temperature storage are widely used to control microbial growth. In this study, the acid 
resistance of psychrotrophic B. weihenstephanensis KBAB4, that belongs to the B. cereus 
group, was investigated using microbiological and transcriptomic analysis for mid-
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exponential phase cells submitted to an acid stress. Quantification of the expression of several 
genes by RT-qPCR will allow to identify biomarkers of bacterial viability and stress 
resistance for further implementation of predictive models.  

Materials and methods 
B. weihenstephanensis KBAB4, a psychrotrophic strain isolated from the soil of the forest of 
Versailles was kindly provided by INRA Avignon and used in this study. As previously 
described by Coroller et al. (2006), two pre-cultures of Brain heart Infusion BHI (BIOKAR 
DIAGNOSTIC, Beauvais, France) were used to ensure reproducible bacterial physiological 
states (30°C, 100 rpm). The bacterial inactivation was performed by transferring 5 ml of 
bacterial culture at a given physiological states in BHI supplemented with HCl 10N to obtain 
a final pH of 4.6. Survivors were enumerated on Nutrient Agar (BIOKAR DIAGNOSTIC, 
Beauvais, France) immediately after inoculation and at appropriate time intervals by surface 
plating cultures using Spiral Plater (AES laboratoire, Combourg, France). In parallel of 
bacterial enumeration, RNA extraction was performed using the RNeasy® Mini kit 
(QIAGEN, Courtaboeuf, France) according to manufacturers’ recommendations. RNA 
quantity and quality from three independent cultures were reproducible, as shown by 
NanoDrop (Thermo Fisher Scientific, Wilmington, USA) and microfluidic analysis 
(Experion, BIORAD, Mitry Mory,France) performed according to MIQE guidelines. As 
described by the manufacturer, cDNA synthesis was performed using iScript cDNA synthesis 
kit (BIORAD, Mitry Mory,France). Nine genes were quantified using CFX 96TM (BIORAD, 
Mitry Mory, France) and standardized by using three reference genes (tuf, gyrA and sigA) 
which showed stable expression (M value of respectively 0.414, 0.445 and 0.445). As 
mentioned by Postollec et al. (2011), some other controls have been performed, such as the 
evaluation of DNA contamination, non-template control or the use of reference sample. All 
Reverse Transcription qPCR were performed from three independent cultures, for each tested 
conditions. 

Results and discussion 
Physiological response to acid stress 
It is well known that physiological state can be related to culture conditions. In tested 
conditions, the growth of B. weihenstephanensis KBAB4 reaches a population of 107 CFU.ml-

1 after four hours incubation corresponding to the middle of the exponential phase (Figure 1, 
A). 
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Figure 1 : A- B.weihenstephanensis KBAB4 (BHI, pH7.2, 30°C, 100 rpm). Open symbols 
represent independent experimental data during bacterial growth while solid line represents 

the fitting using Rosso model (1995). B- B. weihenstephanensis KBAB4 (BHI, pH4.6, 30°C, 
100 rpm). Open symbols represent independent experimental data during the acid inactivation 

step while the solid line represents the fitting using mixed Weibull model (Coroller et al., 
2006).  
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Preliminary results are obtained for growing cells sampled from the middle of exponentially 
phase and submitted to an acid stress at pH 4.6. Bacterial enumeration was fitted using a 
mixed Weibull model (Coroller et al.,2006). A biphasic non linear shape is obtained, with a 
shape parameter (p) estimated at 1.8 (Figure1, B). This biphasic shape underlines the presence 
of two sub-populations, i.e. one sensitive (first decimal decrease obtained after one hour of 
inactivation) and one more resistant (first decimal decrease obtained after 3 hours of 
inactivation). Nevertheless, the more resistant population represents approximately 1/1000 
(α=2.6) of the starting population. Because bacterial resistance varies depending on the 
transcription of a specific set of genes, a selection of thirty genes was performed as potential 
biomarkers for bacterial acid resistance. In parallel of bacterial inactivation counts, samples 
were extracted to quantify gene expression by optimized RT-qPCR protocol to define 
potential biomarkers to target during acid inactivation kinetics. 

Gene expression during acid inactivation 
Transcription quantification of each gene was related to three housekeeping reporter genes 
(tuf, gyrA and sigA) which showed stable expression. Preliminary results concern the 
quantification of the expression of nine genes of B. weihenstephanensis KBAB4 by RT-
qPCR, during acid inactivation. Inactivation was performed by after a few minutes (T0), 1 
hour, 2 hours, 3 hours and 4 hours incubation in acid conditions (pH 4.6). Throughout 
inactivation, gene expression quantification showed up-regulation (4 genes), down-regulation 
for 2 genes (narL and napA) or no significant variation (3 genes). As an example, Figure 3 
presents the expression quantification of sigB, a gene encoding for a general stress 
transcription factor, narL, encoding for a nitrate sensing regulator and katB, encoding for 
hydrogen peroxide-inducible catalase. 

 

Figure 3 : B. weihenstephanensis KBAB4 gene expression quantification performed by RT-
qPCR targeting sigB, narL, katB genes. The evolution of targeted genes expression is 

quantified after a few minutes (T0), 1h, 2h, 3h and 4h in acid conditions (pH 4,6) and can be 
compared to the expression of the unstress cells (control). Gene expression is standardized 

using three housekeeping genes. 

Besides the expression of targeted genes during acid inactivation exposure, a control 
condition representing exponentially growing cells tested before inoculation in pH 4.6, was 
systematically performed. Gene expression of sigB, katB and narL was preliminary 
normalized using tuf, gyrA, sigA as reference genes. The sigB gene exhibited up-regulation 
during the first part of the inactivation kinetic, with a peak of expression at 2 hours (4.9 fold ± 
1.3 compared to the unstress control). The katB gene of B. weihenstephanensis KBAB4 was 
up-regulated from the beginning to the end of acid inactivation, with a maximal up-regulation 
at 3h (24.3 fold ± 2.6 compared to the unstress control). The narL geneknown to be involved 
in nitrogen metabolismand may serve as an alternative to aerobic respiration, was down-
regulated throughout acid inactivation. Besides up- or down-regulation, gene variation profile 
may vary as well during inactivation kinetic. For instance, sigB, was up-regulated at the 
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beginning of inactivation with a peak after 2h whereas katB, was up-regulated throughout the 
kinetic with a maximal up-regulation at 3h.These promising preliminary results emphasize the 
use of gene expression quantification, for the elucidation of B. weihenstephanensis KBAB4 
physiology under exposure to a lethal acid stress. Indeed, sodA,  which encodes for 
superoxide dismutase, is up-regulated throughout the inactivation kinetic. This up-regulation 
may indicate the formation O2- radicals. The induction of katB also corroborates to the 
formation of oxidative compounds. Similarly to what is observed for B. cereus ATCC 14579 
(Mols et al., 2010), the formation of oxidative compounds may be due to perturbation of the 
aerobic Electron Transfer Chain (ETC). Nevertheless, the acid response of B. 
weihenstephanensis KBAB4 is not exactly the same for B. cereus ATCC 14579, as Mols et 
al. (2010) showed an over-expression of the nitrate and nitrite reductases. This up-regulation 
was correlated to the formation of Nitric Oxide (NO), formed from arginine by nitric oxide 
synthase, Mols and co-workers also demonstrated the up-regulation of nitric oxide 
dioxygenase, which catalyses the reaction of NO with oxygen to form nitrate, thus explaining 
the up-regulation of nitrate and nitric reductases. In B. weihenstephanensis KBAB4, the 
nitrate reductase (narL) is down-regulated throughout the acid inactivation kinetic, showing 
different pattern compared to B. cereus ATCC 14579 acid stress response. Whereas 
implementation of a secondary oxidative stress response upon lethal acid stress occurs both in 
B. cereus ATCC 14579 and B. weihenstephanensis KBAB4, the difference between these two 
species in the expression of some genes remains to be elucidated. 

Conclusion 
Research employing genomic technologies is helpful to elucidate microbial spoilage and 
pathogen behavior at the molecular level and to develop better detection and characterization 
systems. The selection and quantification of universal biomarkers by RT-qPCR enable the 
exploration of complex biological processes in a quantitative and integrative manner via a 
systems biology approach. These methods of analysis help to identify genes of interest, i.e. 
genes involved in cell injury and generic biomarkers of cell activity. Since cell history 
strongly impacts on bacterial resistance, this study will provide data on the simulation of the 
impact of salt, cold or acid conditions on exponentially growing cells. Comparison between 
genes expression of adapted and non adapted cells submitted to an acid stress will allow the 
identification of resistance and viability biomarkers. From the wide range of targeted genes 
involved in metabolic activity and stress response, the definition and quantification of 
universal biomarkers to track the behavior of B. cereus during inactivation will enable 
mathematical modeling. Prediction of bacterial behavior and physiology during inactivation 
will be implemented in a decision making tool, in order to provide help in food formulation 
and stability. 
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Abstract 
Peracetic acid presents a bactericidal and sporicidal activity at room temperature and it is 
widely used as sanitizer for surfaces as well as disinfectant for fruits and vegetables in the 
food industry. The aim of this study was to quantify the impact of peracetic acid on spores of 
Bacillus as a function of environmental conditions. 
The spores of a psychrotolerant Bacillus weihenstephanensis strain were inactivated by a 
peracetic acid solution. The treatment was done at four peracetic acid concentrations and four 
temperatures; ranging respectively from 0.25 g/L to 1.05 g/L and from 5 to 20°C. The 
surviving spores were enumerated using spiral plate count on Nutrient Agar. The survival 
curves were fitted by the Weibull model. 
The bacterial resistance decreases with increasing peracetic acid concentration and storage 
temperature. A model was proposed to quantify the treatment efficiency at a given peracetic 
acid concentration and temperature of use. Even though the synergy between the temperature 
and the concentration on the bacterial resistance is neglected, this model has a good quality of 
fit (RMSE = 0. 04). But its main advantage remains simplicity and practical interpretation of 
parameters. For instance, the inactivation of bacterial spores with 1.48g/L peracetic acid is ten 
fold higher with an increase of 17.1°C (zT values), for the conditions tested. The model allows 
the estimation of bacterial population decrease for given concentration of peracetic acid, time 
and temperature of treatment. But, it might be used also to optimize the process parameters 
(time, temperature and acid concentration) knowing a targeted value of bacterial decrease. 
 
Keywords: disinfection, biocide, resistance, modelling, Weibull 

Introduction 
Peracetic acid is used mainly in food industry and in medicine for disinfection or sterilization 
of surface and equipment. It is also used for residual and process water treatment because it 
has the advantage of no residual toxic products (Kitis 2004). Its spectrum of activity is broad 
with a bactericidal, fungicidal, virucidal and sporicidal effect. Indeed, it has a strong oxidizing 
power through the production of reactive oxygen species that will oxidize proteins, enzymes 
and metabolites and led to the denaturation or unfold of membrane proteins. The sporicidal 
activity of peracetic acid is enhanced for acidic pH and increasing temperature. This biocide 
is highly volatile and its sporicidal activity may decrease over time (Sagripanti et al. 1996). It 
is often presented in a combined form with acetic acid (CH3CO2H) and hydrogen peroxide 
(H2O2). 
The aim of this study is to quantify the impact of peracetic acid on the survival of Bacillus 
cereus group spores depending on the exposure time, concentration and temperature 
conditions. 

Materials and Methods 
Biological materials and experiments 
Spores of B. weihenstephanensis KBAB4 were produced using a sporulation mineral buffer 
(Baril et al. 2011). The exposure of spores with 100 ml of peracetic acid solution (Oxyanios 
5, Anios Laboratories, Lille, France) was done in an Erlenmeyer flask under agitation (100 
rpm). The initial spore concentration used for inactivation assay was 106 CFU/mL. The 
inactivation kinetics were followed by spreading 0.5 mL suspension which was previously 
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neutralized by 0.5 mL of sodium thiosulfate (Na2S2O3, final concentration: 25 g / L (Sigma, 
St. Louis, USA)) on nutrient agar (Biokar, Beauvais, France) using a spiral plater (WASP1, 
Don Withley Scientific Ltd, Shipley, England). The enumeration of the colonies forming unit 
was performed after 20 hours incubation at 30 °C. 
The influence of the peracetic acid concentration and the storage temperature were studied for 
four levels of peracetic concentration (0.25 g/L to 1.05 g/L) and for four temperature ranging 
from 5°C to 20° C. Triplicates were performed at 10 and 20 ° C for both 0.45 g/L and 0.85 
g/L concentrations. 

Inactivation modeling 
The Weibull primary model (Mafart et al. 2002) was used to fit the spore inactivation 
kinetics. It could be written as follow: 

( )
ptNtN 





−=
δ0loglog

    
(1) 

Where N is the number of survivors at time t, N0 is the initial cell number, t is the time of 
exposure to a stress, δ is the time leading to the first reduction by 10 of the treated population 
and p is the shape parameter of the curve, it reflects the distribution of resistance within the 
spore suspension.  
To model the influence of the peracetic acid concentration and temperature on the bacterial 
resistance, a Bigelow type model was used: 
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Herein δ is the first decimal decrease at the temperature T (°C) and peracetic acid 
concentration C (g/L). The z value reflects the sensitivity of the spores to a temperature 
variation (zT) or a concentration variation (zC). An increase of z value will yield a ten fold 
increase of δ values. The star symbol indicates the reference resistance and reference 
conditions of treatment.  
These models were fitted by minimizing the sum of squared errors (lsqcurvefit, Optimization 
Toolbox, MATLAB 7.9.0, The Math-works, Natick, USA). 

Results and Discussion  
All inactivation kinetics obtained were concave, showing a little decline of the population at 
the beginning of the peracetic acid exposure followed by an important inactivation for longer 
time exposure (figure 1). This observation was confirmed by the fact that no significant 
dependence of the shape parameter (p) was observed as a function of the temperature or the 
acid concentration (α=0.05). A unique p parameter of 2.52±0.09 was estimated from all the 
inactivation kinetics. The advantage of such a simplification was to have only the δ parameter 
to model as a function of the temperature and the acid concentration. 
The estimated values of δ decrease log-linearly according to an increase of the storage 
temperature or an increase of peracetic acid concentration (figure 2). At 5, 10, 15 and 20°C, 
the estimated zC values are 1.23±0.92, 1.82±0.50, 1.28±0.70, and 1.57±0.91 g/L, respectively. 
The estimated zT were also slightly influenced by the peracetic concentration. A two-way 
ANOVA indicated a weak interaction between temperature and concentration (1.5%), which 
was neglected. The estimation of the common value for zT and zC were, respectively 1.48±0.21 
g/L and 17.10±0.51°C. The time for the first decimal decrease was estimated at 47.7 min 
(log(δ*) estimated at -0.099 ±0.019 ) for a treatment at 20°C (T*), 1.25 g/L (C*). The 
reference conditions were chosen to be as close as the conditions recommended for the 
industrial use. Figure 2 shows the experimental data and their fitting according to the equation 
(2). The root mean square error on the log δ was as low as 0.04. However, as it can be 
noticed, at low concentration our model seems to underestimate the bacterial resistance. Note 
that a non-linear model was tested but it used could not be justified on our dataset. 
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Figure 1: Survival kinetics of B. weihenstephanensis spores during an exposure to a peracetic 
acid solution at 0.85g/L and 20°C (●), at 0.45g/L and 20°C (Δ) and at 0.45g/L and 10°C (♦). 

The fitted curves are represented by the dashed lines. 

 
Figure 2: Resistance (log δ h) of B. weihenstephanensis spores as a function of peracetic acid 
concentration (g/L) at 5°C (x), 10°C (□), 15°C (◊) and 20°C (○). The fitted values are shown 

with the black or dotted lines. 
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The used of a log-linear relation between the resistance and the concentration or the 
temperature could be extrapolated to the results obtained in the literature with B. cereus, B. 
subtilis and B. atropheus (Mohan et al. 2009, Yamazaki et al. 2009). The spores produced in 
this study were four times more resistant compared to those of B. subtilis for a treatment at 
20°C and 0.5 g/L. 
The model allows the optimization of the disinfection or sterilization process using peracetic 
acid. For example, the objective of a spore population reduction of 3 log is reached after an 
inactivation treatment of 1h15 at reference conditions (20°C and 1.25 g/L). If the sanitation 
process is made at 4°C, we can choose to increase either the treatment time up to 10h30 or the 
concentration of peracetic acid up to 2.64 g/L to reach a similar 3 log reduction. 
The developed model shows a high accuracy in simplified conditions used. Nevertheless, the 
presence of interfering agents such as proteins, sugars may decrease the action of peracetic 
acid on surface. Indeed, Xu et al. (2008) observed that, due to possible reaction with amino 
groups of proteins, the presence of organic material may decrease the effectiveness of the 
peracetic acid. Moreover, microorganisms adhering to surfaces may form biofilm yielding to 
the emergence of cells with acquired characteristics such as greater resistance to biocides. 
Nevertheless, the temperature has a great impact on the spore resistance. The importance of 
the storage temperature was already mentioned for Listeria and Escherichia in the case of 
acid or osmotic stress by Zhang et al. (2010). 

Conclusions  
The model allows the optimization of the processing conditions of sanitation by modifying 
and combining different parameters in simplified conditions: peracetic acid concentration, 
temperature and time of exposure. Nevertheless, the use of peracetic acid with different 
formulations or in combination with other compounds may have different impact. These 
combinations and the presence of inhibitory substances such as protein or sugar still have to 
be quantified. 
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Abstract 
The resistance properties of Bacillus sp. spores are strongly influenced by the sporulation 
physicochemical environment. Many steps of the food chain may be suitable for sporulation 
depending on nutrient availability and other environmental factors, and provided that 
incubation time is sufficient for the completion of the sporulation process. Assessing 
quantitatively the sporulation yields and rates allows the identification of sporulation niches 
and where to focus control measures throughout the food chain. The sporulation of 
psychrotrophic B. weihenstephanensis and mesophilic B. licheniformis was studied from 5°C 
to 50°C (every 5°C) and from pH 5.2 to 8.5 (every 0.3 pH unit) in a sporulation mineral 
buffer. 
B. weihenstephanensis was able to form spores from 5°C to 35°C and from pH 5.2 to 8.5. 
When sporulation occurred at 30°C, the time to achieve one spore per ml was the shortest (6.7 
h) and the sporulation rate and final spore concentration were the highest (0.60 h-1 and 7.4 
logCFU/ml). At 10°C, the time to achieve one spore/ml was lengthened and estimated at 
148.0 h, the sporulation rate was lower (0.05 h-1) as well as the sporulation yield (6.5 
logCFU/ml). Similarly, at pH lower than 7.0 – 8.5, the sporulation process was lower and 
resulted in a lower sporulation yield. Similar results were observed with B. licheniformis at 
temperatures ranging from 20°C to 50°C and pH ranging from 6.0 to 8.5. Interestingly, the 
range of temperature and pH allowing sporulation were close to those allowing growth. 
Moreover, the temperature and pH appear to affect the sporulation kinetics in the same way 
than the growth kinetics. 
 
Keywords: sporulation environment, Bacillus weihenstephanensis, Bacillus licheniformis 

Introduction 
The sporulation environment is known to affect the spore heat resistance (Mazas et al. 1997; 
Palop et al. 1999). Spore formation is mainly induced by nutrient depletion and corresponds 
to the acquirement of a high cell resistance (Sonenshein 1999). However numerous authors 
pointed out a clear effect of some environmental factors such as temperature and pH on the 
spore formation. At low temperatures and pHs, the sporulation time is lengthened and spore 
concentration decreases (Gonzalez et al. 1999; Mazas et al. 1997). Spores are found in many 
steps of the food chain and as the condition of sporulation impacts on the spore concentration 
and resistance, it is important to better characterize the spore formation which would 
contribute to the identification of sporulation niches. Thus sporulation boundaries and kinetics 
were studied on B. weihenstephanensis KBAB4 and B. licheniformis AD978 at different 
temperature and pH environments. 
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Materials and Methods 
Sporulation kinetics 
B. weihenstephanensis KBAB4 strain and B. licheniformis AD978 strain were studied. The 
sporulation was performed in the sporulation mineral buffer (SMB) (Baril et al. 2011) at 
temperatures ranging from 5°C to 50°C (every 5°C) and at pHs ranging from pH 5.2 to 8.5 
(every 0.3 pH unit). At the end of the sporulation process, total count and spore count were 
enumerated. Spores were defined as heat resistant cells to a heat treatment at 70°C for 5 min. 
Sporulation boundaries were studied through the observation of spore concentration on a wide 
range of temperatures and pH. In order to assess the sporulation time and rate, sporulation 
kinetics were performed in triplicates at two temperature levels and at two pH levels for each 
bacterial strain: 30°C, 10°C, pH 7.2 and 5.9 for B. weihenstephanensis KBAB4 and 45°C, 
20°C, pH 7.2 and 6.3 for B. licheniformis AD978. Total count and spore count were 
enumerated throughout the sporulation process. The detection threshold corresponded to 2.6 
log(CFU/ml). 

Estimation of kinetic parameters 
The following sporulation kinetic model which is a particular form of a logistic function 
(hyperbolic tangent) was proposed to fit sporulation curves: 
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where log(NS)t (logCFU/mL) is the spore concentration at the t time (h), log(NS) (logCFU/mL) 
is the maximal spore concentration obtained at the studied sporulation temperature and pH, µs 
(h-1) is the sporulation rate and t1s (h) is the time to achieve one spore per ml. 
This model was fitted by minimizing the sum of square error (lsqcurvefit, Optimization 
Toolbox, MATLAB 7.9.0, The Math-works, Natick, USA). The 95% confidence intervals 
were computed using nlparci function (Statistical Toolbox, MATLAB 7.9.0, The Math-works, 
Natick, USA). 

Results and Discussion  
B. weihenstephanensis KBAB4 was able to sporulate at temperatures ranging from 5°C to 
35°C and at pH higher than 5.2. B. licheniformis AD978 was able to form spores at 
temperatures ranging from 20°C to 50°C and at pH higher than 5.7. Inside these sporulation 
boundaries, spore concentrations were quite stable, while they dropped near the sporulation 
boundaries. These sporulation boundaries were close to growth limits, in agreement with 
published data (De Pieri & Ludlow 1992; Mazas et al. 1997). 

Table 1: Estimated sporulation kinetic parameters of B. weihenstephanensis KBAB4 and of B. 
licheniformis AD978 (Equation 1). 

 T  pH t1S (h) µS (h-1) Log(NS) 
(logUFC/mL) RMSE 

B. weihenstephanensis 
KBAB4 

30°C* 7.2* 6.66 (± 0.36) 0.60 (± 0.10) 7.45 (± 0.17) 0.371 
30°C 5.9 14.47 (± 0.87) 0.50 (± 0.14) 7.68 (± 0.29) 0.380 
10°C 7.2 148.00 (± 7.30) 0.05 (± 0.01) 6.54 (± 0.20) 0.373 

B. licheniformis 
AD978 

45°C* 7.2* 1.63 (± 0.44) 0.37 (± 0.05) 7.10 (± 0.17) 0.549 
45°C 6.3 4.19 (± 0.12) 0.55 (± 0.10) 5.46 (± 0.12) 0.328 
20°C 7.2 45.86 (± 11.67) 0.02 (± 0.00) 6.85 (± 0.27) 0.226 

*: reference conditions 
 
As shown in table 1 and figure 1A, the sporulation kinetics parameters of B. 
weihenstephanensis KBAB4 were affected by the sporulation temperature. When sporulation 
occurred at 30°C, the time to achieve one spore per ml was shorter (6.7 h) and the sporulation 
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rate and the maximal spore concentration were higher (0.60 h-1 and 7.45 logCFU/ml). At 
10°C, the time to achieve one spore per ml was 148.0 h, the sporulation rate was 0.05 h-1 and 
the sporulation yield was 6.54 logCFU/ml. Sporulation kinetic parameters were also affected, 
but to a lower extent, by the pH.  
In the same way, as shown in figure 1B and table 1, sporulation kinetics parameters of B. 
licheniformis AD978 was faster with higher maximal spore concentration at 45°C and pH 7.2. 
In such conditions, the time to achieve one spore per ml (t1S) was less than 2 h, the sporulation 
rate was estimated at 0.33 h-1 and the final spore concentration reached 7.10 logCFU/ml. As 
observed for B. weihenstephanensis, a lower sporulation pH or temperature led to lower 
sporulation rate of B. licheniformis AD978. 
 

 
Figure 1: Influence of the sporulation temperature and pH on sporulation kinetics of Bacillus 

strains. (A) Sporulation of B. weihenstephanensis KBAB4 at 30°C pH 7.2 (white filled 
symbols) at 30°C pH 5.9 (black filled symbols) and at 10°C pH 7.2 (gray filled symbols). (B) 
Sporulation of B. licheniformis AD978 at 45°C pH 7.2 (white filled symbols), at 45°C pH 6.3 

(black filled symbols) and at 20°C pH 7.2 (gray filled symbols). Each symbol (triangles, 
squares and circles) represents one of the independent triplicates. Lines correspond to the 

estimated spore concentrations from the sporulation kinetic model (Equation 1). 

Inspired by the relative effect of environmental factors (Ross & Dalgaard 2004), for B. 
weihenstephanensis KBAB4, the ratio between the maximum sporulation rates at 10°C and 
30°C (µS10°C/µS30°C) was calculated using the equation 1. The ratio between the specific growth 
rates at the same temperatures (µG10°C/µG30°C) were calculated by using the growth cardinal 
model (Rosso et al. 1995). These sporulation and growth ratios were both equal to 0.08 
(Table 2). Similarly, for sporulation pH of 5.9 and 7.2, the growth and sporulation ratios were 
close, respectively 0.78 and 0.83. For B. licheniformis AD978, the effect of temperature on 
growth and sporulation ratios (20°C and 45°C) were calculated and reached respectively 0.07 
and 0.05. However, the effect of pH on these ratios (pH 6.3 and 7.2) was less comparable 
between growth and sporulation, with values calculated at 0.89 and 1.49, respectively. 

Table 2: Comparison of the growth and sporulation ratios. 
 B. weihenstephanensis KBAB4 B. licheniformis AD978 
 µ10°C/µ30°C µpH5.9/µpH7.2 µ20°C/µ45°C µpH6.3/µpH7.2 
Growth 0.08 0.78 0.07 0.89 
Sporulation 0.08 0.83 0.05 1.49 
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Conclusions  
The range of temperature and pH allowing spore formation were close to those allowing 
growth. Spore formation was strongly lengthened when sporulation occurred at suboptimal 
temperature and pH. Furthermore, the effect of temperature and pH on growth ratios on the 
one hand, and on sporulation ratios on the other hand, were similar. Thus, a parallel might be 
drawn between the effect of temperature and pH on growth and sporulation processes. In 
addition, the sporulation kinetic model can be useful in HACCP procedures aimed at 
identifying steps where there is an unacceptable risk of highly heat resistant spore formation 
in food chain. This study aims at defining process parameters, and in particularly temperature, 
pH and time on spore formation to reduce that risk. 
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Abstract 
No reports are available on growth parameters for psychrotrophic clostridia so this research aimed to 
investigate the effect of different temperatures (from -1.5°C to 30°C) on lag time (λ; h) and growth 
rate(µ; h-1) of 12 psychrotrophic Clostridium strains isolated from spoiled and unspoiled meat samples 
and abattoir (10 C.gasigenes and 2 C.algidicarnis). For this, 1mL of each strain suspension 
(~104CFU/mL), was inoculated in 9mL of pre-reduced Reinforced Clostridial Broth (RCM, Oxoid) and 
incubated at -1.5, 2, 15, 20, 30°C, at anaerobic conditions. Growth was measured by increase of optical 
density (OD-600nm) at: 0, 6, 12, 24, 48, 72, 168 and 336h or until the stationary phase was reached. 
For each temperature growth data was fit to Baranyi and Roberts and modified Gompertz models 
(DMFit, v.2.0), obtaining λ, µ and ODmax. All the isolates grew at all tested temperatures, with 
exception of C.gasigenes strain C1I11EEXPKP no capable of growth at -1.5°C. Most of the isolates 
(58.3%) showed short lag time (2-4h) at -1.5 and 2°C (psychrotrophic profile). 25% of isolates 
demonstrated mesophilic character, with short adaptation periods (2-3.5h) at 30°C. Fifty % of the 
isolates did not show a good adaptation at 20°C (~40h of lag time), but when this barrier was 
overcome, growth was similar to the other conditions, while at 30°C lag time was shorter. 
C.algidicarnis (C2I5EXCHPKP), previously reported as the isolate with best blown ability, showed 
psychrotrophic profile, with short λ(1.74h), higher µ (0.16h-1) and maximum OD (0.71) at 2°C but 
slow growth at 30ºC, µ (0,03h-1). Nine from ten strains of C.gasigenes showed superior µ at 30°C and 
superior ODmax at 30 or 20°C. Baranyi & Roberts model showed Best performance (r2 from 0.92 to 
0.999). Abusive temperatures can accelerated growth of C.gasigenes strains, reducing lag time, 
however for C.algidicarnis 2°C was the best growth temperature. Effective barriers, other than 
temperature, are still needed for proper control.  
 
Keywords: psychrotrophic Clostridium, storage temperature, growth parameters 

Introduction 
“Blown pack” spoilage occurs in vacuum-packed meat through the generation of large 
amounts of CO2 and H2, after one month of storage. Until 2009, occasional episodes of 
‘blown pack’ in meat industry were associated with temperature abuse and due 
microorganisms such as Enterobacteriaceae and Lactic Acid Bacteria that caused economic 
losses for producers (Broda et al. 2009). Nowadays, psychrophilic Clostridia spp. such as 
C.estertheticum, C.gasigenes, C.algidicarnis, C.algidixylanolyticum and C.frigidicarnis 
(Adam et al. 2010), have been reported to cause “blown pack” spoilage of vacuum-packed 
meat stored at chilled temperature. So, it is too important the knowledge about variables or 
environmental conditions to inhibit the meat spoilage by psychrotrophic Clostridium. The 
growth of Clostridium strains could be affected by many factors, including storage 
temperature, heat shrinking and pH (Dong et al. 2007; Bell et al. 2001), but for Mckellar and 
Lu (2004), temperature is the most important parameter to be tested. However, there are no 
reports about growth parameters for psychrotrophic clostridia. 
For this purpose, Predictive Microbiology is a powerful tool that has been used through the 
last 30 years to predict microorganisms’ behavior (Nakashima et al. 2000). Primary 
parameters dependence on environment such as temperature, pH and water activity can be 
adjusted in secondary models to describe its dependence.  
This research aimed to predict the effect of different temperatures on growth parameters of 12 
psychrotrophic Clostridium strains (10 C.gasigenes and 2 C.algidicarnis) isolated from 
spoiled and unspoiled meat samples and abattoir (Silva et al. 2011). 
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Materials and Methods 
Test organisms and vegetative suspensions production 
Ten psychrotrophic Clostridium strains isolated from spoiled and unspoiled samples, 
genetically identified as C.gasigenes (8 isolates) and C.algidicarnis (2 isolates) and two from 
abattoir (C.agasigenes) (Silva et al., 2011), were inoculated in pre-reduced Reinforced 
Clostridial Broth (RCM, Oxoid) and incubated at 15°C/3 weeks in anaerobic conditions. For 
vegetative suspensions production, after incubation period, 1 mL of each strain suspension 
(~104UFC/mL, adjusted by Densimat, bioMérieux) was inoculated in 9 mL of pre-reduced 
RCM (triplicate) and incubated at each tested temperature. 

Curve fitting and growth parameters observation 
In order to measure the temperature effects, each triplicate of each strain was incubated at -
1.5; 2; 15; 20 and 30ºC, at anaerobic conditions. Growth was measured by increase of optical 
density (OD-600nm) at 0, 6, 12, 24, 48, 72, 168 and 336h or until microorganism had reached 
the stationary phase of the growth. Baranyi and Roberts model (Equations 1 and 2) and 
modified Gompertz (Equation 3 and 4), by DMFit v.2.0 program (Institute of Food Research, 
Norwich, UK) were used to fit the OD data for each temperature, obtaining λ(h); µ(h-1) and 
ODmax.  
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where: y(t) = maximum population (LogN/No), y0 = initial population (Log No), ymax = final 
population (Log N), µmax = maximum specific growth rate (h-1) and v is the rate of increase of 
the limiting substrate, generally assumed to be equal to µmax, q0 = a measure of physiological 
state of cell at t=0. 
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where: y = maximum population (log (N/N0); A = adjustment function; µm = maximum 
growth rate (h-1); λ = adaptation time (h), q0 = a measure of physiological state of cell at t=0 
and to µmax = maximum growth rate (h-1). 

Results and Discussion  
All the isolates grew at all tested temperatures, with exception of C.gasigenes, strain 
C1I11EEXPKP no capable of growth at -1.5°C (Figure 1a) and LMI13CA/EC, isolated from 
abattoir, that showed a mesophilic profile (Figure 1b). After OD measurement for each 
combination, a total of 60 growth curves of 12 psychrotrophic Clostridium strains were 
obtained. Baranyi model provided a good description of the data, and Baranyi function had 
better predictive capabilities (R2>0.92) than modified Gompertz (Table 1). This fact suggests 
that Gompertz function is a purely empirical function, used to predict both longer lag and 
shorter generation times compared with Baranyi function (Dong et al. 2007).  
Growth parameters change according to incubation temperature: most of the isolates (58.3%) 
showed short lag time (2-4h) at -1.5 and 2°C (psychrotrophic profile) (Table 1). On the other 
side, 25% of isolates demonstrated mesophilic character, with short adaptation periods (2-
3.5h) at 30°C. 
  

(1) 

(3) (4) 

(2) 
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Figure 1: Temperature effects on growth of C.gasigenes: a. isolated from exudate spoiled 

samples (C1I11EEXPKP) and b. isolated from abattoir - stuning room corridor, beef package 
conveyor belt (LMI13CA/EC). 

Table 1: Comparison between growth parameters for spoiled samples isolates and abattoir 
isolates, obtained by Baranyi and Gompertz models.  

Microorganisms 
 (h-1)  (h) Initial OD Final OD R2 

B* G** B G B G B G B G 
C.algidicarnis (C2I5EXCHPKP) –isolated from spoiled sample exudate 

- 1.5°C 0.0031 0.0039 2.9334 3.6264 0.0037 0.0037 0.0318 0.0316 0.9960 0.9907 
2°C 0.1558 0.1095 1.7367 1.6100 0.1368 0.1357 0.7088 0.7088 0.9922 0.9919 

15°C 0.0004 0.0005 n.d.m. 2.4076 0.0234 0.0235 0.0277 0.0279 0.9698 0.8667 
20°C 0.0065 0.0352 40.0652 46.468 0.0361 0.0363 0.2218 0.2214 0.9406 0.9405 
30°C 0.0320 0.0135 3.8391 n.d.m. 0.0327 0.0046 0.3492 0.3487 0.9354 0.9151 

C.gasigenes (C2I8EXCHPC) isolated from spoiled sample exudate  
- 1,5°C 0.0054 0.0059 5.8540 5.9671 0.0065 0.0069 0.0494 0.0496 0.9889 0.9841 

2°C 0.0006 0.0007 2.9956 2.9837 0.0166 0.0163 0.0292 0.0297 0.9565 0.9078 
15°C 0.0050 0.0049 10.2864 0.3518 0.0196 -0.017 0.4615 0.4689 0.9852 0.9832 
20°C 0.0145 0.0163 13.9259 14.672 0.0139 0.0186 0.6759 0.6849 0.9943 0.9912 
30°C 0.3692 0.1816 8.4294 8.4395 0.1035 0.1032 1.1282 1.1253 0.9894 0.9889 

Abattoir isolate from Hide 
C.gasigenes (LMI1C4°C) 

- 1.5°C 0.0135 0.0108 5.8075 5.9672 0.0061 0.0048 0.0872 0.0868 0.9999 0.9945 
2°C 0.0043 0.0050 2.1195 2.7598 0.0081 0.0077 0.0864 0.0890 0.9851 0.9694 

15°C 0.0088 0.0136 8.3447 8.5368 0.0106 0.0106 0.044 0.044 0.9921 0.9912 
20°C 0.0914 0.2917 24.7932 24.149 0.0292 0.0292 0.8091 0.8091 0.9987 0.9987 
30°C 0.1460 0.0964 8.5268 9.0167 0.0314 0.0294 0.7262 0.7041 0.9918 0.9828 

Where: ndm = no determined by models; *B: Baranyi  model; **G: Gompertz model 
 
Fifty percent of the isolates did not show a good adaptation at 20°C(~40h of lag time), but 
when this barrier was overcome, growth was similar to the other conditions, and at 30°C these 
isolates showed shorter lag time. There are no reports available at literature that could explain 
the maximum lag time at 20°C for psychrotrophic Clostridium. 
C.algidicarnis (C2I5EXCHPKP), previously reported as the isolate with best blown ability 
(Silva et al., 2010), showed psychrotrophic profile, with short λ(1.74h), higher µ(0.16h-1) and 
maximum OD(0.71) at 2°C but slow growth at 30ºC, µ (0.03h-1), however at -1.5°C growth 
was minimum (Figure 2). This fact suggests a strain completely adapted to lower 
temperatures and capable to promote ‘blown pack’ spoilage if present in meat stored at these 
temperatures for long periods of time. 
Nine from ten strains of C.gasigenes showed superior µ at 30°C and superior ODmax at 30 or 
20°C and both isolates obtained from abattoir (C.gasigenes) could growth at lower 
temperatures but the growth rate was reduced and the lag time, increased. This fact is so 
important because the abattoir could act as a source of psychrotrophic Clostridium strains, 
which could promote the ‘blown pack’ spoilage at meat storage at these conditions, however 

1a 1b 
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for these isolates, the reduced temperature effects were more effective for lag time extension 
and growth rate reduction. 

It is important to emphasize that temperature is the major factor determining the 
specific growth rate or lag time of microorganisms in chilled foods, however, in this research 
we observed that, for inhibition of psychrotrophic Clostridium growth, the use of temperature 
as the only barrier was not efficient, because these microorganisms are able to growth at <0ºC 
conditions and still cause ‘blown pack’ spoilage.  
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Figure 2: Temperature effects on growth of C.algidicarnis (C2I5EXCHPKP). 

Conclusions  
The temperature conditions tested in this paper just increased the lag time, but did not inhibit 
growth during the entire shelf life period. This research it is the first one to calculate growth 
parameters (λ and µ) under different temperature conditions for psychrotrophic clostridia, it 
provides an import tool for discussion on this subject. As temperature is not an effective 
barrier for control, there is a clear need for other factors such as heat shrink temperature 
and/or vacuum level increase, presence of growth inhibitors and improvement of hygienic 
conditions in abattoirs as well as combinations of these factors, to attain the microbiological 
stability of vacuum packed meat.  
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Abstract 
Current models for predictions the development of Listeria monocytogenes in cheese 
use growth rates from mainly (semi) soft cheeses. In previous cheese challenge 
studies (Colby, Swiss-type, Cheddar and Feta and young Gouda cheeses) growth of L. 
monocytogenes was not observed, and moreover, gradual inactivation after extended 
ripening times was observed. At NIZO, a microcheese model has been developed that 
allows for semi-automatic production of 500 semi-hard cheeses of 0.17 g from starter-
induced curds per day. This system was used to study the fate of L. monocytogenes in 
semi-hard Gouda cheese. Viable numbers of four individual L. monocytogenes strains 
that were inoculated into cheese milk were determined during curd formation and 
ripening up to 1 year at 12°C. In addition, pH, organic acid concentrations, NaCl 
concentrations and moisture content were monitored in time. The outcome of this 
study was compared with previous (semi)hard cheese studies and cheese model 
predictions. Upon whey separation, L. monocytogenes bacteria were retained in the 
curd, causing a concentration increase in the curd. No growth was observed in Gouda 
during the first 6 weeks and a decline in viable numbers was observed afterwards, 
which is in line with results of previous semi-hard cheese studies. Findings from the 
microcheese study (i.e. no growth of L. monocytogenes and data on pH, organic acid 
concentrations, NaCl concentrations and moisture content) corresponded very well 
with the outcomes of a previous 4.5 kg Gouda cheese study and with previous semi-
hard cheese studies. The microcheese model proved to be a very suitable challenge 
test system for the fate of pathogens in (semi)hard cheese and very useful to establish 
inactivation rates for semi-hard cheeses and validate quantitative microbiological risk 
models. 
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Abstract 
In this study, the interference in interaction between intrinsic and extrinsic parameters 
including nitrite, pH, salt, temperature and storage time on growth and toxigenesis of 
Clostridium botulinum type A, has been examined during three steps. In the first step,
sporogenesis of Clostridium botulinum type A was plated on Egg yolk Agar and spore count 
in one millilitre of suspension was obtained. In the second step, the turbidity time with 
inoculum level of 4×104 spore in each millilitre of BHI broth was examined within 32 days of 
storage (2,4,8,16,32) considering two level of pH(5.5,6.5), three different salt concentration 
(0.5,3,6)%, three different temperature (15,25,35)°C and finally usage of sodium nitrite  
treatment of 80ppm (or not using that, i.e. control treatment). In the third step toxigenesis was 
performed according to the USDA instruction and mouse bioassay. The results evaluated with 
completely randomized ANOVA, using SAS system, version 9, and indicated a significant 
statistical differences among different concentrations of salt, pH, temperature and sodium 
nitrite within turbidity times (p<0.0001). Usage of 6% salt, pH:5.5, temperature of 15°C and 
sodium nitrite(80ppm) and control treatment within 32 days of storage inhibit growth and 
toxigenesis of Clostridium botulinum type A with inoculum size level of 4×104 cfu/ml in 
contrast with salt (0.5,3)%, pH:6.5 and temperature (25,35)°C , pH 6.5, %3 salt, temperature 
25°C and sodium nitrite treatment had more inhibitory effect in comparison with pH:6.5, 
0.5% salt, temperature 35°C and control treatment. And finally in growth and toxigenesis of 
bacteria observed a substitute effect between 0.5% salt and sodium nitrite treatment compared 
to % 3 salt and control treatment. 
 
Key words: Clostridium botulinum type A, time to  turbidity, time to toxicity 

Introduction 
Clostridium botulinum is an anaerobic, gram positive, and spore forming rod. Four 
phenotypic groups exist in this species and type A of bacteria is located in group I 
(proteolytic). Based on antigenic specificity of the toxin production, seven types (A–G) of 
botulism recognized. Foodborne botulism is Fatal illness that caused by the consumption of 
contaminated foods containing neurotoxin. Its production is usually followed through 
germination, out growth of spores and vegetative forms and cell autolysis. 
Some outbreaks of this intoxication (type A) have been reported in all of the world by 
ingestion of various food. So using special tools controlling the growth and toxigenesis of 
bacteria in food seems necessary. In recent years, some challenge studies using inoculum 
pack studies initially used culture media, then in different food system, due to importance of 
food safety in public health. So, in this study, growth (visible turbidity) and toxigenesis of             
Clostridium botulinum type A was surveyed under independent and interference effect of 
intrinsic and extrinsic parameters such as salt, pH, sodium nitrite, temperature and storage 
time with the inoculum size level 4×104 cfu/ml in Brain Heart Infusion Broth media. 
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Material and methods 
The study was performed in three steps. In the first step sporogenesis of bacteria was 
determined, after three consecutive passages of lyophilized bacterium under anaerobic 
condition in BHI tubes, then surface cultured to Egg Yolk Agar plate was done. Sporogenesis 
started from 4th till 15th day, the maximum free spores were observed (more than %90) daily 
using of wet lam and malaschite green staining through video microscope. Then colonies in 
plates washed aseptically by sweeping method, and gathered with phosphate buffer gel dilutor 
and cold centrifuge 5000 – 10000 rpm/15'/4°C. At last spore count got in one mililiter of 
suspension. In the second step the multifactorial combination effect such as pH (5.5 and 6.5); 
salt (0.5 , 3 , 6 )% , temperature (15, 25, 35)°C, sodium nitrate (80 ppm) and storage time 
(2,4,8,16,32) days under anaerobic condition (usage of vaspar and Gaspack A in anaerobic 
Jar) with inoculum size level 4×104 cfu/ml were cultured into the BHI broth tubes and 144 
different biocondition (repeating twice) for the time of turbidity and toxigenesis were 
examined. In the third step; after centrifuging of the content of turbid tubes at 7000 
rpm/15'/4°C; their supernatants were transferred in two tubes. For one of them performed 
thermal treatment (100 ºC/10') and theother didn’t. Toxigenesis was done with United State 
Department of Agriculture (USDA) instruction and mouse bioassay. The mice that had 
received unheated samples, died within 6–24 hr after injection with sign of botulism. 
Statistical analysis with completely Randomized was done, ANOVA, In SAS, ver: 9. 

Result and discussion 
Growth and toxigenesis of Clostridium botulinum type A with inoculum size level 4×104 
cfu/ml, observed at different temperatures (25, 35)°C, salt concentrations (0.5, 3, 6)%, pH:6.5, 
sodium nitrite (80 ppm) and without sodium nitrite (control) within 32 days 2, 4, 8, 16, 32, 
(p<0.0001) (table 1, Fig1). Growth and toxigenesis in Fig1-a occurred in a shorter period of 
time in 35°C, 0.5% salt in comparison with 25°C and 3% salt. whereas no growth was 
observed in 15°C and 6% salt. It seems use of 6% salt leads to plasmolysis and a series 
metabolic events in bacterium, damage to cell membrane and reduction of its permeability 
that sensitize it to other medium condition and finally stopped the growth. Kiss et al. (1978) 
also observed the same result in different strains of Clostridium botulinum type A. Also the 
interference effect of pH and temperature indicated that the growth and toxigenesis in 35°C 
and pH:6.5 occurred in a shorter time in comparison with 25°C and  definite reduction of 
growth all temperatures at pH:5.5 was observed (Fig1-b). It seems that pH:5.5 has resulted in 
disturbing nutrient transportation in to the bacterium cell and reduction of enzyme reaction 
and consequently limited bacterial growth. In Whiting, (1993) study, temperature<20°C and 
pH<5.5 has considerably delayed the growth of bacterium. Also as the same as our study, 
Schaffner et al. (1998) found that the toxin formation decreased at lower temperature (15°C) 
and at pH further from the optimum. In Fig1-c the interaction of temperature (25, 35) °C with 
sodium nitrit (80ppm) and without it (control) has delayed growth and toxigenesis of 
bacterium. Also the interaction of salt and pH indicates definite effect of pH:5.5 on absence of 
growth in all concentration of salt, but in pH:6.5 growth and toxigenesis occurred in a shorter 
time with decreasing of salt from 3% to 0.5% (Fig 1-d). In Zhao et al. (2004), the best and the 
worst condition for growth and toxigenesis was reported in pH:6.5, salt 0.5% and pH:5.5, salt 
4%, respectively. In Fig 1-e interaction effect of pH:6.5, sodium nitrite and without it on 
growth and toxigenesis of Clostridium botulinum occurred, but the growth inhibitory effect of 
sodium nitrite in comparison with control group was better. Sodium nitrite has a protection 
against clostridial foodborne poisoning. Commack et al. (1999) reported that salt form of 
nitrite for commercial properties is more effective. In Fig 1-f and Fig1-g observed the same 
effect between sodium nitrite 80 ppm, 0.5% salt, and the control group with 3% salt. Also 
usage of sodium nitrite 80 ppm under different temperatures (25, 35)°C, salt (0.5, 3)%, pH:6.5 
on inhibition growth and toxigenesis of Clostridium botulinum is better more than control 
group. In pH:6.5, 3% salt, 25°C and sodium nitrite 80 ppm had more inhibitory effect in 
contrast with other groups (p<0.0001). In a number of studies it has been observed 
combinations inhibitory effect of preservatives like sodium nitrite, salt, acid and temperature 
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on growth and toxigenesis of Clostridium botulinum. Finally the time of storage on growth is 
effective in food safety and shelf life of food. In this study the interaction between time of 
storage and temperature was observed, and with rise of temperature from 25°C to 35°C, this 
duration was decreased. 

 
Fig 1. The interaction of temperature (D), Salt (%) and pH on growth and toxigenesis of       

Clostridium botulinum Type A in 32 days with inoculums size of 4×104 CFU/ml; a. 
Interaction of temperature (15, 25 and 30°C) and salt (0.5, 3 and 6%); b. Interaction of 

temperature (15, 25 and 30°C) and pH (5.5 and 6.5);   c. Interaction of temperature (15, 25 
and 30°C) and Sodium Nitrite (80ppm "N" and Control "BL");    d. interaction of salt (0.5, 3 

and 6%) and pH (5.5 and 6.5%); e. Interaction of pH (5.5 and 6.5) and Sodium Nitrite (80ppm 
"N" and Control "BL"); f. Interaction of salt (0.5, 3 and 6%) and Sodium Nitrite (80ppm "N" 

and Control "BL"); g. Interaction of temperature (25 and 35°C), salt (0.5 and 3%) and Sodium 
Nitrite (80ppm "N" and Control "BL"). 
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Table 1: Variance analysis of turbidty time, affected by salt, pH, sodium nitrite, temperature 
within 32 days with inoculum size 4×104 Clostridium botulinum. type A with ANOVA. 

Source DF Squares  Mean Squares 
Temp 2 1872.88 936.44 
Salt  2 2054.22 1027.11 
PH 1 3520.44 3520.44 

Temp ×  salt 4 1132.44 283.11 
Temp ×  PH 2 1872.88 936.44 

Temp ×  sodium nitrite 2 130.66 65.32 
salt ×  PH 2 2054.22 1027.11 

salt ×  sodium nitrite 2 24.70 124.00 
PH ×  sodium nitrite 1 196.00 196.00 
Temp ×  salt ×  PH 4 1132.44 283.11 

Temp ×  salt ×  sodium nitrite 4 165.33 41.23 
Temp ×  PH ×  sodium nitrite 2 130.66 65.33 
Salt ×  PH ×  sodium nitrite 2 248.00 124.00 

Temp×  salt ×  PH ×  sodium nitrite 4 165.33 41.33 
Error 108 0 0 

Corrected total 143 15119.55 - 

Conclusion 
In this study environmental conditions required to inhibit the growth of Clostridium 
botulinum need to be optimized. So salt 6%, 15°C, pH:5.5, with sodium nitrite 50 ppm have 
inhibited the growth and toxigenesis of bacteria. The longest turbidity time was achieved in 
25°C, pH:6.5, salt 3%, sodium nitrite 80 ppm and the shortest turbidity time was achieved at 
35°C, pH:6.5, salt 0.5%, and without use of sodium nitrite.  
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Sublethal heating of Cronobacter spp. followed by determination of 
individual lag times during recovery  

 Y. Xu,  JP Sutherland 
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University, 166-220 Holloway Road, London N7 8DB, UK 

Abstract 
Cronobacter spp. are increasingly regarded as emerging opportunistic pathogens and can 
infect all age groups.  They are ubiquitous in nature and, apart from their association with 
powdered infant formula, have been isolated from various foods, including salad, 
confectionery, cheese, water and cooked meat. The ability of some strains of Cronobacter to 
grow at 5.5oC makes these microorganisms particularly important in chilled foods. Heat 
treatment is a widely used preservation process to prolong lag phase of microorganisms in 
order to maintain safety and control spoilage.  However, consumers nowadays prefer milder 
heat processes and minimal use of preservatives, since such foods are perceived as more 
"healthy".  These demands may lead to a situation where ready-to-eat foods become 
potentially unsafe, as even a few pathogenic bacteria may initiate illness if they multiply in 
food to an infective level.  In order to model the potential for Cronobacter spp. to recover 
from mild heating during the shelf life, the thermal inactivation of Cronobacter spp. after 
sublethal heating (resulting in injury but not death) has been investigated. Three strains 
(Cr.sakazakii NCIMB5920, Cr. turicensis 1211 and Cr.turicensis 57) were heated at 48, 49 

and 50oC in nutrient broth using the method of Métris et al. (2008). The sublethal phases of 
the heat treatments were, for Cr. sakazakii NCIMB5920: 40 min at 48oC, 20 min at 49oC, 5 
min at 50oC; for Cr. turicensis 1211: 40 min at 48oC, 7 min at 49oC and for Cr.turicensis 
57:10 min at 48oC, 3.5min at 49oC. The 50oC temperature was lethal for Cr. turicensis.  
Compared with Cr.turicensis strains, Cr. sakazakii NCIMB5920 was more thermotolerant.   
Current research is using this information for studies to determine lag phase of individual 
cells of Cronobacter spp. using optical density measurements after the sublethal heating 
process. 
 
Key words: Cronobacter spp., sublethal heating, Individual lag times 
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Modelling the effect of sublethal injury on variability of individual 
lag times of Cronobacter turicensis cells compared with undamaged 
cells 

Y. Xu1, D. Stasinopoulos2, J.P. Sutherland1 
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Road, London N7 8DB, UK 
2Operational Research and Mathematics Research Centre, Faculty of Computing; London Metropolitan University, 
166-220 Holloway Road, London N7 8DB, UK 

Abstract 
Research on lag is of considerable importance to the food industry.  Traditional lag phase 
models are generally developed using a relatively high initial inoculum of bacteria.  However, 
in reality, foods are usually contaminated with low concentrations of pathogens.  Moreover, 
besides the previous history of the cells and current environment, lag phase depends also on 
inoculum size. Therefore, an approach based on individual cells is required to quantify 
variability of the lag phase. Cronobacter spp. are increasingly regarded as emerging 
opportunistic pathogens and are associated with illness among infants following consumption 
of powdered infant formula (PIF).  Immuno-compromised adults and the elderly are also at 
risk.  Apart from PIF, Cronobacter spp. can be recovered from foods such as cheese, 
vegetables and bread. Mildly-heated foods without preservatives are likely to gain popularity 
due to organoleptic superiority; however this may have implications for food safety, even in 
chilled products. This study aims to determine how sublethal heat stress affects subsequent 
duration of lag time of individual cells of Cronobacter turicensis using optical density (OD) 
measurements.  Single cells of Cr.turicensis were obtained by serial dilution in microtitre 
plates and the assumption made that there was only one cell in each well that could 
potentially grow after incubation.  A calibration curve will be prepared to determine cell 
concentration at the OD corresponding to the detection time.  The growth rate at 22oC under 
optimal conditions of pH and water activity was estimated using viable counts, followed by 
fitting data with DMFit software (J. Baranyi).  The distribution of individual lag times of heat 
damaged and healthy cells can thus be compared using detection times, indicating the shift of 
the distribution caused by heating. Work is in progress to obtain data which will be analysed 
using R for Windows to produce a predictive capability. 
 
Key words: Sublethal injury, individual lag times, Cronobacter turicensis 
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Effect of low inoculum size on the Listeria innocua lag phase at 
refrigeration temperatures. 

J. Aguirre, M. R. Rodríguez, M. Gañán, A. González, G. García De Fernando 

Depto. Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, UCM, Madrid 28040, Spain 

Abstract 
Microbial growth models usually give reliable information on specific growth rate; however, 
results for lag phase are less accurate probably due to our poor understanding of the 
physiological events taking place during adaptation of cells to new environments and other 
factors as stress kind, cell variability and the effect of the population size. The objective of this 
study was to determine the effect of low inoculum size on the Listeria innocua lag phase 
variability at refrigeration temperatures. This effect was investigated using Bioscreen C 
equipment. Detection times (time to reach 0.2 A480-520 units, around 107 cfu/ml) of different 
inoculum sizes (1-200 cells/well) in tryptic soy broth were estimated at 7ºC and 16ºC. Lag 
phases at 7ºC were much longer than at 16ºC. The inoculum size did affect the mean lag phases. 
Growth curves initiated with few cells showed longer lag times than those initiated with more 
cells. Nevertheless, the incubation temperature magnifies the inoculum size effect. At 16ºC, the 
effect was lost from 40 cells per sample, while the effect was still appreciable at ca. 100 cells 
per sample at 7ºC. Lag phase variability was more noticeable at the lowest temperature. 
Furthermore, the lower the inoculum was, the higher the standard deviation. On the other hand, 
the standard deviation continued decreasing, even when the average lag phase became 
stabilized. These facts indicate that variability depends on the inoculum size and the growth 
conditions. The more stressing growth conditions and the lower the inoculum are, the higher the 
variability. These results are relevant to predict lag times and calculate growth probability from 
low cell numbers, especially in quantitative microbiological risk assessment of food-borne 
pathogenic, which become dangerous at very low level.  
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Modelling the inhibitory effects of ZnCl2 on Saccharomyces 
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Abstract 
This survey examines the inhibitory effects of zinc chloride on Saccharomyces cerevisiae 
TOMC Y4, a yeast strain isolated from table olive packaging. For this purpose, yeast was first 
incubated in laboratory medium supplemented with different ZnCl2 concentrations (from 0 up 
to 200 mg/L) and monitored by means of optical density measurements in a Bioscreen C 
spectrophotometer. Fractional areas were used to obtain the NIC (susceptibility) and MIC 
(resistance) values of this microorganism to ZnCl2, which were 90±10 and 110±10 mg/L, 
respectively. Then, yeast was incubated in laboratory medium supplemented with four ZnCl2 
concentrations above MIC value (125, 250, 500 and 1000 mg/L) to determine if this 
compound only retained yeast growth, or, on the contrary, had killer effect. The four 
concentrations decreased the initial cell number (~106 cells/mL), but reduction was 
significantly different according to inhibition parameters obtained from a Weibull fit. In this 
way, the time for the first decimal reduction (Dβ) was 17.28±2.20, 13.36±1.74, 10.34±1.14 
and 6.14±0.25 hours for 125, 250, 500 and 1000 mg/L of ZnCl2, respectively. Thus, results 
obtained in this work open new alternatives to the application of ZnCl2 as a yeast preservative 
agent in diverse fermented vegetable packing (olives, cucumber, capers, etc.) where this 
microorganism is present.  
 
Keywords: Zinc chloride, Weibull model, fractional areas, table olives, preservative  

Introduction 
The use of zinc salts have been recently patented for its proved antifungal activity (Bautista 
Gallego et al. 2010). Zinc can be accumulated, mainly in aerobic conditions, in 
Saccharomyces cerevisiae cells and markedly influence its physiological status (Stehlik-
Tomas et al. 2004). Its presence in the continuous alcoholic fermentation reduced the size of 
flocks, increased the tolerance to alcohol and temperature, decreased the production of 
glycerol, and accumulated in the yeast dry matter (Zhao et al. 2009). Zinc addition (~ 4 mg/L) 
was convenient to produce maximum alcohol yield with S. cerevisiae 251 TP strain (Tosun 
and Ergun, 2007). Zinc oxide has also shown antimicrobial activity against pathogen 
microorganism such as Listeria monocytogenes, Salmonella enteriditis and Escherichia coli 
O157:H7 (Jin et al. 2009).  
Zinc is also used in food technology because forms green color complexes with chlorophyll 
derivatives, particularly at moderate high temperature. It has recently been applied to preserve 
the green color of pears, but the process required the application of heat to stabilize the final 
product colour (Ngo and Zhao, 2007). Moreover, zinc salts are currently included in the 
strategy designed by the UNICEF to combat the diarrhea in children in developing countries. 
The doses recommend ranges from 10 to 20 mg Zn per day (United Nations Childrens’ Fund, 
2004). The use of zinc acetate, chloride, citrate, gluconate, lactate, oxide, carbonate and 
sulphate is authorized in the European Union to fortify foods according to Directive 
2002/46/CE of the European Union. In the USA the same compounds are authorized for the 
same purpose and are considered as GRASS (Office of Dietary Supplements, 2011).  
The aim of this work was to study the inhibitory effects of ZnCl2 on S. cerevisiae TOMC Y4, 
a spoilage microorganism usually found in olive and other fermented vegetable packaging, to 
be used as a preservative agent during olive processing.  
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Materials and Methods 
The basal growth medium selected in this work for all experiments was Yeast-Malt-peptone-
glucose broth medium (YM, DifcoTM, Becton and Dickinson Company, Sparks, USA) 
supplemented with different ZnCl2 concentrations (from 0 up to 200 mg/L). Yeast growth was 
monitored by means of optical density measurements in a Bioscreen C automated 
spectrophotometer at 30ºC for 7 days, with an initial inoculums level of ~106 cells/mL.  
The basis of the technique used for estimating the non-inhibitory concentration (NIC) and 
minimum inhibitory concentration (MIC) of this strain to ZnCl2 was the comparison of the 
area under the OD/time curve of a positive control (absence of compound, optimal 
conditions) with the areas of the tests (presence of ZnCl2, increasing inhibitory conditions). 
As the amount of inhibitor in the well increases, the effect on the growth of the organism also 
increases. This effect on the growth is manifested by a reduction in the area under the 
OD/time curve relative to the positive control at any specified time. The areas under the 
OD/time curves were calculated by integration using OriginPro 7.5 software (OriginLab 
Corporation, Northampton, USA). The relative amount of growth for each ZnCl2 
concentration, denoted as the fractional area (fa), was obtained using the ratios of the test area 
(areatest) to that of the positive control (areacont), according to the following formula: 

fa = (areatest)/(areacont)                                                 (1) 
The plot of the fa versus ZnCl2 concentration produced a sigmoid-shape curve that could be 
well-fitted with the modified Gompertz function for decay (Lambert and Pearson, 2000), 
which has the following expression: 
 fa=A+C*exp[-exp(B(x-M)]                    (2)  
where, A is the lowest asymptote of fa (approximately zero), B is a slope parameter, C is the 
distance between the upper and lower asymptote (approximately 1) and M is the ZnCl2 
concentration of the inflexion point. These parameters were obtained by a non-linear 
regression procedure, minimizing the sum of squares of the difference between the 
experimental data and the fitted model, i.e., loss function (observed-predicted)2. The NIC and 
MIC values were later estimated as (Lambert and Pearson 2000): 
 NIC= M – (1.718/B)          MIC= M + (1/B)            (3) 
Then, in a second step, to determine if this compound only retained yeast growth or, on the 
contrary, had killer effect, four ZnCl2 concentrations above MIC value (125, 250, 500 and 
1000 mg/L) were assayed. In this case, the evolution of the initial population (~106 cells/mL) 
was followed by plate count on YM agar. A Weibull model (Van Booekel, 2002) was used to 
fit the reduction of the yeast population over time for the four ZnCl2 levels, which has the 
following expression: 
 Log10 Nt/N0= -(t/Dβ)β                                                  (4) 
where Nt is the number of cells at time (t), N0 is the initial inoculums level, Dβ is the time 
(hours) for the first decimal reduction and β is the shape of the inhibition curve. As in the 
previous case, both parameters were obtained by a non-linear regression procedure. 

Results and Discussion  
Figure 1 shows the fit of the fa of S. cerevisiae TOMC Y4 to increasing concentrations of 
ZnCl2.  The plot gave a typical sigmoid decay function. Clearly, the whole sigmoid-shaped 
curve could be divided into three sections: i) points corresponding to concentrations from zero 
up to the NIC (concentrations at which no effect of the inhibitor was observed and fa was 
around 1), ii) concentrations between NIC and MIC (within which growth inhibition 
progressively occurred and the fa decreased), and iii) a third section above MIC (where no 
growth relative to the control was recorded and fa was around 0).  
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Figure 1: Fractional areas (fa) of S. cerevisiae TOMC Y4 as a function of ZnCl2 
concentration. 

NIC value, which shows the susceptibility of this yeast strain to ZnCl2, was 90±10 mg/L, 
while the MIC value, related to the resistance, was 110±10 mg/L. Thus, the range where this 
compound showed its inhibitory effect was very narrow (only 20 mg/L). Above, MIC value, 
and as it can be easily deduced from Figure 2, this chloride salt reduced the number of viable 
cells of S. cerevisiae TOMC Y4. However, the death rate was different according to ZnCl2 
concentration.  
 

 

 

 

 

 

 

 

 

Figure 2: Weibull’s fit for the four ZnCl2 concentration assayed in this work above MIC 
value.  

In this way, the time for the first decimal reduction (90% of death cells with respect to the 
initial inoculums) were 17.28±2.20 h, 13.36±1.74, 10.34±1.14 and 6.14±0.25 hours for 125, 
250, 500 and 1000 mg/L of ZnCl2, respectively. According to these data, when the 
concentration of ZnCl2 increased, cells were killed faster. 
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Conclusions  
Results obtained in this work open new alternatives to the application of ZnCl2 as an anti-
fungi preservative agent in diverse fermented vegetable packaging where these 
microorganisms can produce spoilage.  
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Abstract 
Listeria monocytogenes is a well known foodborne pathogenic bacteria which has the ability 
to grow on a wide range of environmental conditions enabling its persistence in food 
processing industry despite the use of cold chain procedures. Predictive microbiology 
approaches enable microbial behaviour simulation as a function of physico-chemical 
environmental parameters which, via already existing tools, allows L. monocytogenes growth 
simulation in food. The aim of this study was to define a gamma function parameter (based on 
Zwietering model) taking into account the impact of food texture on L. monocytogenes 
growth.  L. monocytogenes growth has been evaluated in continuous fibrous gels (enriched 
BHI with k-carrageenan) and globular gels (enriched BHI with caseinate) at 8, 15 and 25°. To 
study the impact of textural properties, mass inoculation of 4 CFU/g was performed. Gel 
texture, determined by elastic modulus measurements (G’), was ranging between 0,01 Pa 
(liquid gels) and 40.000 Pa (solid gels). For each condition, maximal population (Nmax), and 
maximal growth rate (µmax) were determined. Maximal population and growth rates highly 
depend on incubation temperature and textural properties. Evaluation of the optimal growth 
rate (µopt) was determined with the use of Sym’Previus software which allows comparison of 
the impact of different texturing agents on bacterial growth without considering the impact of 
temperature incubation on gel texture. Similarly to Minimal Inhibitory Concentration 
estimated by inhibitory models (Rosso, 1995), this work proposes the determination of 
minimal inhibitory gel texture (MIG) and gamma functions related to each studied texturing 
agents. Various impacts of texture were observed and simulated between continuous 
carrageenan-based network and globular gel matrix related to growth inhibition of  L. 
monocytogenes in food models. 
 
Keywords: Listeria monocytogenes, texture, growth rate, growth inhibition 
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Abstract 
Microbial growth is influenced by the structure of the environment. Contrary to liquid, 
movement in structured media is confined and transport of substrates to and metabolites away 
from the cell is limited. Literature suggests that (1) the growth domain of bacteria is confined 
by this structure-induced stress (Antwi et al. 2006, Brocklehurst et al. 1997 and Wilson et al. 
2002), or (2) a solid(like) environment can enhance survival/growth (Mertens et al. 2010). 
In this research, the effect of a solid (like) environment on the dynamics of Escherichia coli 
K12 at temperatures close to Tmax is studied. Previous research revealed that the dynamics of 
E. coli at these temperatures was disturbed which could be explained by the co-existence of 
two subpopulations (Van Derlinden et al. 2010). To elucidate the effect of structure on the 
dynamics of E. coli at super optimal conditions, static experiments were performed in BHI, 
structured with xanthan gum, in parallel with experiments in liquid BHI. Hereto, 
spectrophotometer tubes, filled with liquid or structured medium were simultaneously placed 
in a temperature controlled water bath. At regular times, a tube was removed and cell density 
was determined via plate counting. Temperature was put at 45, 45.7, 46 and 46.5°C. 
For all temperatures, sigmoid growth curves are observed. In comparison to Van Derlinden et 
al. (2010) however, the growth curves do not indicate the presence of subpopulations. A first 
feasible explanation is the possibly lower oxygen concentration in spectrophotometer tubes 
versus test tubes (as used in Van Derlinden et al. 2010). At super optimal temperatures, 
oxygen generates reactive oxygen species (ROS) which have a negative effect on growth 
kinetics. Possibly, the reduction in stress, i.e., reduced ROS, results in continuous growth 
instead of the stress-induced behaviour as seen in Van Derlinden et al. (2010). Another or 
additional factor that can explain the difference in the observed growth behaviour is a change 
in the composition of the BHI-medium. The BHI used for the current experiments uses 
porcine brain instead of bovine brain for the BHI used in the experiments of Van Derlinden et 
al. (2010).  
The results show a minimal difference between growth in liquid and in structured medium. As 
there is less oxygen in the headspace of the spectrophotometer tubes, the oxygen 
concentration of the liquid might resemble the concentration in the diffusion-limited 
structured medium. Equally low concentrations of ROS in liquid and in structured media may 
lead to a similar stress response and consequently similar growth behaviour. 
 
Keywords: structured food model system, Tmax, oxygen stress, heat stress, subpopulations 

Introduction 
Next to the chemical and physical composition of food, the behaviour of microorganisms is 
also affected by the food structure. Effects of food structure are mostly related to the reduced 
mobility of the microorganisms and the distribution of water, nutrients and metabolites 
(Wilson et al. 2002). In structured media, cells do not grow planktonically but as colonies on 
or in the medium. As the colony grows, the cells in the inner part of the colony experience a 
reduced supply of substrates and oxygen and an increased local concentration of metabolites. 
In contrary, the cells at the outside of the colony have free access to substrate and can dispose 
their metabolites faster. As a result, a metabolite and nutrient gradient exists over the cell, 
causing stress to the cells at the inner of the colony (Wimpenny 1992). In literature some 
suggest that structure stress results in a lower growth rate or a smaller growth domain (e.g., 
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Antwi et al. 2006, Brocklehurst et al. 1997 and Wilson et al. 2002). On the other hand, 
growth promoting effects of structure were observed by Mertens et al. (2010). 
When investigating the dynamics of E. coli K12 MG 1655 at temperatures close to Tmax (45-
46.5ºC), Van Derlinden et al. (2010) observed non-sigmoid growth curves, i.e., a sequence of 
growth, inactivation and re-growth. A possible explanation for this behaviour is the co-
existence of two subpopulations: a heat sensitive subpopulation that inactivates after a short 
growth period co-exists with a heat resistant subpopulation that keeps growing (Van 
Derlinden et al. 2010).  
The objective of this research is to investigate whether the same disturbed growth behaviour 
as seen in Van Derlinden et al. (2010) is observed in structured systems at temperatures close 
to Tmax. The differences in growth behaviour in liquid and structured media are studied by the 
use of a xanthan-based food model system. 

Materials and Methods 
Experiments are performed with an E. coli K12 MG 1655 stock culture obtained from the 
Genetic Stock Centrum, University of Yale.  In a first culture step, a loop of the stock culture 
was transferred in an Erlenmeyer containing 20mL of BHI medium (Oxoid, Basingstoke, 
UK). After 9h at 37ºC, 20µL was transferred to a second Erlenmeyer with 20mL BHI medium 
which was placed for 15h at 37ºC. 
Structured medium was obtained by adding 1.5g xanthan gum per 100mL of BHI. The 
structured medium was stirred for 30min and afterwards centrifuged for 30min at 4000rpm.  
Spectrophotometer tubes were filled with 1mL of inoculated medium and placed in a 
temperature controlled water bath (GR 150 S12; Grant, Shepreth, UK). At regular times, one 
tube with structured and one with liquid medium were removed. After making the proper 
dilution in liquid BHI medium, samples were plated on agar plates (BHI and 14g/L agar 
(Oxoid, Basingstoke, UK)). Plates were kept for at least 18h at 37ºC before counting. 

Results and Discussion  
The difference in dynamics of E. coli when cultured in liquid BHI versus structured BHI was 
studied at 45ºC; 45.7ºC; 46ºC and 46.5ºC. Generally, sigmoidal curves are observed for all 
temperatures and for both liquid and structured systems. Figure 1 shows the data of all 
experiments. It is clear that the overall growth rate is similar for liquid and structured systems. 
As can be expected, the growth rate decreases with increasing temperature.  

 

Figure 1: Dynamics of E. coli K12 MG 1655 in liquid (open symbols) and solid (filled 
symbols) BHI medium at 45ºC (□), 45.7ºC (○), 46ºC (<) and 46.5ºC (>). 

Liquid systems: sigmoid growth curve 
As the experiments are performed at super optimal temperatures, for liquid systems, growth 
behaviour similar to that observed in Van Derlinden et al. (2010) is expected. However, the 
presented data show a sigmoidal growth curve. The growth rate decreases with increasing 
temperature. As time proceeds, the experimental variability increases, i.e., data are more 
scattered near the end of the experiment. In addition, data points collected at later times 
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(>10h, data shown in Figure 2), indicate that at all temperatures a stationary phase of about 18 
to 20ln (CFU/ml) is reached.  
A possible explanation for this unexpected difference in behaviour is the effect of oxygen. In 
literature (Bai et al. 2003, Steels et al. 1994), it is suggested that heat stress is accompanied 
by oxidative stress under aerobic conditions. Oxidative stress is the result of an imbalance 
between generation and elimination of reactive oxygen species (ROS) which are toxic to 
micro-organisms (Scandalios 2002). In the present study, experiments are performed in 
spectrophotometer tubes (sealed tubes with screw) for which the oxygen to medium ratio is 
smaller than in test tubes as the headspace in test tubes is approximately four times bigger 
than that in spectrophotometer tubes. During growth, E. coli consumes oxygen, such that the 
concentration above the medium decreases. Possibly, this will lead to oxygen depletion being 
faster in the spectrophotometer tubes than in the test tubes. As the oxygen in the headspace 
and the oxygen in the medium are in equilibrium (via diffusion mechanisms), it is possible 
that the oxygen concentration in the spectrophotometer tubes is lower than in the test tubes. 
As such, a lower concentration of oxygen will reduce the reactive oxygen concentration and 
so the total stress level, resulting in growth dynamics more similar to dynamics observed at 
lower, less stressing temperatures. 
Alternatively, small changes in BHI composition might explain for the differences in 
dynamics. In a personal communication, Oxoid, the supplier of the BHI, reported a change in 
BHI product since May 2009 (calfe brain infusion solids were replaced by porc brain infusion 
solids). Experiments at non-stressing temperatures do not reveal any influence of the change 
in components on the growth behaviour (data not shown). However, throughout literature, 
studies can be found that report on the effect of small medium composition differences under 
stress conditions (De Spiegeleer et al. 2004, Oteiza et al. 2003). As such, the change in 
composition might evoke a different stress response, leading to a sigmoidal growth curve 
instead of the disturbed growth behaviour. 

Liquid versus solid 
Figure 2 shows that experimental data obtained from liquid and solid systems coincide, 
indicating that the influence of the structure of the environment on the growth of E. coli is 
limited. Although the structured medium causes the bacteria to grow in colonies, diffusion 
limitations are not restricting the growth rate of E. coli. This can be explained by the fact that 
xanthan gum is a weak gel. In this structured medium, it is possible that the diffusion of 
nutrients and oxygen is fast enough to fulfil the needs of the growing bacteria. As such, 
conditions in liquid and solid might be very similar. The removal of metabolites seems to go 
sufficiently fast so no negative effect of accumulation of metabolites in the centre of the 
colonies is observed.  

Conclusions  
The objective of this research is to further elucidate the growth behaviour in structured media 
at super optimal temperatures. For liquid media the experimental data show a sigmoid growth 
curve for E. coli K12 grown at temperatures close to Tmax, which is in contrast to the disturbed 
growth behaviour observed by Van Derlinden et al. (2010). Possible explanations are the 
change in oxygen in the headspace and the composition of the BHI-medium. Contrary to what 
is mentioned in literature for structured media, the presented data show that growth in 
structured food model systems is similar to that in liquid systems. To further evaluate this 
hypothesis, it would be of interest to compare the behaviour in liquid and in gelified systems 
at more severe conditions, e.g., low pH. In parallel, a profound study on the influence of 
medium composition can reveal if this can explain for the differences with experiments 
performed in 2010. In addition, a quantitative analysis of the data will be performed. 
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Figure 2: Dynamics of E. coli K12 MG 1655 in liquid (open symbols) and solid (filled 

symbols) BHI medium at a) 45ºC, b) 45.7ºC, c) 46ºC and d) 46.5ºC. 
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Abstract 
Regarding  to  increasing  interest  in  use  of  natural  preservatives, in this  study effects of 
Rhus coriaria L. essential oil, pH and temperature on  the  probability of growth  of  E.coli, 
that is important pathogen in  food safety, were evaluated. So  combined  effects  of  four  
different  concentration of Rhus coriaria L. essential oil , ( 0 , 0.0062 , 0.0125 , 0.025 , 
0.05%) with  three  level  of  pH (5.5 , 6 , 7)  and  three  incubation  temperature ( 20 , 25 , 35  
C)  on the  probability of  E.coli  growth  in Brain Heart Infusion broth  model  were 
evaluated. Based  on  turbidity  in  broth  model , growth  of  bacteria  was  recorded  up  to 
48  hours by BioscreenC® and probability  of  growth  was  calculated. Then effects of 
different factors were studied and mathematical model was developed. According to the 
results, different values of essential oil had significant effects on the probability of growth 
(P<0.05). As the concentration of essential oil increased the probability of growth of bacteria 
was decreased. Also other growth factors like pH , temperature  and  storage  time  had   
significant  effects  on  the  probability of growth (P<0.05). So that by increasing them growth 
probability was increased. Stepwise multiple regressions were used for selection of a 
predictive mathematical model. In the obtained mathematical model, determination 
coefficient (R2) was 0.842 which shows good correlation between predicted and expected 
values in the study. So we can use this model to predict growth probability of E.coli under the 
effects of these factors. 
 
Keywords: Modelling, Rhus coriaria L., essential oil, E.coli 

Introduction 
In recent years, developments of mathematical models to predict the growth of bacteria in 
food systems have been expanded. Predictive microbiology is an essential element of modern 
food microbiology and offers to provide a scientific foundation to meet the ongoing needs of 
food safety (Mc MeMeekin and Ross 2002). However there are few works for modelling the 
effects of plant extracts and essential oils in combination with other factors on the growth 
kinetics of bacteria.  
Because of negative consumer reactions to traditional preservatives, substitution of chemical 
and artificial food preservatives by natural ones is a growing interest in food safety (Tassou et 
al. 2000). One of these natural preservative is plant essential oils. Plant essential oils are 
aromatic oily liquid obtained from plant material (Valero and Salmeron, 2003; Burt, 2004).  
Rhus coriaria L. that called Sumac in Iran is a plant that wildly grows in Iran. The name is 
derived from ‘‘sumaga’’, meaning red. In folk medicine, it is used for treatment of 
indigestion, anorexia, diarrhea, hemorrhagia and hyperglycemia.  This plant has been used 
traditionally as flavor agent in variety of food in Iran. Few studies have been done which 
shows the antimicrobial effect of this plant. It seems that more studies are needed to establish 
such an effect (Nasar-Abbas and Kadir Halkman 2004). 
To establish the usefulness of natural antimicrobial preservatives, they must be evaluated 
alone and in combination with other preservation to determine whether there are synergistic 
effects (Lopez-Malo et al. 1998). 
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E. coli is the important member of Enterobacteriaceae family, which are facultative 
anaerobic Gram-negative rods that live in the intestinal tracts of animals and can easily 
contaminate food. E. coli are among the most important bacteria in medicine and food 
hygiene. 
Therefore, the present study was done to evaluate the effects of Rhus coriaria L. essential oil, 
temperature and pH on the growth of E.coli that is an important pathogen in food safety, in 
Brain Heart Infusion broth. We also attempted to generate predictive models for the growth of 
E.coli under the effects of these factors. 

Materials and Methods 
Rhus coriaria L. purchased from Tehran city local markets and essential oil was extracted by 
steam distillation method. Lyophilized cultures of E.coli obtained from scientific and 
industrial organization of Iran were used in this study. The lyophilized cultures were grown in 
tubes containing of Brain Heart Infusion (BHI) broth at least twice at 35°C for 18 hours and 
used for experiments. E.coli inocula were prepared by transferring cells from second cultures 
to tubes of BHI broth for each experiment.  After incubation at 35°C for 18 hours and 
preparing serial dilutions of E.coli broth cultures, optical density (OD) of each tube were 
measured by BioscreenC®. Then, the number of cells in the each tube was estimated by 
duplicate plating from the serial dilutions on BHI agar and counting the colonies after 24 
hours incubation at 35°C and the tube contains 107 cfu ml-1 bacteria used to preparing 105cfu 
ml-1 concentration of bacteria for the experiments (Basti and Razivilar 2004). 
BHI powder (3.7 g) was dissolved in 90 ml distilled water in a 250 ml screw capped flask by 
mild heating. Then, different concentration of Rhus coriaria L. essential oil, (0 , 0.0062 , 
0.0125 , 0.025 , 0.05%)  was added in different amounts to satisfy the experimental design. 
Three levels of pH (5.5 , 6 , 7) for all different concentration of Rhus coriaria L. essential oil, 
were adjusted by adding acetic acid (Basti et al. 2007). 
 Different combinations of essential oil and pH were prepared by adding 50µlit of 105 cfu ml-1 
concentration of bacteria to 350µlit of different essential oil and pH adjusted media in 
BioscreenC® microplates. After that, microplates were incubated in three incubation 
temperature (20 , 25 , 35°C)  for 48 hours and the ODs of each microwell were measured 
every 30 minutes by BioscreenC®. Growth of bacteria was recorded based on turbidity in 
broth. Stepwise multiple regressions with data transformations were used for selection of a 
predictive mathematical model. 

Results and Discussion  
According to the results of ANOVAs, the ODs were affected significantly (P<0.05) by 
essential oil, pH, temperature and their two and three way interactions. That means different 
concentration of Rhus coriaria L. essential oil had significant effects on the growth of 
bacteria. As the concentration of essential oil increased, the probability of growth of bacteria 
was decreased.  
Also other growth factors like pH , temperature  and  storage  time  had   significant  effects  
on  the  probability of growth (p<0.05). So that by increasing them growth probability was 
increased. 
The regression equation for the effects of essential oil (EO), temperature (T), pH and time 
(M) was obtained as: 
 
OD = 1.097 + (0.0001 T  pH  M) + (0.0001  T  M) – (0.0001  EO  T) + (0.0001  pH  
T) – (0.001  M) + (5.691  EO) – (0.187  T  EO) – (26.231/T)  – 0.899 T1/2   0.004 M1/2   
– 0.155 EO1/2  + (0. 007 EO  pH  M) – (0.122 pH2) + (1.29  pH)  + (0.009 T  pH) (1) 
 
In this mathematical model, determination coefficient (R2) was 0.842 which shows good 
correlation between predicted and expected values in the study. According to our results the 
inhibitory action of the Rhus coriaria L. essential oil on the organism growth was enhanced 
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by decreasing the pH value at each defined temperature. This can be attributed either to the 
direct effect of pH or to the better dissolving of the essential oil in the lipid phase of the 
bacterial membrane at the low pH (Koutsoumanis et al. 1999). The amount of essential oil 
needed to exert antimicrobial activity is often higher than the amount usually used as 
flavoring and is associated with adverse sensorial effects (Bagamboula et al. 2004). It is 
recommended to apply essential oils as part of a hurdle system and to use them as 
antimicrobial components along with other preservation techniques e.g. in combination with 
reduced temperature and pH (Tassou et al. 2000), thus enabling to decrease their 
concentrations and minimizing adverse sensorial effects. Evidently more studies are needed 
on the antimicrobial properties of essential oils, before they can be used as food preservatives 
(Bagamboula et al. 2004). 
It is evident, from the magnitude of the values of obtained (R2), as well as the good agreement 
between the predicted and observed values of OD, that the model, provide a high degree of 
accuracy of prediction against observed data (Davey and Daughtry, 1995;  Oscar, 1999). 
From these models the values of predicted ODs can be calculated from any combinations of 
essential oil, pH and incubation time within the limits studied. Such models offer a cost-
effective approach to understanding and controlling microbial growth response in foods (Basti 
and Razavilar 2004). So we can use this model to predict growth probability of E.coli under 
the effects of these factors in broth. 
Mathematical models for predicting the growth of pathogens in food are usually developed in 
broth because enumeration of pathogens in food is difficult (McClure et al. 1994). However, 
models developed in laboratory media do not provide reliable predictions of bacterial growth 
in real food environment. The effect of Rhus coriaria L.essential oil may be reduced in foods 
as compared with pure cultures. The fat, protein, water and salt contents of food improve 
microbial resistance as it has been observed that higher levels of spices are necessary to 
inhibit growth in food than in culture media (Nasar-Abbas and Kadir Halkman 2004). Thus, 
we need to develop this type of models for the growth of pathogenic bacteria in real food.  

Conclusions  
The results obtained in this study showed significant effects of Rhus coriaria L. essential oil, 
pH, temperature and a number of interactions including on the growth of E.coli.  
The (R2) values of the models obtained in our study showed a high degree of goodness-of-fit 
between the models and data. These become obvious also from the comparisons of predicted 
and observed.  
Considering the importance of E.coli in food safety and the power of predicting models, we 
suggest that this kind of models can be used as a prediction tool in food safety. 
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Abstract 
Microbial risk derived from consumption of minimally processed vegetables is a serious 
concern for industry and governments. Escherichia coli O157:H7 is a food-borne pathogen 
which has been recently linked to several outbreaks associated with the consumptions of 
minimally processed vegetables. This pathogen can contaminate produces at harvest, and 
then, survive and/or grow during manufacturing, distribution, and storage, reaching the end 
consumer. The present work aims to study and model the potential growth of E. coli O157:H7 
in extract of different leafy vegetables at different storage temperatures. A cocktail including 
five E. coli O157:H7 strains resistant to nalidixic acid (NalR+) was built. Sterile extract from 
different leafy vegetables (iceberg lettuce, chard, spinach, parsley and romaine lettuce) was 
supplemented with nalidixic acid (50 μg/mL) and inoculated by the NalR+ pathogen cocktail 
(≈ 106 cfu/mL) in micro-plates (10x10 wells) and then incubated at different temperatures (4, 
8, 10, 13, 16, and 20°C). The growth was monitored by absorbance measurement (8 
replicates) by using Bioscreen C. Based on the observed absorbance data in the growth 
exponential phase, maximum growth rates and secondary models were estimated by using 
Excel Microsoft ®. Results indicated that the pathogen was able to grow in all assayed 
vegetable extracts. However, at 8°C, growth was only observed for parsley and chard. The 
fastest growth was obtained in chard extract (e.g. 0.26 h-1 at 20 °C), followed by spinach (e.g. 
0.12 h-1 at 20 °C). The slowest growth was obtained in parsley extract (e.g., 0.012 h-1 at 
20°C), although, in this extract, the microorganisms was able to grow at 8 °C (0.001 h-

1). Finally, estimated maximum grow rates were used to derive a secondary model describing 
maximum growth rate as a function of temperature. The Ratkowsky´s model showed better 
convergence to observed data. The best fitting was obtained for spinach and chard extracts 
(R2>0.85). Furthermore, the study provides evidence that compounds contained in vegetable 
tissues can result in a distinct growth niche producing different response in various types of 
vegetables.  
 
Keywords: vegetables, Escherichia coli O157:H7, growth modeling, chard, parsley, spinach 

Introduction 
In recent years, consumer trends have shifted focus to healthier diets, increasing demand for 
natural products (or processed, that at least appear, such as salads RTE), especially leafy raw 
vegetables. This type of product can become contaminated by foodborne pathogens such as 
Escherichia coli O157:H7 and Listeria monocytogenes (Gleeson and O`Beirne 2005) at 
various stages of the food chain from “farm to table”. However, no heat treatment or other 
inactivation method is applied which can guarantee a complete elimination of pathogenic 
microorganisms when presented in products. Hence, the incidence of illnesses transmitted by 
vegetables has been increasing as a result of these changes in consumption habits. 
  
E. coli O157:H7 has been linked to outbreaks of various leafy vegetables such as lettuce, 
spinach, parsley, etc. (EFSA 2009). Therefore, the aim of this study was to study and model 
the potential growth of E. coli O157: H7 in different leafy vegetables, which have not been 
studied extensively by the scientific literature so far.  In addition, the work looks to give more 
information based on predictive microbiology and expanding the tools available that will 
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enable us to assess the microbiological risks more effectively and to implement corrective 
action from the knowledge of the behavior of this pathogen. 

Materials and Methods 
Growth medium 
Sterile vegetable extracts were used to simulate growth of the pathogen in leafy vegetable 
matrices.  To obtain the extract, first different vegetables (chard, spinach, parsley, iceberg and 
romaine lettuce) were homogenized in distilled water with a proportion 1:3 (vegetable/water) 
by using Stomacher.  Then, generated extracts were sterilized by filtration through a step-by-
0.22 micron membrane (Millipore filter unit-Express Plus PES). Extracts of each vegetable 
were plated to confirm sterility. 

Bacterial strains and inoculum preparation 
A cocktail of five strains of Escherichia coli O157: H7 (CECT 4076, 4267, 4782, 4783 and 
5947) was used in this study. Cocktail trains were previously made resistant at 50 μg/mL of 
Nalidixic acid (NaL) (Merck, Darmstadt, Germany) (Allende et al. 2008).  Prior to growth 
experiments, cultures were grown in Tryptic Soy Broth (TSB) at 37 ° C for 18-20 h in three 
incubation loops, and then mixed at equal volumes of cell suspensions to give approximately 
equal populations of each culture. Then, the cocktail was washed three times by 
centrifugation (4100 g)  and  suspended in phosphate buffer (PBS) obtaining an inoculum 
level of 108 cfu/mL, approximately. Counts were obtained by growth on McConkey-Sorbitol, 
MCS agar and on Tryptone Bile X-Glucuronide Medium, TBX agar (Oxoid, UK) 
supplemented with Nal (50 μg/mL).  

Inoculation procedure and assessment of growth  
The Bioscreen C (Labsystems, Finland) was used to monitor bacterial growth based on 
absorbance measures at 420-580 nm.  A cocktail of E. coli O157: H7 previously washed and 
resuspended in PBS was diluted 1:100 in vegetable extracts supplemented with NaL (50 
μg/mL) obtaining a concentration of 106 cfu/mL, approximately.  Micro-plates (10x10 wells) 
belonging to Bioscreen C were utilized to perform the growth experiment. Each well was 
filled with 300 μl of inoculated vegetable extracts with a total of eight replicates and two 
blanks per extract. The plates were incubated at different temperatures (4, 8, 10, 13, 16 and 20 
°C) during a period of 21 days. At high temperatures (13, 16 and 20 °C), growth was 
monitored continuously by Bioscreen C, while at lower temperatures, absorbance 
measurements were made at specific time points during experiments (8 and 10 °C).  Growth 
observed in wells was confirmed by plating an extract aliquot on MCS agar supplemented 
with NaL. 

Growth modelling 
Maximum growth rates were estimated based on the observed absorbance data (log) in the 
growth exponential phase by using Excel Microsoft ®. Secondary models were fitted to 
maximum rates using the DMFit program (Excel Add-In) (Baranyi and Roberts 1994).  
 

Results and Discussion  
Growth was not detected in romaine and iceberg vegetable extracts at all temperatures. 
However, parsley, spinach and chard presented a significant increase of absorbance for all 
temperatures except for 4 ºC at which no growth was detected in all extracts. Chard extract 
did not support E. coli O157: H7 growth at 8 ºC. Likewise for assays at 10 ºC in the same 
extract, only few replicates presented a significant increase of absorbance, within the linearity 
range (>0.074); although growth data was not enough to appropriately estimate the maximum 
growth rate.  E. coli O157:H7 in spinach at 8 ºC showed a digenetic behavior, in which 8 out 
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of 4 wells presented a significant growth.  To model growth in chard extract, temperatures 8 
and 10 ºC were discarded, while for spinach only positive replicates at 8 ºC were considered. 

Overall, the pathogen presented different growth patterns in the different vegetable extracts. 
The fastest growth was obtained in chard extract (0.26 h-1 at 20 °C), followed by spinach 
(0.12 h-1 at 20 °C). In turn, the slowest growth was observed in parsley extract (0.012 h-1 at 20 
°C); although in this extract the microorganism was able to grow at 8 °C (0.001 h-1). There are 
few studies in scientific literature dealing with these food matrices and E. coli O157:H7 
growth.  Growth rates observed, in our study, at refrigeration temperatures (8-13 °C) were 
low when compared to other studies (Valero et al. 2010).  For instance, Koseki and Isobe 
(2005) reported a growth rate of 0.03 (h-1) for E. coli O157:H7 in lettuce at 10 ºC, while in 
our study, at this temperature,  the growth rate oscillated between 0.002 and 0.004 h-1.  
Similarly, Rowaida and Josepth (2010) found higher growth of E. coli O157:H7 in damaged 
spinach stored for 3 days at 8 and 12ºC with increases of 1.18 and 2.08 log cfu/g, 
respectively. By contrary, at high temperatures (20 ºC), growth rates were quite similar to 
those reported by other studies. For instance, the study by  Koseki and Isobe (2005) showed a 
maximum growth rate of 0.26 h-1 in lettuce leaves stored at 20 ºC which was equal to the 
value obtained in our study for chard extract at the same temperature (i.e. 0.26 h-1). 
 
Surprisingly, romaine and iceberg lettuce did not present any growth during 21 days. This 
result is not in concordance with that reported by most studies which demonstrate a 
significant growth in the temperature range 10-25 ºC (Koseki and Isobe 2002).  However, 
these studies were mostly performed on inoculated vegetable surfaces, and not in aqueous 
extracts of vegetable, which contain a complex and concentrated mixture of substances 
released from vegetable tissues (peptides, phenols, fiber, enzymes, etc.). Regarding this, the 
study Rowaida and Josepth (2010) found that E. coli 057:H7 was not able to grow on 
damaged leaves of romaine lettuce at 8 and 12 ºC, but growth was observed at 15 ºC.  This 
study hypothesized that the inhibition at low temperatures could be caused by oxidation 
reactions associated with tissue damaged. In fact, it is known that some vegetable species can 
present substances with antimicrobial activity (Hashem and Saleh 1999). Besides that, it 
cannot be discarded that both samples of romaine and iceberg lettuce were contaminated with 
pesticides with antimicrobial activity.  
 

Finally, estimated maximum grow rates were used to derive a secondary model describing 
maximum growth rate as a function of temperature.  The Ratkowsky´s model (Ratkowsky et 
al. 1982) showed better convergence to observed data in all extracts. For spinach and 
parsley, the best fitting was obtained when square root was applied to maximum growth rate, 
while for chard extract the best fitting was attained when no mathematical transformation was 
used. Regression parameters (b and Tmin) and Standard Error of the Ratkowsky´s model for 
the E. coli O157:H7 growths in the three extracts are showed in Table 1.  
 
 

Table 1: Estimated regression parameters of the Ratkowsky´s model based on E. coli 
O157:H7 growth in different vegetable extracts. 

Vegetable 
Extract 

Temperature 
range (ºC) b Tmin SE* 

Chard 13-20 5.00 x10-03 13.0 3.4x10-02 

Parsley 8-20 4.64 x10-05 2.9 5.6 x10-03 

Spinach 8-20 9.97 x10-04 8.7 4.8 x10-02 
    SE : Standard Error 
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Conclusions  

Results indicated that E. coli O157:H7 was able to grow in different aqueous extracts of 
vegetables in a broad range of temperatures, although growth patterns varied depending on 
the type of extract. Use of vegetable extracts can help to better simulate conditions given in 
vegetable tissues where bacteria can reside (internalization or injury), survive and growth 
thereby allowing the pathogen transmission through the food chain. Further, results suggest 
that unknown compounds present in vegetable extracts could exert an inhibition effect on E. 
coli O157:H7 growth at low temperatures. However, further study will be needed to confirm 
the existence of potential antimicrobial substance in these types of vegetable. 
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Abstract 
The main concept of predictive microbiology is that a detailed knowledge of the behavior of 
micro organisms in food products, condensed into mathematical models, enables an objective 
evaluation of the microbial safety and quality of foods. During the growth process, a 
phenomenon widely studied, but not yet clearly understood is the lag phase. Some studies 
showed that an abrupt temperature shift may induce an intermediate lag phase, which depends 
on the magnitude and the direction of the shift (Swinnen et al. 2005). In this study, a 
mathematical model that investigates the influence of an abrupt temperature shift on the lag 
phase was proposed. The model consists of the solution of a system of two differential 
equations and encompasses the Gompertz modified model as a special case. The secondary 
model employed to describe the temperature dependence is the extended square-root model 
and the lag phase duration is estimated according to the definition proposed by Buchanan and 
Cygnarowicz (1990). The duration and magnitude of the temperature rise were modeled by 
using an arctan function. Calculation of the second derivative of the growth curve, allows one 
to observe two local maxima indicating the occurrence of an intermediate lag phase. 
Quantification of this phenomenon can provide useful insights into new aspects of the lag/no 
lag interface and its influence on microbial growth. 
 
Keywords: lag phase, abrupt temperature shift, mathematical model, predictive microbiology 

Introduction 
The growth of micro organisms in food systems usually exhibits a characteristic pattern 
constituted by different phases under isothermal conditions. The lag phase is not considered 
as being completely understood and is typically described as being a period of adjustment to 
the new environment (Baranyi and Roberts 1995). In general, the phase following the 
inoculation in a laboratory medium is known as the initial lag phase. However, sudden 
environmental variations during growth can also result in an intermediate lag phase (Swinnen 
et al. 2004). In this context, Ng et al. (1962) and Shaw (1966) observed that sudden 
temperature shifts resulted in an immediate lag in growth and Swinnen et al. (2005) studied 
the intermediate lag phase for a range of temperatures. Buchanan and Cygnarowicz (1990) 
proposed that the end of the lag phase can be estimated based on the calculation of the second 
derivative of the growth curve. According to these authors, the end of the lag phase 
corresponds to the maximum and the end of the exponential phase corresponds to the 
minimum of this curve. Although this procedure is not largely employed in the literature, it is 
directly associated with a physical plausible interpretation of the lag phase, i.e., the point in 
which the velocity of growth increases more rapidly. The aim of the study presented in this 
paper is to propose a mathematical model describing the growth of micro organisms in 
isothermal and fluctuating temperature conditions and to derive mathematically the initial and 
the intermediate lag phase. The secondary model employed is the Ratkowsky extended 
square-root model (Ratkowsky et al. 1982, 1983) and the abrupt shift on temperature was 
modeled with an arctan function. 
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Materials and Methods 
In this paper, the following model of microbial growth is considered: 

)()()( tNN
dt

tdN
⋅= µ                                                                                                               (1) 

mNt
dN

Nd
⋅−= )()( αµ

                                                                                                             (2) 

where N  is the population density (log cfu), µ  is the specific growth rate (1/h), α  is a 
positive variable related to environmental conditions, and m  is a shape parameter with no 
microbiological meaning.  
Equation 1 is a fundamental law used in population growth modeling and Equation 2 stresses 
the fact that the specific growth rate is a decreasing function of the population density. It is 
assumed that this decrease obeys a power law and α  changes if the environmental conditions 
are non stationary. As a secondary model, it was employed a modified version of 
Ratkowsky´s extended square-root model (1982, 1983) which is given by Equation 3: 

1
maxmin )))])((exp(1())([()( −−⋅−⋅−⋅≅ TtTcTtTbtα                                                   (3) 

where T  is the temperature, minT  and maxT  are the minimum and maximum temperature 
for which the growth can be observed and b and c are parameters. 
In order to estimate the time of occurrence of the lag phase and the duration of the 
exponential phase, it was employed the procedure proposed by Buchanan and Cygnarowicz 
(1990). These authors suggested that the lag time can be considered as being the time in 
which the velocity of growth increases more rapidly, i.e., the maximum of the acceleration 
growth curve. The usage of this procedure can be used to accurately define and calculate the 
duration of the lag phase and can be easily extended to include situations in which 
temperature is not kept constant as will be apparent later. 

Results and Discussion  
Isothermal environment 
To study growth in an isothermal environment, the mathematical model expressed in 
Equations 1, 2, and 3 was used with )(tT  (and ))(tα  kept constant. In the following 
simulations, the values employed for the parameters were: 10 =N , 08.00 =µ , 002.0=b , 

02.0=c , 0min =T , 4=m , and 50max =T . As result of the calculations, Figure 1A shows 
the growth curves for different values of the temperature with the other parameters kept 
constant. The curves exhibit the usual sigmoidal shape. 
 

 
Figure 1: A) Growth curves for an isothermal environment B) Growth acceleration curves: a) 

5=T ºC, b) 10=T ºC, c) 15=T ºC, d) 20=T ºC, e) 30=T ºC, f) 40=T ºC, g) 
45=T ºC. 
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Curves of the acceleration growth (second derivative of )(tN ) for the same temperatures 
used to obtain the curves of Figure 1A are presented in the Figure 1B. As can be seen, all the 
curves exhibit the same pattern with a maximum corresponding to the end of the lag phase 
and a minimum, which corresponds to the end of the exponential phase. 
 
Non-Isothermal environment 
In order to account for a dynamical profile of temperature, the following equation was used to 
model the temperature: 







 +

+−⋅





 −
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2
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1
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π

                                                                     (4) 

where 1T  and 2T  are the inferior and superior asymptotes and a  is a parameter related to the 
abruptness of the temperature change. 
In this paper the following temperature profiles were employed: 
 

 
Figure 2: Temperature profiles used in this study. 

 
The growth curves associated with the temperature profiles showed in Figure 2 are presented 
in Figure 3. It can be seen that for profiles II, III and IV, it is observed an additional lag phase 
and, as shown in Figure 4, this second lag phase can be estimated through usage of the 
acceleration growth curves, which shows an additional maximum that can be associated to the 
intermediate lag phase. 
 

 
Figure 3: Growth curves associated to the temperature profiles presented in Figure 2. 
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Figure 4: Acceleration growth curves associated to the growth curves of the Figure 3. 

 
In addition to the profiles of temperature showed in Figure 2, other profiles with the same 
initial and final temperatures but with different “abruptnesses” were used. Results (not 
presented in this study) showed that, depending on the abruptness, the additional or absence 
of the lag phase can be observed. A systematic study of the conditions necessary for the 
occurrence of an additional lag phase can provide useful theoretical insights of the influence 
exerted by the temperature profile on the microbial growth. 
It should be mentioned that the model accounts for a lag phase even if there is no explicit 
mention for this stage of growth in the equations. This behaviour is observed because the 
model describes the average behaviour of the population and not of its individuals. As the end 
of the lag phase does not occur simultaneously for all individuals, it can be considered that, 
on average, the model reproduces the global behaviour of the population predicting a lag 
phase which is not sharply defined but can be mathematically defined and calculated. 

Conclusions  
The mathematical model predicts an intermediate lag phase in both the growth and 
acceleration of growth curves. An important point lies in the fact that this lag phase is not 
explicitly included in the equations, appearing as a natural consequence of the hypothesis 
used in the derivation of the model. This is a crucial point in adopting the procedure proposed 
by Buchanan and Cygnarowicz (1990), which is independent of the mathematical model used, 
because it allows an explicit evaluation of the behaviour of the microbial growth curve under 
different environmental conditions. 
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Abstract 
This study aims to model the effects of temperature and aw downshifts on the lag time of 
Bacillus weihenstephanensis and the dependence of μmax on the growth conditions 
(temperature and aw). Effects of temperature shifts were studied on 30 conditions (shifts 
magnitude ranging from 2 to 20 °C, temperature after shift from 10 to 20 °C and aw ranging 
from 0.977 to 0.997). Osmotic shifts were studied for 10 conditions (shift magnitude ranging 
from 0.008 to 0.020 units of aw, temperature from 10 to 30 °C, aw after shift from 0.977 to 
0.997). The effects of shifts were modelled through the dependence of the parameter h0 
(“work to be done” prior to growth) induced on the magnitude of the shift and the stringency 
of the new environmental conditions. The predictive ability of the combined model (h0 and 
μmax) was assessed in carrot soup and ready meal products. The inclusion of the effects of 
shifts in the model improves the accuracy of predictions in dynamic conditions. 
 
Keywords: Bacillus Weihenstephanensis, lag time, osmotic stress, temperature shift 

Introduction 
Bacillus weihenstephanensis is a psychrotolerant bacterium belonging to the Bacillus cereus 
group. Some strains may be cytotoxic although they have not been described as food-
poisoning agents so far. The objective of this work is to model the effects of temperature and 
aw downshifts on the lag time of B. weihenstephanensis and the dependence of μmax on the 
growth conditions (temperature and aw).  

Materials and Methods 
Bacterial strain and inoculum preparation 
The strain used in this study was Bacillus weihenstephanensis KBAB4, kindly provided by 
the National Institute of Agronomy Research (INRA, Avignon, France). This microorganism 
was sporulated in Fortified Nutrient agar at 30ºC (Mazas et al. 1995) and stored at -20°C until 
use. Before experiments, to ensure that vegetative cells grown from spores would have the 
same physiological state, spores were heated at 80 °C for 10 min. Two successive subcultures 
were grown overnight in Brain Heart Infusion broth (BHI; Scharlau, Barcelona, Spain) at 30 
°C for 18 hours. After incubation time, cells were at their stationary phase of growth. 

Temperature and aw downshifts 
The effects of downshift magnitude and current conditions on the parameters h0 and μmax were 
studied in BHI by using viable count measurements (VCM) and optical density (OD). For 
viable count measurements, growth rates and lag times were calculated by fitting the growth 
curves obtained after shifts with the model of Baranyi and Roberts (1994). For OD 
experiments, growth rates and lag times were calculated as described by Muñoz-Cuevas et al. 
(2010). For temperature downshifts, 30 experimental conditions (shifts magnitude ranging 
from 2 to 20 °C, temperature after shift from 10 to 20 °C and aw ranging from 0.977 to 0.997). 
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Effects of osmotic shifts were studied for 10 conditions (shift magnitude ranging from 0.008 
to 0.020 units of aw, temperature from 10 to 30°C, aw after shift from 0.977 to 0.997). 

Growth rate model 
To describe the dependence of μmax on the specific growth rate, we used the square root model 
proposed by Muñoz-Cuevas et al. (2010): 
 

( ) bwbwTTb −−= maxmin0maxµ        (1) 

where ww ab −= 1100  Tmin is the minimum temperature for growth, bwmax is the maximum 
bw value supporting growth and b0 a parameter without biological meaning. 

Model for h0 
The effects of shifts magnitude and current conditions were modelled with the equations 2 
(temperature shifts) and 3 (osmotic shifts). 
 

( ) ( ) 321
min0

aaa
cp bwTTTTh −−=        (2) 

where Tp and Tc are the temperature conditions before and after shift, respectively. Tmin, a1, a2 
and a3 are the model parameters identified by non linear regression.  
 

( ) ( ) ( ) 321
max0

ccc
cp bwbwTbwbwh −−=       (3) 

where bwp and bwc are the bw values before and after shift, respectively. bwmax, c1, c2 and c3 
are the model parameters. 

Food products preparation 
Carrot soup and creamed pasta were elaborated for validation experiments. To prepare the 
soup, carrots were washed and peeled before being homogenized and partially sieved. 
Creamed pasta was made in our laboratory using olive oil, bacon, cream, cheese, water and 
macaroni. NaCl was added to the homogenized food products until reaching a concentration 
of 0.5% or 2% and pH was adjusted to 6.5. Samples were heated at 100 ºC for 10 min during 
three consecutive days to inactivate background microflora before inoculation studies. 

Model validation 
The predictive ability of the combined model (h0 and μmax) was assessed by comparing model 
predictions and observed growth curves of B. weihenstephanensis in broth, carrot soup and 
creamed pasta under changing conditions of temperature and aw. References curves were 
obtained in the studied food products to calculate the ratio (μmax)food/ (μmax)broth. This ratio was 
used to correct predictions of Equation 1 for predictions of μmax in food. Predictions were 
performed by solving the system consisting of the model of Baranyi and Roberts (1994) and 
equations 1 to 3. 

Results and Discussion  
Effects of shift on the growth parameters 
F-tests (p = 0.05) performed did not highlight significant differences between growth rates 
obtained at the same experimental conditions but after different pre-incubatory conditions. 
This confirms that the maximum growth rate depends only on the current conditions of 
growth. B. weihenstephanensis was found to be more sensitive to temperature shifts than 
other microorganisms, such as L. monocytogenes. Whereas the values for h0 observed Muñoz-
Cuevas et al. (2010) for L. monocytogenes, did not exceeded ca 3.0, the maximum h0 values 
observed in this study reached a level of ca 20. The effects of temperature downshifts are 
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more pronounced when they occur near growth limiting conditions (i.e. low temperatures and 
high concentrations of NaCl). For example, shifting temperature from 16 to 10 °C in the 
presence of 4% NaCl induced a workload of h0 = 18 (corresponding to a lag time of 530 h).  
In comparison with temperature, osmotic shifts within the range studied have less significant 
effects on the lag time of B. weihenstephanensis. 

Model fitting 
Table 1 shows estimates and standard deviations of the model parameters for growth rates and 
h0 models respectively.  

Table 1: Estimates of the model parameters and their 95% confidence intervals 
Model Parameter Estimate 95% Inf 95% Sup R2 

Sqrt(μmax) b0 0.0148 0.012 0.016 0.98 
 Tmin 6.10 5.65 6.56  
 bwmax 25.3 22.5 28.0  
Sqrt(h0)(temperature) a1 0.13 0.03 0.24 0.76 
 a2 -0.55 -0.74 -0.36  
 a3 0.66 0.53 0.80  
Sqrt(h0) (NaCl) c1 0.39 0.10 0.69 0.61 
 c2 -0.41 -0.69 -0.14  
 c3 0.40 0.11 0.68  

 
Comparison between the square root of observed and fitted growth rates is shown in Figure 1. 
The good concordance between the observed lag times and predicted (using the models for h0 
and μmax models) is shown on Figure 2. 

 
Figure 1: Square root of the observed and fitted specific growth rates of B. 

weihenstephanensis. 

 
Figure 2: Comparison between lag times observed and predicted by the model developed 

(combination of equations 1, 2 and 3); () Temperature shifts (□) Aw shifts. 
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Model validation 
The overall results show that inclusion of the lag time in the model improves the quality of 
predictions. An example of comparison between observed growth of B. weihenstephanensis 
and model predictions is given in Figure 3. 
 

 
Figure 3: Growth of B. weihenstephanensis (■: replicate a, : replicate b) in cream pasta in 
changing temperature conditions (dotted line). Shown is a comparison between the model 

prediction with (straight line) and without (dashed line) considering the lag time. 

Conclusions  
Our results support the findings of other studies (Muñoz-Cuevas et al. 2010; Le Marc et al. 
2010) which show that: i) the “work to be done” h0 depends not only on magnitude of shifts 
but also on the current growth conditions after shifts and ii) that shifts occurring near the 
growth limits induce significant higher h0 values. This model can be used to improve 
predictions of growth of B. weihenstephanensis in dynamic conditions, which can be useful 
for HACCP and microbial risk assessment purposes. 
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Abstract 
The effects of temperature (20–42 C), pH value (4.5–8.5), concentration of sodium chloride 
(0–5%) and concentration of essential oil (0-750 ppm) on the growth parameters of E.coli 
were investigated. The growth curves generated within different conditions were fitted using 
the Baranyi function. To achieve much more useful results in the context of hazard analysis 
and critical control points and risk analysis studies, probability density functions for (i) the 
model parameters and (ii) the predictions as a function of time were obtained by using Monte 
Carlo analysis. A normal distribution over the experimental data was considered. Two 
parameters (growth rate, GR; lag-time, LT) of the growth curves under the combined effects 
of temperature, pH, sodium chloride and essential oil were modelled using a quadratic 
polynomial equation of response surface (RS) model. Mathematical evaluation demonstrated 
that the standard error of prediction (%SEP) and RMSE obtained by RS model were 74% and 
0.061 for GR and 3.544% and 0.687 for LT for model establishing. The results show that RS 
model provides a useful and accurate method for predicting the growth parameters of E. coli, 
and could be applied to ensure food safety with respect to E. coli control. 
 
Keywords: E. coli, growth model, Monte Carlo, response surface  

Introduction 
Clearly, over the past few decades, much effort has been conducted towards predictive 
models describing the combined effects of the environmental factors on the growth of 
pathogens in foods (Devlieghere et al. 1998). One of the most prevalent pathogens which are 
of great concern is Escherichia coli. The aims of the present study were to (a) generate a 
model for the combined effects of temperature, pH, salt and Carum copticum essential oil on 
the growth rate and lag-time of E. coli (b) to investigate the effects of these factors in 
controlling the growth of this bacteria (c) to examine the single and combined effects of 
Carum copticum essential oil with pH, temperature, and sodium chloride on the growth of E. 
coli (ATCC 8739). 

Materials and Methods 
Bacterial strain 
Lyophilized stock culture of E. coli (ATCC 8739) was grown in TSB broth at least twice at 
37°C for 24 h followed by streaking on a TSB agar (Difco) slants, then incubated at 37°C for 
24 h and the cultures subculture weekly. The optical density of the culture was adjusted to 0.2 
by diluting in TSB in order to reach a population of approximately 106cfu ml-1. 

Experimental design 
To estimate the effects of pH, sodium chloride, temperature, and Carum copticum essential 
oil on maximum growth rate and lag-time of E. coli, a central composite design (CCD) was 
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employed using Design-Expert software 7.1.5 (Stat-Ease, Inc., Minneapolis, Minnesota, 
USA). The design included five levels of pH (4.5, 5.5, 6.5, 7.5 and 8.5 ), five levels of sodium 
chloride( 0%, 1.25%, 2.5%, 3.75% and 5%), five levels of temperature( 20°C, 25.5°C, 31°C, 
36.5°C and 42°C), and five levels of Carum copticum essential oil (0, 187.5, 375,562, 750 
ppm). The procedure was carried out using the Bioscreen C analyser. 

Plant material and preparation of the essential oil  
Carum copticum (zenyan in Persian) is an aromatic plant grown in different parts of some 
countries such as Iran, India, and Egypt. 100 g of the dried seeds was powdered and subjected 
to steam distillation in a Clevenger-type apparatus for 4 h in order to obtain the essential oil. 

Curve fitting and growth parameters observation 
The DMFit 2.0 program (Institute of Food Research, Norwich, UK) was used for the OD 
values by fitting of 30 media combinations applying the Baranyi function (Baranyi and 
Roberts 1995). 
Establishment of response surface models 
RS models were established on the basis of the Design Expert software. The stepwise 
regression equations, with independent variables entered at alpha = 0.05 and eliminated at 
alpha = 0.10 

Model validation and mathematical evaluation 
After the establishment of RS models, additional 10 conditions for model validation were 
selected randomly within the range of experimental design. Both predicted values (GR and 
LT) with the 30 conditions for model establishment and those with 10 conditions for model 
validation were mathematically evaluated.  

Monte Carlo Analysis 
In this paper, the Monte Carlo analysis was used to incorporate experimental variation on OD 
data. The Monte Carlo analysis results in a probability density distribution for each of the four 
model parameters and also in a probability distribution for the microbial load prediction at a 
certain time instant. 

Results and Discussion  
Curve fitting and growth parameters observed 
After OD measurement of each combination, total 90 growth curves of E. coli were obtained 
by DMFit software, which applies Baranyi function. The mean of growth parameters (GR and 
LT) calculated can be seen in Table 1. It indicated that the model provided a good description 
of those data, and Baranyi function had good predictive capabilities for the growth of E.Coli 
(R2>0.92). 

Establishment and validation of response surface models 
According to growth parameters of E. coli, both GR and LT were made to natural logarithm 
transformation in order to yield higher correlation coefficients (R2). The RS models were 
established by stepwise regression as follows: 
  Ln(GR) = -53.08670 +2.65193 * T + 2.23013 * pH + 0.30303 * NaCl 
                     -1.84060E-003 * E.O - 0.040048 * T * pH  
                     -5.66956E-004 * NaCl * E.O - 0.038406 * T2 (R2=0.9271)           (1) 
  Ln(LT) = 12.36533 - 0.47216 * T - 0.44128 * pH + 0.19692 * NaCl 
                    -0.010620 * E.O - 2.45658E-003 * T * NaCl 
                   +1.01405E-003 * pH * E.O - 1.19882E-004 * NaCl * E.O 
                   +7.41660E-003 * T2 + 6.52652E-006 * E.O2 (R2=0.9978)               (2) 
The ANOVA of RS models indicated that both Eqs. (1) and (2) were significant (p<0.05), and 
the test of lack-of-fit showed that equation (1) was not significant (p>0.05) but equation (2) 

301



was. Based on this, Eq. (1) and (2) were used to estimate the predicted values of GR and LT 
under different conditions.  

Table 1: Observed and predicted growth rate (GR) and lag-time (LT) of E.Coli by RS models 
under different combined conditions. 

 T(ºC) pH NaCl% E.O(ppm) GR(h-1)   LT(h)  
     Obs Pred  Obs Pred 
1 20.00 4.50 0.00 0.00 4.50E-05 1.26E-04  NC* 49.55 
2 20.00 8.50 0.00 0.00 7.41E-02 3.83E-02  8.70 8.48 
3 20.00 4.50 5.00 0.00 5.15E-03 5.73E-04  106.59 103.75 
4 20.00 8.50 5.00 0.00 8.18E-02 1.74E-01  17.73 17.76 
5 20.00 4.50 0.00 750.00 5.29E-05 3.17E-05  NC 20.73 
6 20.00 8.50 0.00 750.00 1.16E-02 9.63E-03  74.22 74.34 
7 20.00 4.50 5.00 750.00 2.47E-06 1.72E-05  NC 27.69 
8 20.00 8.50 5.00 750.00 NC 5.23E-03  97.09 99.29 
9 25.50 6.50 2.50 375.00 1.01E-01 4.77E-02  6.36 6.75 
10 31.00 5.50 2.50 375.00 9.19E-02 6.01E-02  5.44 5.18 
11 31.00 7.50 2.50 375.00 1.62E-01 4.34E-01  5.30 4.59 
12 31.00 6.50 1.25 375.00 1.23E-01 1.44E-01  4.05 4.43 
13 31.00 6.50 3.75 375.00 1.44E-01 1.81E-01  5.32 5.36 
14 31.00 6.50 2.50 187.50 1.74E-01 2.98E-01  5.16 5.51 
15 31.00 6.50 2.50 562.50 1.16E-01 8.77E-02  7.11 6.81 
16 31.00 6.50 2.50 375.00 1.62E-01 1.62E-01  4.84 4.87 
17 31.00 6.50 2.50 375.00 1.54E-01 1.62E-01  4.81 4.87 
18 31.00 6.50 2.50 375.00 1.56E-01 1.62E-01  4.78 4.87 
19 31.00 6.50 2.50 375.00 1.67E-01 1.62E-01  4.97 4.87 
20 31.00 6.50 2.50 375.00 1.65E-01 1.62E-01  4.85 4.87 
21 31.00 6.50 2.50 375.00 1.61E-01 1.62E-01  4.74 4.87 
22 36.50 6.50 2.50 375.00 1.30E-01 5.35E-02  5.71 5.51 
23 42.00 4.50 0.00 0.00 1.10E-03 9.24E-04  NC 37.78 
24 42.00 8.50 0.00 0.00 9.94E-03 8.27E-03  NC 6.47 
25 42.00 4.50 5.00 0.00 1.14E-03 4.20E-03  NC 60.37 
26 42.00 8.50 5.00 0.00 3.31E-02 3.76E-02  10.12 10.33 
27 42.00 4.50 0.00 750.00 9.32E-05 2.32E-04  NC 15.80 
28 42.00 8.50 0.00 750.00 NC 2.08E-03  NC 56.68 
29 42.00 4.50 5.00 750.00 7.21E-04 1.26E-04  NC 16.11 
30 42.00 8.50 5.00 750.00 NC 1.13E-03  NC 57.77 
NC: DMFit could not find value for this. 

Effects of different experimental conditions on the growth of E.Coli 
On the basis of quadratic polynomial equation of RS models obtained (Eqs. (1) and (2)), the 
effects of independent variables (temperature, pH, NaCl concentration and essential oil 
concentration) on the parameters (GR and LT) were analyzed. First, pH was the most 
important factor (p<0.0001) affecting GR. It was found that pH had a positive linear effect on 
GR in Eq. (1), which means the GR tends to increase when temperature increases. Next 
important factor affecting GR was the square of temperature (p<0.0001). Essential oil 
concentration significantly affects GR (p=0.0008). The essential oil concentration had a 
negative linear effect as we expect. In the case of LT, the main affecting factors are essential 
oil concentration (p=0.0133), temperature (p=0.0162) and NaCl(p=0.0231). Again the 
essential oil concentration had a negative linear effect on LT. 

Mathematical evaluation of the RS models 
Tables 2 and 3 revealed that RMSE of internal or external evaluation were below 0.1 for GR 
and below 0.8 for LT, especially for prediction of GR values (0.061 and 0.086, respectively). 

302



This suggested the RS models fitted well with the observed data. Bf is a measure of the extent 
of under- or over-prediction by the model of the GR or LT observed. 

Table 2: Mathematical internal evaluation based on growth rate (GR) and lag-time (LT).  
 %SEP RMSE Bf Af 
GR 74.000 0.061 1.001 1.817 
LT 3.544 0.687 1.000 1.035 
%SEP, %standard error of prediction, RMSE, root-mean-squares error, Bf, bias factor, Af, 
accuracy factor. 

Table 3: Mathematical internal evaluation based on growth rate (GR) and lag-time (LT).  
 %SEP RMSE Bf Af 
GR 51.000 0.086 1.009 1.513 
LT 3.257 0.249 1.010 1.034 

Conclusions 
In summary, Baranyi function showed goodness-of-fit to describe the growth of E. coli under 
different laboratory conditions (R2>0.92). The experiments also established RS models to 
predict the curve parameters of E. coli growth influenced by different combinations of 
temperature (20–42C), pH value (4.5–8.5) , concentration of sodium chloride (0.0–5.0%) and 
concentration of essential oil (0-750 ppm). Different combinations of temperature, pH, NaCl 
and essential oil were found to have significant effects on the growth of E. coli. From the 
model validation and mathematical evaluation, RS model proved to be a useful and accurate 
method of predicting the growth parameters of E. coli within certain laboratory conditions, for 
its lower standard errors and lower RMSEs of predictions as well as acceptable ranges of bias 
and accuracy factors. These models need validation in the actual food environment before 
applied in practice, and could be considered as references in controlling the propagation of E. 
coli. 
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Abstract 
Secondary models, describing the microbial growth rate as a function of temperature, are 
evaluated with focus on model performance in the suboptimal temperature region. 
Escherichia coli K12 MG1655 and Salmonella Typhimurium are considered as a case study. 
A large set of µmax(T)-estimates is fitted with (1) the cardinal temperature model with 
inflection (CTMI, Rosso et al. 1993), (2)  the square root model (SQRT, Ratkowsky et al. 
1983), and (3) the CTMI adapted to describe the particular behavior of Listeria at suboptimal 
temperatures (aCTMI, Le Marc et al. 2002). Compared to the CTMI and the SQRT, a more 
accurate description of the µmax(T)-relation is obtained with the aCTMI, certainly at 
temperatures below 30 ºC. Also, the Tmin estimate is far more realistic considering the 
experimental data. Use of the aCTMI improved µmax(T)-data description significantly which 
indicates the existence of two phases in the suboptimal temperature region. These results 
point at a possible shortcoming of commonly used secondary models describing the 
temperature effect on the microbial growth rate. 
  
Keywords: predictive microbiology, secondary model, temperature, E. coli, Salmonella 

Introduction 
In general, each microorganism is characterized by its own intrinsic temperature region for 
growth, outlined by the minimum and maximum temperature for growth (Tmin and Tmax, 
respectively). At and below Tmin, growth is not possible and slightly above the minimum 
temperature for growth, the growth rate is very low. As temperature increases, the rate of key 
intracellular processes increases and microorganisms grow faster. This relation is only valid 
up to a certain temperature, i.e., Topt, the temperature at which the growth rate is maximal. 
Further increase of the temperature negatively affects the cellular metabolism and the growth 
rate decreases fast until Tmax is reached. At and beyond this temperature, growth is no longer 
sustained. 
Within the domain of predictive microbiology, a series of secondary models exists that 
describe the influence of temperature on the microbial growth rate. Most currently used 
secondary models can be subdivided in four classes: (i) square root models, (ii) cardinal 
parameter models, (iii) neural networks, and (iv) response surface models. All of the above 
models are data-driven black box models as no information on the underlying mechanism of 
the temperature effect on the microbial metabolism is included. 
The validity of the square root model (SQRT) developed by Ratkowsky et al. (1983) and the 
cardinal temperature model with inflection (CTMI) (Rosso et al. 1993) to describe the effect 
of temperature on the microbial growth rate is widely accepted. Together with the SQRT, the 
CTMI is among the most frequently used in (predictive) microbiology. Up until now, 
exceptions have only been reported for Listeria, i.e., Listeria monocytogenes (Bajard et al. 
1996) and Listeria innocua (Le Marc et al. 2002). In the suboptimal temperature region of 
Listeria, the √µmax(T)-curve displays two linear phases. Inspired by the work of Bajard et al. 
(1996), Le Marc et al. (2002) added two parameters to the existing CTMI to model this 
deviating behavior, i.e., the change temperature Tc (previously introduced by Bajard et al. 
(1996)), and the temperature T1 which is the intersection between the first linear part of the 
model and the temperature axis.  
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Also, in most cases validity of the CTMI and the SQRT has only been evaluated (i) for a 
limited number of experimental data, or (ii) at temperatures around the optimum growth 
temperature and temperatures close to the growth boundaries are not included.  
The aim of this work is to evaluate the CTMI, SQRT and aCTMI model for Escherichia coli 
K12 MG1655 and Salmonella Typhimurium, with the focus on the behavior at the suboptimal 
temperature region and near the minimum temperature for growth. Especially for E. coli, an 
extended experimental data set was used to examine the relationship between temperature and 
the maximum specific growth rate. 

Materials and methods  

Experiments 
Experimental data were acquired for (1) Escherichia coli K12 MG1655 (CGSC#6300) and 
(2) Salmonella Typhimurium SL1344. µmax(T)-data were extracted from experiments 
performed in: (i) test tubes and/or (ii) bioreactors and/or (iii) Erlenmeyers. Maximum specific 
growth rates were obtained by fitting the experimental data with the model of Baranyi and 
Roberts (1994).   

Mathematical modeling  
Three models, used to describe the influence of temperature on the microbial growth rate, are 
discussed. 

(i) The square root model (Ratkowksy et al. 1983) 
( ) ( )( )( )maxminmax TTcexp1TTb −⋅−⋅−⋅=µ                (1) 

with b [1/(°C⋅√h] and c [1/°C] constants, and Tmin [°C] and Tmax [°C] the notional 
minimum and maximum growth temperature. 

(ii) The Cardinal Temperature Model with Inflection (Rosso et al. 1993). 
optmax µ⋅γ=µ                                                                            (2) 

with 

( ) ( )
( ) ( )( ) ( )( )( )
0TT

T2TTTTTTTTTT
TTTT

TTT

0TT

max

optminmaxoptoptminoptminopt

max
2

min
maxmin

min

=γ≥

−+−−−−−
−−

=γ<<

=γ≤
          (3) 

Parameters included in this model are the three cardinal temperatures Tmin [°C], Topt [°C], 
and Tmax [°C] (i.e., the minimum, optimum and maximum temperature for growth, 
respectively) and µopt [1/h] (i.e., the maximum specific growth rate at Topt).  

(iii) The structural adaptation of the CTMI by Le Marc et al. (2002). As a response to the 
observation of a nonlinear relation between √µmax(T) and temperature for Listeria strains 
by Bajard et al. (1996), the original structure of the CTMI was adapted.  
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Next to the three cardinal temperatures and µopt, two additional parameters define the 
model, i.e., Tc and Tl. Tc [°C] is the so-called change temperature and Tl [°C] is the point 
of intersection between the first linear part and the temperature axis.  
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Data processing 
Model parameters and standard deviations are obtained by minimizing the sum of squared 
errors (SSE) using lsqnonlin of the optimization toolbox of Matlab (The Mathworks Inc.). 

Results and discussion 

Evaluation of the secondary models 
For E. coli and Salmonella, all µmax(T)-estimates are fitted with the cardinal temperature 
model with inflection (CTMI) (Rosso et al. 1993) and the square root model (SQRT) 
developed by Ratkowsky et al. (1983) (Figure 1). It has been reported that the fitting quality 
of the CTMI and the SQRT are comparable, but that the CTMI has the advantage that all 
parameters have a biological interpretation. Furthermore, the CTMI parameters are less 
characterized by structural correlation and easier to estimate (Rosso et al. 1993). 

Little difference was observed between the CTMI and SQRT model fits. A closer look at 
the temperature range between 8 and 25 ºC for E. coli reveals that growth rates are estimated 
significantly lower and that both models overestimate Tmin, i.e., Tmin is estimated at 10-11 ºC 
while growth is still observed at 8 ºC. For Salmonella, growth rates between 8 and 25 ºC are 
overestimated and Tmin is underestimated. 

 
Figure 1: Modeling the effect of temperature on the growth rate of E. coli K12 (upper plots) 

and Salmonella Typhimurium (lower plots): (i) square root model (-.), (ii) model of Rosso (--
), and (iii) model of Le Marc (-). 

The lack of model fit is related to the structure of the CTMI and SQRT model. Both models 
use a second order polynominial to describe the temperature effect in the neighborhood of 
Tmin (i.e., x ⋅ (T-Tmin)2). This corresponds with the assumption that, at suboptimal 
temperatures, the relation √µmax(T) is linear. Generally, it is assumed that this relation is valid 
for all microorganisms and exceptions have only been discovered for Listeria strains (Bajard 
et al. 1996, Le Marc et al. 2002), i.e., in their suboptimal temperature region, the √µmax(T)-
curve displays two linear phases. To be able to describe this deviating behavior, Le Marc et 
al. (2002) adapted the CTMI structure by adding two parameters, i.e., Tc, the change 
temperature, and T1, the intersection between the first linear phase and the temperature axis.  

In a next step, this adapted CTMI structure (aCTMI) is also fitted to the µmax(T)-data set 
(see Figure 1). A more accurate description of the µmax(T)-relation at temperatures below 25 
ºC is obtained. For E. coli, Tmin is estimated at 7.3 ºC, which corresponds with experimental 
observations and the change temperature (Tc) was estimated at ≈ 25 ºC. Below this 
temperature, the µmax(T)-relation changes. Use of the aCTMI improved the data description 
significantly which confirms the existence of two phases in the µmax(T)-relation the 
suboptimal temperature region.  
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At first sight, fitting the aCTMI also improves data description for Salmonella, and a more 
realistic Tmin estimate is obtained. The followed trend, however, is opposite to the model 
description of E. coli. Growth rates as a function of temperature decrease faster after the 
changing temperature Tc (≈ 20 ºC). The data available so far are rather limited and additional 
information will be collected to reveal the true µmax(T)-relation. 

Discussion of the E. coli change temperature 
At the change temperature Tc, the relation between temperature and the maximum specific 
growth rate alters. As the growth rate is a translation of the net microbial metabolism, a 
change in the µmax(T)-relation suggest a metabolic change. A possible explanation can be 
found in the cold shock response. 

The effect of temperature on µmax of E. coli has been related to the concept of the normal 
physiological temperature range (NPTR).  This temperature region is defined as the linear 
part of the Arrhenius plot (ln(µmax(T)) versus 1/T). At higher and lower temperatures, µmax 
decreases more rapidly, reaching zero at Tmin and Tmax. Swinnen et al. (2005) identified the 
lower boundary of the NPTR for E. coli K12 as a transition zone situated between 22.78 °C 
and 23.86 °C. Within the NPTR, steady state levels of proteins are approximately constant 
(Herendeen et al. 1979). However, when the temperature is outside the NPTR, 
microorganisms encounter a temperature shock and protein levels change significantly. As the 
lower boundary estimates of the NPTR for E. coli are similar to the switching temperature Tc, 
the presence of the cold shock proteins possibly decreases protein denaturation and 
inactivation, and increases protein stability, which results in a slower decline of the growth 
rate with decreasing temperature.  

Conclusions 
Implementation of the adapted CTMI model improved the description of the µmax(T)-relation 
significantly. This possibly indicates that two phases exist in the suboptimal temperature 
region. These results reveal a possible shortcoming of commonly used models describing the 
temperature effect on the microbial growth rate.  
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Abstract 
Growth predictive models are currently accepted as informative tools that assist to predict the 
growth of forborne pathogens. In the present study the computational neural networks (CNN) 
were used to investigate the effects of temperature (20 to 42 C), pH value (4.5 to 8.5), 
concentration of sodium chloride (0 to 5%) and concentration of Carum copticum essential oil 
(0 to 750 ppm) on the growth parameters . We used Central Composite Design (CCD) for the 
design of the experiment. The architecture of OCNN was designed to contain three input 
parameters in the input layer and one output parameter in the output layer. The training set 
consisted of growth responses data from a combination of Listeria monocytogenes and 
Staphylococcus aureus in a laboratory medium as affected by pH level, sodium chloride 
concentration, essential oil concentration and temperature. Trained OCNN then used to 
predict the growth parameters as well as growth curve of E. coli. The standard error of 
prediction (%SEP) obtained was under 5%, and the results clearly show the ability of OCNN 
trained on appropriate data to predict growth curves for new microbial growth cases without 
the need to conduct any experimental investigation. 
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Abstract 
Sugar cane must is obtained by triturating sugar cane with water in mills, producing a 
substrate rich in sucrose and reducer sugars. Further, this substrate is diluted to undergo 
fermentation. The microbial contamination of sugar cane must is formed by contaminants 
originated from both the field and factory. The objective of this study was to develop a 
secondary model to describe the effects of temperature and initial load of lactobacilli on 
maximum population of lactobacilli cultivated in co-culture with Saccharomyces cerevisiae. 
The Davey and Ratwosky model was tested and did not show good fitness to the maximum 
population. Thus, a second order polynomial model was built using codified values 
(temperature and inoculum level), and presented inoculum level (linear and quadratic) and 
temperature and inoculum level interaction as significant coefficients (p < 0.10). This model 
was shown to have high coefficient of determination (0.975), Bias (1) and accuracy factors 
(1.02). Our results indicate that the most significant variable in our model is the inoculum 
level of lactobacilli (L) (p value 0.000045). The model developed for maximum population of 
lactobacilli can be applied in the fermentation sugar cane industry, to predict the maximum 
population of lactobacilli during fermentation process. 
Key-words: predictive microbiology, secondary model, Saccharomyces cerevisiae, 
Lactobacillus fermentum 

Introduction 
Bacterial contamination of sugar cane must is the major cause of reduction in yield during 
ethanol production by S. cerevisiase.  The growth of Lactobacillus spp. is stimulated when 
growing in co-culture with yeasts due to excretion of several nutrients such as adenine, 
guanine, aspartic acid and nicotinic acid, tryptophan, glycine, alanine and lysine, biotin and 
vitamin B12 by the later (Narendranath et al. 1997, Chin and Ingledew 1994). The 
consumption of sucrose by microbial contaminants during ethanol fermentation process, 
results in the release  of lactic and acetic acids and in losses for industries (Nobre 2005). As 
the metabolism of each molecule of sugar by bacterial contaminants results in two less 
molecules of ethanol being produced (Nobre 2005), any correlation between the level of 
contaminants and reduction in yielding during ethanol fermentation is needed. Secondary 
model takes into account not only the effect of each individual factor of a model on its 
outputs, but also how different factors interact and affect the outputs (McMeekin et al. 2002). 
The physiological state of the microorganism under consideration (stress in the environment 
versus stress during preparation of inoculum) should be considered because they might affect 
lag time much more than growth rate (Miconnet et al. 2005). In spite of the importance of 
ethanol production from sugar cane must for Brazil, there are no data on the influence of co-
culturing of yeasts with lactobacilli on the growth kinetic parameters such as lag time and 
maximum population of the former. Thus, the objective of this study was to develop a 
secondary model to describe the effect of temperature and initial load of lactobacilli co-
cultured with  Saccharomyces cerevisiae on maximum population of the yeast. 
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Material and Methods 
A central rotational composite design (CRCD), with two variables, three central points and 
four axial points, totaling 11 essays (2k+2*k+no) was used in this study. An Erlenmeyer flask 
containing sterilized must (121 ºC/40 min), adjusted to 21.5ºBrix (Nolasco Jr, 2005) was 
inoculated with the yeast (106 CFU/mL) and lactobacilli (101 – 108 CFU/mL). The inoculum 
was adjusted with the aid of a Neubauer chamber and Densimat (BioMérieux, S.a., France). 
For each assay carried out two others tests with pure culture were done for comparison of 
growth parameters. The assays were conducted in an incubator with continuous agitation (120 
rpm) and controlled temperature (Essia Ngang, 1989) during 100 hours (New Brunswick 
Scientific, Model G-27, U.S.A.). The yeasts and lactobacilli were enumerated  by pour-
plating malt extract agar (MEA) supplemented with tetracycline and chloramphenicol (100 
mg/L, each) and MRS agar supplemented with Natamax® (50 mg/L) with pH 5.5, 
respectively. Secondary modeling and response surface plots were performed in Statistica 7.0. 
The bias and accuracy factors were estimated as described by Ross (1996).  

Results and Discussion 
Davey and Square root (Ratwosky) models did not fit the data for maximum population (table 
1). Thus, a second order polynomial model was generated using variables coded values 
(temperature and inoculum level). Inoculum level (linear and quadratic) and interaction 
between temperature and inoculum level were significant (p < 0.10) (Table 2). This model 
showed a high coefficient of determination (0.97).  Regarding the indices of performance of 
the model, bias showed that 100% of the data are in the region of safe prediction. The 
accuracy factor indicated that only 2% of the data are in disagreement with the data predicted 
by the model. 
 

Table 1: Performance indices of secondary models for maximum population of lactobacilli 
(Rg) co-cultured with S. cerevisiae. 

Model 

Ratwosky Square Root Polynomial Secondary order 

R2 Bias Accuracy R2 Bias Accuracy R2 Bias Accuracy 

- - - - - - 0.975 1.0 1.02 

(-) Non-significant variables obtained. 

 
Among the variables defined in this model, inoculum level (L) presented the greatest 
significance (p = 0.000045) (Table 2), demonstrating that maximum population of 
lactobacillus influenced by the initial population of this microorganism (Equation 1). 
This equation allows one to calculate the lactobacilli maximum population reached at the end 
of ethanol fermentation process, based on a known initial population of Lactobacillus. The 
response surface plot (Figure 1) demonstrates the quadratic and linear effects of lactobacillus 
inoculum level and temperature, respectively.  
 
Log(Rg) = 11.68645 + 1.80619 × L -0.58622 × L2 -0.43887 × T × L   (1) 
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Figure 1: Effect of temperature and Lactobacillus fermentum inoculum level on the maximum 
population of this microorganism when co-cultured  with S. cerevisiase. 

 
Table 2: ANOVA for the effect of temperature and inoculum level on lactobacilli maximum 

population in co-culture with S. cerevisiae. 
 

 SS df MS F p 
(1)Temperature(L) 0,16278 1 0,16278 1,0819 0,345934 

Temperature(Q) 0,13450 1 0,13450 0,8939 0,387825 
(2)Inoculum (L) 26,09866 1 26,09866 173,4599 0,000045 

Inoculum (Q) 1,94064 1 1,94064 12,8981 0,015685 
1L by 2L 0,77042 1 0,77042 5,1205 0,073091 

Error 0,75230 5 0,15046   
Total SS 30,38480 10    

 

 Conclusions 
• The model developed in this study can be applied during the ethanol fermentation 

process to predict the maximum population of Lactobacillus. 
• The model showed no significant difference (p > 0.90) for growth rate and lag time of 

Lactobacillus growing in sugar cane must. However, maximum population of this 
microorganism was significantly different (p < 0.90) when grown in pure and co-
culture with yeast.  

Acknowledgements 
The authors acknowledge financial support from Fapesp (Fundação de Amparo à pesquisa do 
Estado de São Paulo) and Danisco Cultor do Brasil. 

 
 
 
 
 

311



References 
Chin P.M. and Ingledew W.M. (1994) Effect of lactic acid bactéria on wheat mash fermentation prepared with 

laboratory backset. Enzyme Microbiology and Technology 16(4), 311-317. 
Crueger W. and Crueger A. (1993) Biotecnología: Manual de Microbiologia Industrial. Zaragoza (España). Editora 

Acribia. 1993. 3ª edição. 
Essia Ngang J.J.E., Letourneau F. and Villa P. (1989) Alcoholic fermentation of beet molasses: effect of lactic acid 

on yeast fermentation parameters. Applied Microbiology and Biotechnology  31, 125-128. 
McMeekin T.A., Olley J.N., Ratkoswsky D.A. and Roos T. (2002) Predictive micorbiology: towards the interface 

and beyond. International Journal of Food Microbiology 73, 395-407. 
Miconnet N., Geeraerd A.H., Van Impe J.F., Rosso L. and Cornu. M. (2005) Reflections on the use of robust and 

least-squares non-linear regression to model challenge tests conducted in/on food products. International 
Journal of Food Microbiology 104, 161-177. 

Narendranath N.V., Hynwa S.H., Thomas K.C. and Ingledew W.M. (1997) Effects of lactobacilli on yeast-
catalyzed ethanol fermentation. Applied and Environmental Microbiology 63(11), 4158-4163. 

Nobre T. P. (2006) Viabilidade celular de Saccharomyces cerevisiae cultivada em associação com bactérias 
contaminantes da fermentação alcoólica. Piracicaba, 90p. Dissertação (Mestrado) – Escola Superior de 
Agricultura “Luiz de Queiroz”, Universidade de São Paulo. 

Nolasco J.J. (2005) Desenvolvimento de processo térmico otimizado para mosto de caldo de cana na fermentação 
alcoólica. Campinas, 2005, 155p. Dissertação (Mestrado) – Faculdade de Engenharia de Alimentos, 
UNICAMP. 

Ross T. (1996) Indices for performance evaluation of predictive models in food microbiology. Journal Applied 
Bacteriology 81, 501-508. 

 

312



Microbial individual-based models and sensitivity analyses: local and 
global methods 

M. Ginovart1, C. Prats2, X. Portell3 
1 Department of Applied Mathematics III, Escola Superior d’Agricultura de Barcelona, Universitat Politècnica de 
Catalunya, Esteve Terradas 8, 08860 Castelldefels (Barcelona), Spain. (marta.ginovart@upc.edu) 
2 Department of Physics and Nuclear Engineering, Escola Superior d’Agricultura de Barcelona, Universitat 
Politècnica de Catalunya, Esteve Terradas 8, 08860 Castelldefels (Barcelona), Spain. (clara.prats@upc.edu) 
3 Department of Agri-Food Engineering and Biotechnology, Escola Superior d’Agricultura de Barcelona, 
Universitat Politècnica de Catalunya, Esteve Terradas 8, 08860 Castelldefels (Barcelona), Spain. 
(xavier.portell@upc.edu) 

Abstract 
A microbial Individual-based Model (IbM) to deal with yeast populations growing in liquid 
batch cultures has been designed and implemented in a simulator called INDISIM-YEAST. 
Interesting qualitative results have already been achieved with its use in the study of 
fermentation profiles, small inocula dynamics and lag phase, among others. Nevertheless, in 
order to improve its predictive capabilities and further development, a deeper comprehension 
of how the variation of the output of the model can be apportioned to different sources of 
variation must be investigated. One way to consider a sensitivity analysis for this IbM, 
providing an understanding of how the model response variables react to changes in the 
inputs, is the statistical study of well-designed computer experiments. The aim of this 
contribution is to show how the insights into nine individual cell parameters of INDISIM-
YEAST, mainly related to uptake and reproduction sub-models, can be obtained by 
combining local and global sensitivity analyses using simple and classic methods. From data 
obtained with an extensive set of computer experiments, a study of the variability observed in 
the evolution of two outputs of this model, ethanol production and mean biomass of the 
population, was performed. In addition, mono-factorial (one-at-a-time) analyses and 
ANOVA-based global analyses were also carried out on these two outputs. The model is 
clearly less sensitive to some parameters than others, depending on the output controlled. 
Moreover, this study allows identification of the parameters which have the greatest impact 
on the corresponding outputs and their significant first-order interactions. This work must be 
understood as an exercise to set up the procedure to be used in a sensitivity analysis study 
involving microbial IbMs. The knowledge gained will facilitate future parameterization and 
calibration of different parameters and outputs depending on the purpose of any study. 
 
Keywords: sensitivity analysis, computer experiments, individual-based model, yeast 
population  

Introduction 
Microbial modelling deals with complex spatio-temporal systems, involving the building and 
use of increasingly intricate models. Individual-based Models (IbMs) are being applied to the 
study of microbial systems nowadays (Ferrer et al. 2009, Hellweger and Bucci 2009). The 
only way to assess the behaviour of these models, including sensitivity, uncertainty, stability 
and error propagation, is the statistical study of well-designed computer experiments (Saltelli 
et al. 2000, Ginot et al. 2006). Sensitivity analysis is the study of how the variation in the 
output of a model can be apportioned, qualitatively or quantitatively, to different sources of 
variation, and of how the given model depends upon the information fed into it. It is used to 
increase confidence in the model and its predictions by providing an understanding of how 
the model response variables react to changes in the inputs (Saltelli et al. 2000). Such analysis 
can be employed prior to a calibration process to assess the importance of each parameter, 
especially useful in the calibration of an IbM which can control a great number of processes 
and, hence, the number of parameters to be estimated is high. This kind of study may allow a 
dimensionality reduction of the parameter space where the calibration and/or optimization is 
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carried out. Since IbMs are non-linear models, the sensitivity of an output to a given 
parameter depends on the value of that parameter, the values of the other parameters 
(interactions), time and the output itself. Thus, it is essential to combine local and global 
methods that explore the entire parameter space and allow for quantifying interactions 
between parameters. In this contribution, we suggest combining the use of different 
sensitivity analysis methods on diverse model outputs of a microbial IbM in order to gain 
knowledge of their inherent variability throughout the time evolution of the virtual system. 
The chosen IbM is INDISIM-YEAST, a simulator that deals with yeast populations growing 
in liquid batch cultures. The aim of this work is to show how insights into the individual cell 
parameters of INDISIM-YEAST can be obtained by combining local and global sensitivity 
methods using classic and well-proven techniques, and to illustrate that they provide, when 
applicable, a good and effective alternative to more sophisticated methods.  

Materials and Methods 
INDISIM-YEAST is an adaptation of the IbM INDISIM (Ginovart et al. 2002) for the study 
of yeast batch cultures. A detailed description of this stochastic model can be found in the 
pertinent bibliography (Ginovart and Cañadas 2008, Ginovart et al. 2011a, b). All the 
simulations run started from the same inoculum, made up of a unique yeast cell, growing in a 
spatial domain with a fixed number of glucose particles distributed uniformly in the 
beginning. We explored the influence of nine input parameters on two outputs. The selected 
parameters are shown in Table 1, as well as their reference values and explored ranges. The 
outputs assessed were the ethanol production and the mean biomass of the yeast population. 

 
Table 1: Input parameters considered in this study, together with their symbols, reference 

values, explored ranges and ANOVA levels. 

Parameter (simulation units) Reference 
value Range ANOVA 

levels 
Umax:  maximum number of glucose particles that may be 
consumed per unit time and per unit of cellular surface 0.20 0.18 - 0.45 0.2475 

0.3150 
K1:  constant that represents the effect of the cellular 
surface scars on the uptake 0.10 0.075 - 0.20 0.10625 

0.13750 
E:  prescribed amount of translocated glucose per unit of 
biomass that a yeast cell needs to remain viable 0.001 0.00005 -

0.003 
0.00079 
0.00153 

Y:  metabolic efficiency that accounts for the synthesised 
biomass units per metabolised glucose particle 0.60 0.5 - 1.5 0.75 

1.00 
mC:  critical mass, the minimum mass of a yeast cell 
required to move to the budding phase 140 75 - 225 112.5 

150.0 
∆mB1: minimum growth of the cell biomass during 
unbudding phase required to move to the budding phase 50 25 - 80 38.75 

52.50 
∆mB2: minimum growth of biomass required for the 
initiation of cell bud separation 70 40 - 110 57.5 

75.0 
∆T2:  minimum number of time steps that a yeast cell 
must remain in the budding phase 4 1 - 40 10.75 

20.50 
q:  proportion that allows determination of the mass that 
the daughter cell will have 0.80 0.56 - 0.95 0.6575 

0.7550 
 
Some simple and classic methods are used in order to combine local and global sensitivity 
analyses of this simulator INDISIM-YEAST. A local mono-factorial (one-at-a-time) analysis 
consists of plotting the model outcome at a given time (often the last one of evolution or at 
specific times) versus a fairly wide range of values of the input parameter. When running the 
simulations, all the parameters are fixed to their referenced values except the one being 
explored. A “curve” or trend is obtained for each parameter and for each model outcome, and 
the slope at any point of this curve (hence for a given value of the parameter) actually 
represents the local sensitivity coefficient with respect to that parameter value. A well-known 
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global method that is seldom employed for sensitivity analysis purposes is the analysis of 
variance (ANOVA) (Saltelli et al. 2000, Ginot et al. 2006). It is a natural method for variance 
decomposition combined with a factorial simulation design, which tests the contribution of 
the parameters and of their interactions to the variability of the outcome of the model. In 
standard ANOVA the effect of input factors is assessed globally, testing only whether at least 
one of the levels of the factor has an effect on the output, and thus ignoring “how” this effect 
specifically occurs. A few well-chosen levels may account for the general pattern of the 
model response. The ANOVA-based Total Sensitivity Index (TSI) for each parameter (and 
for each output) accounts for the percentage of variance explained by both the main effect of 
this parameter and the interactions involving it. This index can be defined as the ratio of the 
sum of squares explained by the main effect and the sum of squares explained by the 
interactions involving that parameter to the total sum of the squares of the corresponding 
output. 

Results and Discussion  
Since we are using a stochastic model, a preliminary analysis of the random seed effects on 
both outcomes, ethanol production and mean biomass of the yeast population, was carried 
out. In this analysis, all the parameters were kept constant and equal to their reference values, 
and 100 replications were performed. The set of data obtained for the two outputs every 100 
time steps was assessed with statistical tools. The highest variability was observed in mean 
biomass during the initial stages, when the population size is still small and developing, while 
ethanol production is less sensitive to the random seeds throughout the temporal evolution. 
Figure 1 shows the mono-factorial (one-at-a-time) analyses of the nine chosen parameters on 
the two outcomes. A linear pattern would indicate that the sensitivity of the model outcome to 
this parameter is constant, whatever the parameter’s value. It is shown that Umax, Y, K1 and q 
have great influence on ethanol production but small or inexistent effect on mean biomass. In 
contrast, mean biomass reflects the changes of mC and ΔT2, while ethanol production does not. 
Sensitivity of both parameters to ΔmB2 is similar, and the analysis of ΔmB1 and E show only 
slight (or none) influence on them. 
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Figure 1: One-at-a-time analyses of the sensitivity of ethanol (left) and mean biomass (right) 

of the nine chosen parameters.  
 
Figure 2 shows the results of the ANOVA-based TSI corresponding to the logarithm of 
ethanol production. These results were obtained with equireplicate factorial design with the 
main effects and first order interactions, indicating a well-balanced design with good 
statistical properties after the logarithm transformation. The explained variance was 98.4%, a 
good result for an ANOVA model that included first-order interactions only. The significance 
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of the main effects and the two-way (first-order) interactions are provided by the ANOVA 
table, together with the p-values pointing out the importance of each effect on the outcome. 
Some interactions are not always absent, which means that the parameters do not have an 
independent additive effect on the output. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: TSIs for the logarithm of ethanol production from the results of the ANOVA table 
obtained for the nine selected input parameters. 

Conclusions  
The sensitivity of outputs to the input parameters strongly depends on the kind of variables 
selected. Ethanol production is a global variable, and we have seen that it strongly depends on 
Umax and Y, and less on K1. On the contrary, mean biomass is a feature of the individuals of 
the population and is related with its structure. Thus, its dependence on some of the 
parameters related with the reproduction sub-model is greater. ANOVA, a statistical method 
widely used in experimental research, has proven useful in the field of virtual (simulation) 
experiments with IbMs, in particular in the analysis of first-order interactions between input 
parameters. These results are useful for two purposes: to evaluate the consequences of sub-
model formulations on the output dynamics, and to delimit the calibration to be performed. 
This is still a methodological work by which we are trying to set the best sensitivity analysis 
methods to be used in IbMs in general and, in INDISIM-YEAST in particular. 
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Abstract 
INDISIM-YEAST is an Individual-based Model (IbM) that has been already used to 
qualitatively investigate different features of yeast populations evolving in liquid batch 
cultures such as, among others, fermentation profiles, small inocula dynamics and lag phase. 
Previous INDISIM-YEAST versions did not take into account that yeasts under industrial 
processes face different oxygen availability through the course of the target process. The 
introduction of new variables in this model would facilitate its use in industrially oriented 
processes. The aim of the study is to enhance the uptake and metabolism sub-models of 
INDISIM-YEAST in order to be able to mimic experiments without a fixed oxygen 
availability. Two main substrates were taken into account on previous INDISIM-YEAST 
versions, i.e. glucose as carbon and energy source, and ethanol as metabolite. In the present 
version of this model, nitrogen metabolism has been added with the introduction of the 
organic nitrogen and ammonium. The addition of the oxygen and carbon dioxide as substrates 
permits both the aerobical respiration and fermentation metabolic pathways to be taken into 
account. When possible, the individual parameter values assigned were chosen from the 
literature to be consistent with the yeast Saccharomyces cerevisiae. The values for the 
individual parameters which cannot be inferred from the literature will need to be calibrated. 
This work is a valuable step forward to using this IbM in industrially relevant processes 
where S. cerevisiae plays a distinguished role as, for example, in the productions of beer and 
wine. 
 
Keywords: Individual-based Model, yeast cell, yeast metabolism, oxygen 

Introduction 
INDISIM-YEAST is an Individual-based Model (IbM) designed to study the behaviour of 
yeast cells based on the INDISIM model (Ferrer et al. 2008). It has already been used to 
qualitatively investigate different features of yeast populations evolving in liquid batch 
cultures such as, among others, fermentation profiles, small inocula dynamics and lag phase 
(Ginovart and Cañadas 2008, Ginovart et al. 2011a, b).When it comes to yeast metabolism, 
these published works were built on taking into account that glucose was the only carbon and 
energy source, the catabolism of which resulted in ethanol production. This entails the 
assumption that glucose can simply be metabolized, at first, via the Embden-Meyerhof 
pathway (Glycolysis) leading to the production of two molecules of ethanol and metabolic 
energy. 
S. cerevisiae is a budding yeast widely used both in industrial processes and as a 
microorganism model for understanding the eukaryotic cell cycle. This microorganism is a 
Crabtree-positive yeast; therefore, even in aerobic conditions, when growing in high glucose 
concentration, S. cerevisiae catabolizes most of the glucose via fermentative 
(respirofermentative metabolism) (Walker 1998). Accordingly, it seems reasonable that a 
model aiming to reproduce S. cerevisiae experimental results should include this behaviour, 
or its validity must be kept in at a narrow set of conditions. In the present version of this 
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model, nitrogen metabolism has been added with the introduction of the organic nitrogen and 
ammonium. The addition of the oxygen and carbon dioxide as substrates permits the aerobical 
respiration and fermentation metabolic pathways to be taken into account. Therefore, this 
study aims to enhance the uptake and metabolism sub-models of INDISIM-YEAST in order 
to be able to mimic experiments without a fixed oxygen availability.  

Materials and Methods 
A reduced overview of the created model according the updated Overview, Design concepts, 
and Details protocol by Grimm et al. (2010) is shown in this section.  

Purpose 
The model aims to analyse S. cerevisiae population dynamics in experimental batch cultures 
with glucose as a sole carbon source and taking into account oxygen and nitrogen dynamics. 

Entities, state variables, and scales 
Three entities are considered: S. cerevisiae cells, spatial cells and the environment. A yeast 
cell (Ei) is defined by the variables: e1(t), e2(t) and e3(t), identifying its position in the spatial 
domain; e4(t), its biomass (pmol); e5(t), its genealogical age (bud scars); e6(t), the 
reproduction phase in the cellular cycle in which the cell is currently (unbudded or budding); 
e7(t), its “start mass” (pmol), the mass required to change from the unbudded to the budding 
phase; e8(t), the minimum biomass increase (pmol) to enter the budding phase; e9(t), the 
minimum time required to complete the budding phase (time steps); and e10(t), the amount of 
carbon (pmol) stored in the cell as reserve carbohydrates. Letting N = N(t) denote the number 
of individuals at time t, and identifying an individual by i, the population’s state at t is:  

ܲܰሺݐሻ ൌ ሼ݅ܧሾ݁1݅ ሺݐሻ, ݁2݅ ,ሻݐ … , ݁10݅ ሺݐሻሿሽ݅ൌ1,2,…ܰ 

ሻݐሺܦ ൌ ൛ܵ௫௬௭ൣݏଵ
௫௬௭ሺݐሻ, ଶݏ

௫௬௭ሺݐሻ, … , ݏ
௫௬௭ሺݐሻ൧ൟ

௫ୀଵ,…,;௬ୀଵ,…,;௭ୀଵ,…,
 

ܷሺݐሻ ൌ ,ሻݐሺܣ൫ܰܫܯ ሺܷெሻሺݐሻ൯ 

ሻݐሺܣ ൌ ሺሻݏ
௫௬௭ሺݐሻ 

A୨
ܰሺݐሻ

ሺ
The simulated space is a cube which holds a liquid medium and yeast, and is divided into 
spatial cubic cells (Sxyz) described by a vector that is represented by the variables: s1(t), the 
amount of glucose (pmol); s2(t), the amount of organic nitrogen (pmol); s3(t), the amount of 
ammonium (pmol); s4(t), the amount of oxygen (pmol); s5(t), the amount of ethanol (pmol); 
and s6(t), the amount of carbon dioxide (pmol). The whole three dimensional grid is then 
described by: 

The environment is a closed and stirred medium so there is no ingress or egress either of 
organic or of inorganic elements.  
The temporal evolution of the system emerges after the simulation runs a number of time 
steps. Each time step corresponds to 6 minutes and the simulated volume is set to 1 mm3. The 
simulation shown in this contribution lasts for 14 days. 

Submodels  
The actions of the individual are: movement, uptake, metabolism, reproduction and death 
checking. 

Uptake submodel 
Four substrates are taken into account: glucose, organic N, ammonium and oxygen (j=1,…,4). 
The maximum uptake of C and N sources are controlled by the internal C to N ratio, a value 
lower than rC to uptake C sources and greater than rN to uptake nitrogen sources. The yeast 
cells always uptake oxygen. The final substrate j uptake (pmol) at a given time step [Uj(t)] is 
then defined by: 

 

ሺܷெሻሺݐሻ ൌ ሻݐሺݑ  ݁ସሺݐሻ
మ
య  ሺ1 െ ௦ܲ ݁ହሺݐሻሻ 
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where, Aj(t) is the maximum amount of substrate j available for an individual, (UMAX)j(t) the 
maximum substrate j uptake capacity of the individual, Aj is the uptake coefficient for 
substrate j to cells, N  is the number of individuals within the cell, u (t) is the uptake 

lcoholic fermentation). The model assumes 
btree effect, individuals evolving into a spatial cell without oxygen or 

XYZ i
coefficient for a substrate j (pmols per unit of cell surface), which is taken from a normal 
distribution and Ps is a penalization per cell scar. 

Metabolism submodel 
Yeasts can obtain energy from glucose by two catabolic pathways: respiration (glycolysis and 
Krebs’s cycle) and fermentation (Glycolysis and a
that, because of the Cra
with glucose content over a given limit will use a fermentative pathway, otherwise they will 
respire. Maintenance energy requirements (pmol of glucose) for a respiring individual are: 

ሻݐோሺܯ ൌ ΕR  ݁ସሺݐሻ  ቀ1  ܲሺݐሻ  ହݏ
௫௬௭ሺݐሻቁ 

where ER is the maintenance rate (pmol of glucose/pmol of CNMIC), Pe(t) a penalization due to 
ethanol content (pmol of ethanol-1) obtained from a normal distribution and with x, y, z values 
being the coordinates of the acting individual. Maintenance energy requirements under 

sary when 
fermenting). Ammonium uptake is taken into account first and organic N later.  

n. 
e 

fermentative conditions [MF(t)] are obtained from a relation between the energy obtained 
from both metabolic pathways (mol fermented/mol respired). In order to cover its 
maintenance needs, glucose cell uptake is used. If a cell does not have enough glucose uptake 
for maintenance it can use its carbon reserves without being able to create further biomass in 
the current time step (if it is under respirative metabolism it needs oxygen uptake in addition). 
If the carbon reserve is not enough (or there is not oxygen enough to respire) then it lyses. 
After maintenance, the remaining glucose uptake is used to create new biomass or to create 
new carbon reserves. Carbon reserves are created when glucose content in the spatial cell is 
under a given amount, otherwise new biomass [Δe4(t)] can be created, as follows: 

Δeସሺݐሻ ൌ ,ሺܴைܰܫܯ ܴீ, ܴேሻ 
where RO, RG and RN are moles of biomass that can be created with, respectively, the 
remaining amounts of oxygen, glucose and N inside the cell (RO not neces

Parameters and constants used in the simulation shown below are presented in table 1.  

Table 1: Values of parameter and constants used in the simulation show
Parameter description Units Valu
   
Yeast 7 C/N molar ratio mol C/mol N 
C/N to uptake carbon sources mo

/N to uptake nitrogen sources mol C/ ol N 
roduction  p

formation p
p

0.8 
p x -7 

Cell scar  
5  

rom glucose  
 respiration 

tion following fermentation 

5  
1  

m  

l C/mol N 12 
C m 4 
Average biomass at rep mol of CNMIC 20 
Min mass increase to start bud mol of CNMIC 1 
Min mass increase for budding mol of CNMIC 3 
Minimum time for budding H 0.5 
Mass fraction from the mother released to the bud 

ol 
dimensionless 

Energy penalization due to ethan mol of ethanol-1 1
-1 1

10
Uptake penalty per cell scar x10-2

Maintenance energy g C/gCMIC x10-5

Respiration to fermentation energy f
lowing

mol F./mol R.  19 
Biomass yield production fol g CMIC/g C 0.9 
Biomass yield produc g CMIC/g C 0.2 

2  Glucose conc. to accumulate carbon reserves mg/ml x10-3

Glucose conc. to start Crabtree effect mg/ml
-1

x10-3

Maximum growth rate h  x10-1

Availability of glucose h-1 0.1 
Availability of organic nitrogen h-1 0.22 
Availability of ammoniu h-1 0.1 
Availability of oxygen h-1 0.5 
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Re
On up, values need to be assigned to the individual model constants 

When those data are described in the specialized literature and 
erevisiae biology, then it is possible to assume the referred data. 

was conducted using preliminary parameters values (Table 1). Experiments using S. 
cerevisiae yeast cells (dots) were conducted, in triplicate, at 27ºC under aerobical conditions 

C
In the sfully 

ithin the previous INDISIM-YEAST simulator to deal with the yeast S. 
 results from this new version reproduce glucose consumption and ethanol 

r microbiology. Journal of 
 34, 19-37. 

d Cañadas J.C. (2008) INDISIM-YEAST: an individual-based simulator on a website for 

Gri

sults and Discussion  
ce the model is built 

(parameterization process). 
they are consistent with S c
Other constant values can be inferred from the literature and more will be found after 
calibration of the model. Before finishing this process it is good to trial the model to check if 
performance and qualitative behaviour agree with the experimental tests. This in turn is useful 
for improving knowledge about modelled system behaviour. One of the simulations already 
done can be seen, jointly with experimental data points, in Figure 1. Although the general 
behaviour of the system is well reproduced, it is necessary to keep in mind that exploration of 
the biologically relevant values is still to be completed. 
 

 
Figure 1: Simulated against experimental glucose and ethanol evolutions. Simulation (lines) 

with 300 mg ml-1 as initial glucose content and with proximally 1x104 CFU ml-1. 

onclusions  
 present work, new uptake and metabolism submodels have been succes

implemented w
cerevisiae. First
production with an acceptably close concordance with experimental data. This is a valuable 
step and one which justifies further research to develop the simulator in order to gain better 
understanding of the behaviour of this yeast under industrial processes. 
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Abstract 
The assumption that growth comes from one cell in homogeneous samples, when growth is not 
detected in a certain percentage of them contradicts the Poisson distribution function. Knowing 
the percentage of samples with microbial development, the Poisson function allows ascribing 
higher inocula to the samples with shorter lag phases. A gamma distribution lag phase 
simulation was generated considering different average number of cells per sample. Three 
scenarios were considered: scenario I assumes that all samples contain one cell. In scenario II, 
the sample with the shortest lag phase contains the highest number of cells, the sample with the 
second shortest contains the second one, and so on, according to the Poisson predictions. 
Scenario III is calculated like scenario II, but all samples with more than one cell are ignored. 
The higher the average number of cells per sample is, the longer the lag phase and the smaller 
the variances in both scenarios, II and III, in comparison with scenario I. A permutation test was 
used to compare the variances among the three scenarios. The higher the average number of 
cells per sample is, the bigger and more significant the differences. To check how well our 
simulations model reality, the three scenarios were applied to experimental data. Considering 
Poisson-based predictions of the number of cells per sample, instead of considering that all 
samples contain one cell improves the accuracy of lag phase determinations of 
micropopulations. In fact, the more samples there are that contain more than one cell, the greater 
the improvement is. This improvement is likely to be statistically significant mainly in cases 
where both the average number of cells per sample and the specific growth rate are relatively 
high. 
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Abstract 
Spores of various Bacillus spp. can remain in a dormant, stress resistant state for long periods. 
Their return to vegetative cells involves a rapid germination followed by a more extended 
outgrowth phase. Spore-forming bacteria are a special problem for the food industries as 
some of them are able to survive preservation processes. Spore germination & outgrowth 
progression are often very heterogeneous and therefore makes predictions of microbial 
stability of food products exceedingly difficult. Mechanistic details of the cause of this 
heterogeneity are necessary. In order to examine heterogeneity we made a novel cast for live 
imaging which allows the growth, germination & outgrowth of Bacillus subtilis cells and 
spores, respectively. In order to check the efficiency of the setup, growth and division of B. 
subtilis 1A700 vegetative cells were monitored at different concentrations of rich, undefined 
media (TSB, LB) as well as a defined medium (MOPS). Phase-contrast images were recorded 
every 30s for 4 hours and doubling times were calculated. We were able to monitor nine areas 
in one slide per time-point using a routine that steers the lens appropriately. Thus, maximally 
~100 starting cells (or spores) could be examined per experiment. The calculated generation 
times in our system were comparable to generation times obtained in well-aerated shake flask 
cultures. Hence, the setup is suitable for heterogeneity measurements at the single cell/spore 
level. Preliminary results show that also proper germination & outgrowth of spores is 
observed in our setup. To monitor where most heterogeneity ensues, recording of germination 
(phase bright to phase dark transition) and outgrowth times (formation of two cells) of 
individual spores is in progress. Current challenges are to extend the observation time frame 
from 4 to 24 hours such that monitoring outgrowth of damaged spores as well as of spores 
under adverse conditions can be started. 
 
Keywords: B. subtilis spores, heterogeneity, germination and out growth, live cell imaging 

Introduction 
Spores from Gram-positive bacterial genera e.g. Bacillus and Clostridium can cause food 
spoilage and food born diseases (S. Ghosh et al. 2009). The Spores are metabolically dormant 
and very resistant to environmental stresses. Such spores can remain in the dormant, stress 
resistant state for long periods but can return to life rapidly through the process of 
germination and outgrowth (Fig.1) (Peter Setlow, 2003). During this period the spore’s 
dormancy and extreme resistance properties are lost. Spore-forming bacteria are a special 
problem for the food industries as some of them can survive preservation processes 
commonly used in the food industries. Such spores which escape the processing treatment can 
germinate, grow out, and may cause food spoilage and food safety hazards. Spore 
germination and outgrowth is often quite heterogeneous. Some super dormant spores’ 
progress extremely slowly through these stages and potentially come back to life, long after 
preservation treatments were applied (Sonali Ghosh et al. 2008). 
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To check the heterogeneity in B. subtilisspores experiment was done in micro titer plate and 
shown that spores germinated after 150 hrs. of incubation in TSB medium (Smelt and Brul, 
2007). Heterogeneity and super dormancy make predictions of microbial stability of food 
products exceedingly difficult. Since outgrowing spores or vegetative cells are much easier to 
kill than dormant spores, it would be advantageous to rapidly and completely trigger 
germination of spores in foods and then inactivate all at the outgrowth stage with heat or other 
physical treatments. To do so with appropriate robustness one should have mechanistic details 
of the cause of heterogeneity in spore germination and outgrowth. A study has been done on 
Clostridium botulinum for spores’ germination and out growth (Sandra .Stringer, 2009, 2011). 
In order to study the heterogeneity in spore germination and outgrowth we made a cast. The 
cast allows growing aerobic bacteria and germination and outgrowth of spores and hence 
analysis of vegetative cell/spore at single cell level. To check the efficiency of the setup the B. 
subtilis 1A700 vegetative cells were grown in different concentrations of rich, undefined 
media (TSB, LB) as well as a defined medium (MOPS). Rich, undefined media (TSB, LB) 
are routinely used in laboratory; moreover TSB is used for spore germination and outgrowth 
experiments and also to confirm the previous results which were done on TSB medium. 
Defined medium (MOPS) was used to check the growth and division of vegetative cells. 
These media were also used for spore germination and outgrowth experiments. Preliminary 
results showed proper germination & outgrowth of spores of B. subtilis 1A700. 

Materials and Methods 
Strain, media, and growth conditions 
B.subtilis 1A700 cells were inoculated in 10 ml of TSB (pH 7.5) medium and incubated 
overnight at 200 rpm at 37oC. Overnight grown culture of B. subtilis 1A700 was reinoculated 
in to fresh 10 ml TSB/ LB medium for respective experiments and grown for 3 hrs. at 37oC to 
get an exponentially growing culture. Exponentially grown B. subtilis 1A700 cells were 
reinoculated into fresh 10 ml TSB/LB or MOPS medium and grown for 3 hrs. till O.D.600nm 
reaches to ~ 0.2  

Growth Measurement 
The overnight grown culture was used to inoculate experimental flasks containing TSB / LB / 
MOPS medium at an O.D.600nm between 0.01 and 0.02 units and was allowed to grow till the 
O.D.600nm reached ~ 0.4. Data obtained only between O.D.600nm of ~0.1 and ~0.4 was used to 
calculate the growth rates. Growth was followed by periodic sampling of the culture and 
Growth rate was expressed as the specific first-order rate constant (k) in dimensions of h-1: 
ln2 doubling time. The first-order rate constant, k, was obtained as the plot of the natural log 
of O.D.600nm as a function of time in hours.  

Sporulation conditions 
Cells from a single colony were inoculated in Tryptic Soy Broth (TSB; pH 7.5), cultivated 
until early exponential phase, and transferred into a defined minimal medium, buffered with 

Figure 1: Different stages of 
germination and outgrowth. 

Figure 2: Growth behaviour of thermally stressed 
single bacterial spores in individual wells of a 

microtitreplate (Smelt and Brul 2007). 
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3-(N-Morpholino) propanesulfonic acid (MOPS) to pH 7.4 as described previously (Kort et 
al., 2007). As carbon- and nitrogen- sources, 10 mM glucose and 10 mM NH4Cl were used. 
Cells were grown until early exponential phase and diluted into 20 ml of fresh MOPS 
buffered medium. When early exponential phase was reached again, 1% of this final pre-
culture was used to inoculate 500 ml MOPS buffered medium. Sporulation was initiated by 
growing the culture into stationary phase, induced by glucose exhaustion. Sporulation was 
allowed for 96 hours during which its efficiency was followed using phase contrast 
microscopy. 

Slide preparation 
A cast was prepared by attaching a 65µl capacity (1.5 X 1.6 cm) Gene Frame (Thermo 
Scientific) to a standard microscope slide. A thin small square semisolid matrix pad with 
different concentrations of TSB, LB or MOPS medium and supplemented with 1% agarose 
(Sigma-Aldrich) was made by using plane and Siliconized glass cover slip (24 X 32 mm, 
Thermo Scientific Exponentially growing B. subtilis 1A700 cells (O.D.600nm ~ 0.2) or spores 
were spotted onto the pad and the pad was transferred upside down on the cast having the 
gene frame and sealed with a cover slip (18 X 18 mm, Thermo Scientific).This cast was used 
for Time-Lapse Microscopy.  
 
 
 
 
 
 
 

 

 
Figure 3: A cast of a silicon coated cover slip, containing a few mm thin layers of agarose and bacterial 

vegetative cells or spores was made. 

Time-Lapse Microscopy  
The cast was kept on a stage in a temperature-controlled (Box incubation system; Life 
Imaging Services) automated microscope (Zeiss cell observer) at 37°C. Images were obtained 
at a magnification of 100X. Growth and cell division of B. subtilis 1A700 vegetative cells 
were checked at different concentrations of TSB, LB and MOPS medium. Phase-contrast 
images were recorded at every 30 sec. for 4hrs. Minimum of two and maximum of nine 
different areas were selected from the slide per experiment per concentration of TSB, LB, and 
MOPS medium.  One to fourteen cells i.e. maximally ~100 starting cells per area were 
manually identified and cell length was measured. The length measurement of cells per area 
was done at every 10 min for 30- 60 min. Doubling time of individual cell was calculated and 
average doubling time, for all the cells from all the areas, was calculated and plotted as the 
cell number vs. doubling time for respective concentrations. 

Results and Discussion  
In order to check the efficiency of the setup, growth and division of B. subtilis 1A700 
vegetative cells was checked at different concentrations of rich, undefined media (TSB, LB), 
as well as a defined medium (MOPS). Three biological replicates were carried out at 50%, 
10%, 5%, 2.5% TSB medium, 10%, 5%, 2.5% LB medium and 100% and 50% MOPS 
medium with B. subtilis 1A700 vegetative cells. Three biological replicates and four to nine 
technical replicates (area in slide) were done in almost all experiment except at 50% TSB 
medium as it induced a filamentous growth of cells and at 100% MOPS medium. Four to nine 
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areas per experiment were selected. Table 1. shows a comparison of generation times of B. 
subtilis 1A700 vegetative cells for all the concentrations of TSB, LB and MOPS medium. 
Generation times of 1A700 vegetative cells on TSB, LB and MOPS medium were compared 
to the measured generation times of 22.15+/-1.12 min., 21.55+/- 0.9 and 54.37+/- 0.6 min. for 
the same strain in shake flask cultures. 

Table 1: Calculated Generation time of 1A700 vegetative cells in different medium. 
Concentration on slide and in shake flask 

S.No Medium Conc. Total 
Cell 

Experiment -1 Experiment -2 Experiment -3 Average Shake  flask 

 TSB   -  - - -  22.15+/-1.12 
    -  -  - -   
    -  -  -  -   
    -  -  -  -   
 LB   -  -  -  -  . -  
    -  -  -  -   
    -  -  -  -   
 MOPS   -  - - -  -  
    -  -  -  -   

 
Table1. shows that the measured generation times of 1A700 vegetative cells on 50%, 10%, 
5% and 2.5% TSB medium were 20.11 +/- 0.49 min, 23.11 +/- 2.84 min, 23.12+/-2.57 min, 
and 22.59+/-1.45 respectively. Figure 4.  shows that 2.5% concentration of TSB medium 
supports good growth with generation  time of 22.59+/-1.45 min. and clear division of B. 
subtilis 1A700 vegetative cells on the other hand 50% concentration of TSB showed 
filamentous growth. These results are comparable to generation time of 22.15+/-1.12 min. for 
B. subtilis 1A700 vegetative cells in shake flask i.e. 22.15+/-1.12 
                       

                                       
Figure 4: A time-resolved series of                     
still images at 0, 30, 60, 90 min of  
growing B. subtilis vegetative cells 
 
50% LB also induced a filamentous growth and hence was not considered in the experiments. 
Generation times of 1A700 vegetative cells on 10%, 5% and 2.5% TSB medium were 
25.87+/-3.235 min., 23.57+/-6.97min., 23.15+/-3.10 min. as seen in Table 1 2.5% TSB gave 
good growth with generation time of 23.15+/-3.10 min and clear division of B. subtilis strain 
1A700 vegetative cells. For MOPS medium 100% and 50% concentration were checked. The 
generation times of 1A700 vegetative cells at these concentrations were 56.68+/-8.528 min. 
and 65.78+/-7.58 min. respectively. Both the concentrations gave good cell division but 
generation times in all biological replicates showed lager standard deviation. B .subtilis 
1A700 spores were checked for germination and outgrowth. Preliminary results showed that 
proper germination & outgrowth of spores can be followed in our setup. To monitor where 
most heterogeneity ensues, recording of germination (phase bright to phase dark transition) 
and outgrowth times (formation of two cells) of individual spores was done and analysis is in 
progress. Also to account for the super-dormant spores, the current challenge is to extend the 
time frame in the method from 4 hrs. to 24 hrs. such that monitoring outgrowth of damaged 
spores as well as of spores under adverse conditions becomes feasible.  

Figure 5: A time-resolved series of still images 
of germinating and outgrowing B. subtilis 
1A700 spores. 
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Conclusions 
Heterogeneity of outgrowth of B. subtilis spores and growth of vegetative cells can be studied 
with our single-cell analysis techniques. Our technique enables us to analyze individual 
spores for investigating the physiological basis of observed heterogeneity in germination, 
outgrowth and resulting vegetative growth. We optimised the acquisition of live images by 
microscopy and ensured the oxygen availability in the cast used for microscopy. With the use 
of single-cell analysis techniques we can enhance the understanding of the mechanistic basis 
of food preservation and design possible spoilage models for targeting bacterial spores. 
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Abstract 
Smoked-salmon is a ready-to-eat food which undergoes no thermal treatment before 
consumption, thus making it a ‘high-risk’ food product. In the event of pre or post process 
contamination with Listeria monocytogenes, even with low levels of contamination; this 
microorganism has the potential to reach unacceptable levels at the time of consumption. In 
this study, a quantitative Monte Carlo risk assessment model was developed to assess likely 
human exposure and the probability of human illness by L. monocytogenes on cold-smoked 
salmon in Ireland. The mean simulated prevalence of L. monocytogenes in cold-smoked 
salmon after the retail storage was 22.1 % and the simulated mean count on contaminated 
cold-smoked salmon was 2.60 log10 CFU/g (95 % confidence interval 0.00 – 4.53 log10 
CFU/g). The model predictions were validated by a parallel surveillance study. The model 
predicted the log probability of illness annually by consuming contaminated cold-smoked 
salmon in a low risk and high risk population, with mean values – 8.02 and – 3.08, 
respectively. The model sensitivity analysis highlights the importance of reducing the initial 
contamination levels of L. monocytogenes on raw fish and the maintenance of proper storage 
conditions. Various ‘what-if’ scenarios were studied to assess the likely impact on the log 
probability of illness. Careful control of consumer storage temperature and time were 
identified as the best strategies to decrease the probability of illness. The quantitative risk 
assessment developed in this paper may help risk managers to make informed decisions with 
regard to possible control measures for L. monocytogenes in cold smoked salmon and 
therefore improve food safety. 

Keywords: L. monocytogenes, smoked salmon, risk assessment, exposure assessment 
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Abstract 
In a previous study, the variations in prevalence and levels of coagulase + staphylococci, 
Clostridium perfringens and Listeria monocytogenes in large wild game meat such as red 
deer, roe deer, and wild boar were studied (Membré et al. 2011). 
The objective of the current study was to incorporate these results in a probabilistic exposure 
assessment model to determine the level of consumer exposure once the meat is ready-to-eat. 
The inputs were the probability distribution of log count of bacteria on raw meat (from the 
previous study), the storage (time and temperature profiles) at retail and consumers home  
combined with the microbial ability to grow at refrigerated conditions, and finally the heating 
regime at home combined with the microbial thermal inactivation characteristics. Scenarios of 
consumer exposure were built in Excel, Monte Carlo simulations were run with the Excel 
Add-in @Risk. 
The consumer exposure to the microbial hazards associated with the wild game meat is low 
and acceptable if the meat dishes (stewing meat or roasting meat) are properly cooked and 
eaten just after cooking. However, if the consumer cooking/eating habits change, the risk for 
the consumer will be highly frequent: with roasting meat consumed rare or prepared as a 
carpaccio-type dish, L. monocytogenes will not be controlled; with stewing meat maintained 
at room temperature for several hours after cooking, the risk associated with C. perfringens 
will be high. 
 
Keywords: risk assessment, Monte Carlo simulation, food safety, foodborne pathogens  

Introduction 
For the meat industry, several risk assessment have already been done for various pathogens 
and types of meat, however, to the best of our knowledge, there is no risk assessment carried 
out specifically for large wild game meat, nor specific microbiological criterion within the 
European legislation. The consumption of game meat in EU is estimated to 0.37 kg per year 
and per capita (Reinken 1998), it varies among the countries from 0.06 kg to 2.6 kg (0.62 kg 
in France). Although low, the consumption of large game meat is increasing in Europe 
(Bertolini et al. 2005). Moreover, the global trading activity is important. 
In a previous study, the microbial contamination level of raw wild game meat in France 
(native or imported animals) was assessed (Membré et al. 2011). A total of 1549 roasting and 
stewing meat samples from three species (red deer, roe deer, wild boar) were collected at 
French game meat traders’ facilities. The samples were analyzed for detection and 
enumeration of coagulase + staphylococci, Listeria monocytogenes and Clostridium 
perfringens. The levels of bacterial contamination of the raw meat were determined by 
performing statistical analysis involving Bayesian inference. C. perfringens was found in the 
highest numbers, with means of contamination estimated to be in a range of -0.35 to 2.78 log 
cfu/g depending on game species, storage condition before commercialization and type of 
meat. 
The objective of the present study is to combine the level of contamination of raw meat with 
an exposure assessment scenario (time and refrigeration temperature at retail and 
domestically, heating conditions during consumer preparation) to calculate the level of 
consumer exposure once the meat is cooked and then ready-to-eat. 
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Materials and Methods 
Building the scenario of consumer exposure 
Four scenarios of consumer exposure to ready-to-eat game meals were built. The scenarios 
were based on consumer choice when buying the meat at retail level: type of meat preparation 
(roasting and stewing meat) and game species (red and roe deer, wild boar). The exposure 
assessment was built considering one kg of meat designed to serve five consumers. 
The probability distributions of microbial contamination of raw meat were derived from the 
statistical analysis carried out in a previous study (Membré et al. 2011). 
The shelf-life of both roasting and stewing meats was 21 days (information provided by the 
industrial partners). In France, meat products are generally bought when 33 % of their shelf-
life has lapsed and consumed at 44 % of their shelf-life (Derens et al. 2004); the durations of 
storage of the raw meat at retailer and consumer stages were assumed to be 7 and 3 days, 
respectively. The temperature of refrigerated cabinets in retail and domestic refrigerators were 
described with Normal probability distribution functions, N(3.2, 2.0) and N(5.9, 2.9), 
respectively (Derens et al. 2006). 
The ability of growth of the three hazards were calculated by determining the growth rates (no 
lag time assumed) as a function of the storage temperature and the pH of raw meat (Uniform 
function, U(5.5, 7.0)), defined by expert  opinion according to high variation of ante-mortem 
conditions (notably hunting practices) that may induce animal stress. At these chilled 
temperatures, it was assumed that the growth of C. perfringens was null and the toxin 
production of coagulase + staphylococci was negligible. The growth rates of L. 
monocytogenes on meat as a function of temperature and pH was modelled using data from 
ComBase (http://www.combase.cc/) based on the following query: beef + L. monocytogenes / 
inocua + temperature [0 – 40 °C] + pH [4 – 7.5] +aw [0.99 – 1.0] + no additional factors. This 
query corresponded to 258 matches, 137 of which related to kinetics and 121 related to 
growth rate datasets. Only experimental data obtained in raw meat and kinetics with more 
than five points were kept in the analysis. Finally, a set of 108 data points was generated; the 
temperature was in the range of 0 to 40°C and the value of pH in the range of 5.3 to 7.0. A 
Gamma model (Zwietering et al. 1992) was used to fit the square root of growth rates as a 
function of temperature and pH (Figure 1). 
To determine the heating regime of consumers, information from cuisine practice, literature 
and from industrial partners was used. The piece of meat was considered as contaminated 
only on its surface since the sterility of the muscle is a widely accepted assumption (Gill and 
Penney 1977). For cooking, red and roe deer meat was assimilated to beef, wild boar to pork. 
Roast was assimilated to a cylinder, with a temperature (°C) at the surface of the meat 
described by a Pert probability distribution function, Pert(80, 90, 100). The cooking times 
(min) of a 1 kg-roast were described by Uniform functions: U(30, 60) and U(60, 120) for 
red/roe deer and wild boar, respectively (Obuz et al. 2002). For stewing meat, 1 kg meat was 
assimilated to 20 small cylinders, with a temperature (°C) at the surface of the meat described 
by a Uniform function, U(90, 100), for both red/roe deer and wild boar (Laroche 1988) and a 
cooking time (min) described by a Uniform function, U(60, 240). 
The microbial thermal reduction was estimated using a log linear thermal inactivation model, 
in which D and Z values were picked from a literature review (van Asselt and Zwietering 
2006) (Table 1). 

Monte Carlo simulation and software. 
The four scenarios of consumer exposure were built in Excel (version 2003, Microsoft). The 
Monte Carlo simulation was carried out with the Add-in @Risk (version 5.5.1 Professional 
Edition, Palisade Corporation). For each scenario, 100 000 iterations were run. 
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Table 1: Thermal inactivation parameters utilized in the exposure assessment model. 

Thermal inactivation 
parameter 

Coagulase + 
staphylococci 

C. perfringens, 
vegetative cell 

C. perfringens, 
spores 

L. 
monocytogenes 

Z value (°C) 8.8 10.3 16.8 7 
log D* 0.33 0.32 0.43 0.78 
Tref 70 70 120 70 
* upper limit of 95% confidence interval 

Results and Discussion  
The exposure assessment model was run for three hazards and four scenarios. The output was 
the probability distribution of the quantity of hazards in a 200g-consumer portion, once the 
meat is cooked. In Figure 2, this output is illustrated with the spores of C. perfringens in 
red/roe deer stewing meat. The mean of the distribution was assessed to 1.09 log per 200 g-
consumer portion, the 95 th percentile to 4.31 log per portion. 
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Figure 1: Growth rates of L. 

monocytogenes in raw beef vs temperature. 
Observed data (symbols) and model at mean, 

min and max pH values (lines). 

Figure 2: Predicted amount of spores of 
C. perfringens in a ready-to-eat 200 g- portion 

of red/roe deer stewing meat. The 5 th and 
95 th quantiles are depicted with dotted lines 

 
Whatever the type of meat, the probability of having one bacteria in a 200 g-portion was 
estimated to be null (Pr(log bacteria ≥ 0) ≤ 0.00 %) for coagulase + staphylococci and L. 
monocytogenes. For the latest microorganism, even if the growth in refrigerated cabinets and 
domestic refrigerators was assessed to be important (mean increase of 4.48 log cfu/g), the 
pathogen was eradicated from the meat at the cooking step. However, if the consumer 
preparation / cooking habit moves to rare meat, or even worse, to carpaccio-type dishes, as 
encouraged by the modern cuisine, this current assessment will be different ; the consumer 
exposure to L.  monocytogenes will not be negligible. 
For C. perfringens, the exposure assessment model was run for both vegetative cells and 
spores. Indeed, in the animal digestive track, the  C. perfringens hazard is present as spores 
which contaminate the meat during the evisceration. Some of these spores may germinate and 
outgrow during the meat cutting, conditioning and distribution. 
The model output indicated that the vegetative cells were eliminated during the cooking step 
whatever the game species and type of meal, i.e. the probability of having one vegetative cell 
in a 200 g-portion was estimated to be null (Pr (log vegetative cells ≥ 0) ≤ 0.00 %). 
However, it is likely to have mostly spores of C. perfringens contaminating the raw meat. In 
this case, it was established that these spores survived the cooking step to end up in the 
consumer portion (Table 2 and Figure 2). Particularly with roasting meat (less cooked than 
stewing meat), the probability of exceeding 105 spores / g was not negligible: 0.32 % and 
0.98 % in red/roe and wild boar meat, respectively. This level of contamination is important 
to bear in mind since ≥ 10 5 cells of C. perfringens per g can cause foodborne illness (Golden 
et al. 2009). 
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Table 2: Probability of obtaining spores of C. perfringens in a 200 g - portion of cooked meat.  
 Roasting meat Stewing meat 
X value in the Pr(log spores ≥ 
X) formula 

Red and roe 
deer 

Wild Boar Red and roe 
deer 

Wild Boar 

X = 1 spore 99.45% 99.71% 70.83% 73.67% 
X = 104 spores 36.71 %  49.86 %  7.05 %  16.17 % 
X = Infectious dose =  

200 × 105 (105 spores / g) 0.32% 0.98% 0.03% 0.24% 

 
Consequently, the risk of having the consumer exposed to C. perfringens depends on his/her 
eating habits. Indeed, if the meat is eaten quickly after the cooking, the exposure is still low 
because the spores surviving the heat treatment have no time to germinate. Inversely, if the 
meat dish once cooked, is not eaten quickly but kept at room temperature for several hours, 
spores of C. perfringens may germinate and outgrow to become vegetative cells able to 
produce toxin. In the exposure assessment, the value 105 cells of C. perfringens per g has been 
considered as an infectious dose (Golden et al. 2009), however this value might be revisited if 
more data becomes available. 
To enhance public health, reduction of the prevalence of C. perfringens in raw meat is 
needed. That might be achieved by improving better hunting practices across European 
countries and encouraging good hygienic practice in large wild game meat. 

Conclusion 
An exposure assessment of large wild game meat distributed in France was conducted. It 
indicated that consumers were not significantly exposed to coagulase + staphylococci and L. 
monocytogenes, once the meat is properly cooked. On the other hand, with C. perfingens, a 
consumer may be exposed if the meat, once cooked is cooled down at room temperature and 
eaten after several hours. Performing a consumer exposure assessment brings an added value 
in terms of evaluating public health. Even with simple scenarios, the impact of a high raw 
meat contamination level is weighted in term of actual consequences for the consumer. 
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Abstract 
A retrospective study was performed to assess the potential risk of human listeriosis following 
a contamination by L. monocytogenes of cheeses made from goat raw milk reported by the 
Belgian Federal Agency for the Safety of the Food Chain in 2005. The source of the 
contamination was related to a shedder goat, excreting 2.6 log cfu (colonies forming units) 
L. monocytogenes / ml without any clinical symptom. On the basis of the collected data, a 
quantitative microbial risk assessment model was developed covering the production chain 
from the milking of goats until the consumed products. Predictive microbiology models were 
used to simulate the growth of L. monocytogenes during the process of cheeses made from 
goat raw milk. The modular exposure assessment model showed a significant growth of 
L. monocytogenes during chilling and storage of the milk collected the day before the cheese 
production (increase of 1.7 log cfu/ml for the median) and during the step of starter and rennet 
adjunction to milk (increase of 0.8 log cfu/ml for the median). The median estimated final 
result (in the fresh cheese) was equal to 3.5 log cfu/g. The model estimates (expressed as 
median final result issued from the exposure assessment) were realistic compared to the 
number of L. monocytogenes measured in the fresh cheese (3.6 log cfu/g) reported during the 
cheese contamination period. The average number of expected cases of human listeriosis was 
between 0 and 1 for a high-risk sub-population and 0 for a low-risk healthy sub-population. 
Scenario analysis was finally performed to identify the most significant factors and aid in 
developing priorities for risk mitigation. Thus, by using quantitative risk assessment and 
predictive microbiology models, this study provided valuable information to identify and to 
control critical steps in a local production chain of goat cheese made from raw milk. 
 
Keywords: quantitative risk assessment, predictive microbiology, goat, cheese, L. 
monocytogenes, raw milk 

Introduction 
The model presented in this paper assesses potential health risks associated with a case of 
contamination by L. monocytogenes of goat cheese made from raw milk, due to the presence 
in the herd of an asymptomatic “milk-shedder” goat. Using field and laboratory collected 
data, a modular quantitative microbial risk assessment (QMRA) model was built to simulate 
the food production pathway from milking of goats until the consumption of cheeses made 
from raw milk. The model was established in accordance with guidelines published by the 
Codex Alimentarius Commission. This QMRA uses dynamic predictive microbial models to 
simulate L. monocytogenes growth during the food processing and storage. Options of risk 
mitigations are finally evaluated with scenario analysis. 

Materials and Methods 
Monte Carlo (MC) simulations were used to obtain stochastic estimates of the output 
variables. The principles of the Modular Process Risk Model (MPRM) methodology were 
used to represent the food chain into modules and to follow the bacteriological concentration 
of the pathogen in function of unit size (Nauta 2001). The fresh cheeses with no ripening are 
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the most sold cheese in farm this and were chosen for the exposure assessment model. The 
model simulated the main events involved in the cheese processing: growth of 
microorganisms, mixing of milk and partitioning of curd.  

Exposure assessment 
The exposure assessment model comprised the following eight modules: (1) storage of the 
evening milk, (2) storage of the morning milk, (3) mixing of the morning and evening milk 
(4) adjunction of ferment to milk, (5) adjunction of rennet to milk, (6) draining off of curds, 
(7) storage and salting at ambient temperature and (8) cooled storage and wrapping. The input 
values were implemented as estimated distributions of probability, which described the 
natural variability (Delhalle et al. 2011). Each module generated an output that was used as an 
input for the next module. The effect of temperature, pH and water activity on the maximum 
growth rate of L. monocytogenes was modelled by the gamma concept with the square root 
model without interactions (Augustin et al. 2005; Pouillot and Lubran 2011). The primary 
growth model used was the three phase linear model without lag (Buchanan et al. 1997). The 
starting point of the model is the initial concentration of L. monocytogenes in the milk from 
the right part of the mammary gland of the contaminated goat measured by the Belgian Food 
Agency (2.6 log cfu). The final output of the exposure assessment model is the number of L. 
monocytogenes per cheese serving. This result was compared for validation purposes with 
data collected during the characterization of the contaminated cheeses by the Belgian Food 
Agency.  

Hazard and risk characterization 
The exponential dose-response model for L. monocytogenes was chosen (FAO/WHO 2004). 
The outputs from the exposure assessment were fed into the dose-response model to develop 
the risk characterization in order to estimate the potential number of human listeriosis cases. It 
was assumed that the number of contaminated servings corresponds to the number of exposed 
people. Based on the official statistics of the Belgian population, (proportions of normal and 
susceptible population are 74 % and 26%, respectively), the final output was expressed as the 
number of human listeriosis cases for normal and susceptible population. 

Scenario analysis 
The effect of some variables was assessed using simulation scenarios to provide valuable 
possibilities to reduce the final risk of human listeriosis cases after consumption of 
contaminated cheese. The scenarios are described in Table 2. 

Results and Discussion  
The results indicate that the growth of L. monocytogenes was decreased when the pH was 
around the pHmin. In the model, the pH of the product decreases after adjunction of ferment 
and rennet to 4.4 at the end of these steps. After that, L. monocytogenes could grow slowly. 
Table 1 gives the base line results of the exposure assessment model and the risk 
characterization modules. 
The modular exposure assessment model shows a significant growth of L. monocytogenes 
during chilling and storage of the milk collected the day before the cheese production 
(increase of 1.7 log cfu/ml for the median) and during adjunction of starter and rennet to milk 
(increase of 0.8 log cfu/ml for the median).  
Figure 1 gives the evolution of L. monocytogenes concentration during the process under 
environmental dynamic conditions. During the storage of the evening milking over night, the 
milk is slowly chilled from 39.5 to 10°C (Figure 1a). The pH decrease when the ferment is 
added to the milk and the growth of L. monocytogenes is slowed (Figure 1b). 
The estimated median final result in the fresh cheese was equal to 3.5 log cfu/g . The model 
estimates issued from the exposure assessment were realistic compared to the number of 
L. monocytogenes reported in the fresh cheese by the Belgian food agency (3.6 log cfu/g). 
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Table 1: Baseline results of the exposure assessment and the risk characterization modules 
along the cheese production chain. 
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Figure 1: Evolution of L. monocytogenes concentration during (a) the storage of the evening 

milk and (b) the adjunction of rennet to milk steps. 

In this episode of contamination, the potential number of expected cases of listeriosis due to 
the consumption of goat cheese made with raw milk was estimated between 0 and 1 case for 
the high-risk sub-population and 0 for the low-risk healthy sub-population. The results of the 
scenario analysis are displayed in Table 2. The outputs are the number of L. monocytogenes 
per cheese serving. The results obtained for the first scenario show that, the installation of a 
heat exchanger after milking could reduce the median concentration by 1.1 log cfu/g 
compared with the baseline results and could be a good alternative for risk mitigation. The 
results obtained for the second scenario prove that a reduction of 0.5 pH units at the start of 

Modules Item 
Percentiles 

Unit 5th 50t

h 
95th 

Milking Concentration of L. 
monocytogenes in the tank  -5 0 0.47 log cfu/ml 

Storage of the 
evening milk 

Concentration in milk in the tank 
after night storage  -3.6 1.7 2.4 log cfu/ml 

Adjunction of 
ferment and 
rennet 

Concentration before draining 
off the curds -2.9 2.5 3.6 log cfu/ml 

Draining off 
the curds 

Number of L. monocytogenes per 
cheese -0.91 4.5 5.6 log cfu/cheese 

Concentration of L. 
monocytogenes in a cheese -2.9 2.5 3.6 log cfu/g 

Cooled storage 
and wrapping 

Concentration of L. 
monocytogenes in a cheese -2.0 3.5 5.9 log cfu/g 

Number of L. monocytogenes per 
cheese serving  -0.4 5.2 7.5 log cfu/serving 

Human effect 

Risk of human listeriosis (normal 
population) 0 0 0  

Risk of human listeriosis 
(susceptible population) 0 0 0.00002  

Total number of human 
listeriosis 0 0 1 people 
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the adjunction of ferment and rennet could only reduce by 0.1 log cfu/g the median 
concentration compared with the baseline results. The results obtained for the last scenario, 
which combines scenario 1 and 2 show a reduction of 1.3 log cfu/g of the median 
concentration compared with the baseline results. 

Table 2: Results of scenarios analysis displayed L. monocytogenes concentration in a cheese 
serving. 

Scenarios Percentiles 
5th 50th 95th 

Baseline results : Concentration of L. 
monocytogenes in a cheese -2.0 3.5 5.9 

Scenario 1: installation of a heat exchanger 
plate to obtain a temperature of 7 °C directly 
after milking and maintain a constant 
temperature during the overnight storage. 

-3.2 2.4 4.4 

Scenario 2: pH reduction of 0.5 units at the start 
of adjunction of ferment and rennet. This could 
be achieved, for example, by adjunction of 
lactic acid. 

-2.2 3.4 5.6 

Scenario 3: Increase efforts along the 
production by combining previous scenarios  

-3.3 2.2 4.2 

Conclusions  

In this paper, the modular process risk model (MPRM) was used as a QMRA modelling 
framework. Bacterial growth was modelled with dynamic predictive microbiology models to 
give an useful tool to understand and control the contamination trough the production chain. 
Scenario analysis gave managing options to effectively reduce the risk of human listeriosis by 
consumption of chesses made from goat raw milk. This study thus shows a practical case of 
the use of QMRA and predictive modelling as efficient tools to increase food safety, 
especially at local level. 
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Abstract 
Improved process quality control in most food processes have resulted in non-testable small 
risks with respect to microbial contamination. We applied Monte Carlo simulation to evaluate 
the risk of Listeria monocytogenes contamination for the complete production and consumer 
cycle of fresh consumer milk. To validate the results of this model, the first five steps of the 
model were recreated on a laboratory scale.  
A comparison between the outcome of the model simulations and experimental data showed 
that the experimental results fitted the model reasonably well. However, in case of 
inactivation the experiments were often outside the predicted confidence intervals. The 
differences between the model and experimental data were biased; therefore the following 
actions will be executed before introducing fit parameters in the model: a) using a broader 
range of inactivation data and b) repeat the current laboratory scale experiment. 
 
Keywords: Listeria monocytogenes, milk, Monte Carlo simulation, contamination risk 

Introduction 
Improved process quality control in most food processes have resulted in non-testable small 
risks with respect to microbial contamination. Efforts to find the contaminated product in the 
total production would lead to sampling regimes that are impossible in practice. Therefore, 
Monte Carlo simulation is a powerful tool to evaluate this non-testable small microbiological 
contamination risk in food products. More specifically, we applied this tool to evaluate the 
risk of Listeria monocytogenes inactivation and/or outgrowth for the complete production and 
consumer cycle of fresh consumer milk upon introduction of a given contamination. Although 
these simulations are powerful in giving an insight in the magnitude and variability of the risk 
of contamination, the paradox is that it is not possible to validate the outcome of the model 
with experiments. Ways to circumvent this paradox is the introduction of response-dose data 
to retrofit the results of the risk characterization (for example Barron et al. 2010). However, 
data are scarce making the link more difficult. Therefore, we propose to test the robustness of 
our model by the introduction of inactivation and growth data of selected micro-organisms 
and mimicking the process on laboratory scale. In the current study the results are presented 
from a validation on laboratory scale of the first five steps of the consumer milk process. 

Materials and Methods 
Software 
The Monte Carlo model was created in Microsoft Excel with the @Risk add in for Excel 
(Version 5.5.0, Palisade Corporation, New York, USA). 

Model of the consumer milk cycle 
A full production and consumer cycle of the consumer milk of 12 subsequent steps was 
created. However, to show the proof of principle of the current validation method only the 
first 5 steps of the full cycle were used. The description of all input and output variables per 
process step are described in Table 1. 
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Table 1: General model of the first five steps of the consumer milk process with the input 
variables, the distribution and outputs per process step. Cin: initial microbial contamination in 
CFU/kg, Tx: temperature in the process step (oC) , tx: residence time in the process step (hrs or 

sec.), pHx: pH in the process step (-), awx: water in activity in the process step (-), Cx: 
microbial contamination after each process step (CFU/kg). 

Step Process  Input 
variables 

Model/distribution* Output 

1 Initial contamination Cin Normal - 
2 Initial storage Cin 

T2 
t2 (h) 
pH2 
aw2 

Gamma 
Pert (4.9, 5.0, 5.1) 
Pert (1.9, 2.0, 2.1) 

Fixed value 
Fixed value 

C2 

3 Secondary storage C2 
T3 

t3 (h) 
pH3 
aw3 

Gamma 
Pert (3.9, 4.0, 4.1) 

Pert (17.9, 18.0, 18.1) 
Fixed value 
Fixed value 

C3 

4 Thermisation C3 
T4 

t4 (sec) 

Arrhenius 
Pert (61.9, 62.0, 62.1) 

Pert (30, 33, 45) 

C4 

5 Pasteurisation C4 
T5 

t5 (sec) 

Arrhenius 
Pert (74.9, 75.0, 75.1) 

Pert (15, 18, 33) 

C5 

* Although most temperatures and residence times in the well controlled and monitored laboratory 
equipment showed a balanced behaviour around an average value, the pert distribution was chosen for 
its natural truncation and a higher probability density between the most likely value and both limits. 
 
After an initial Monte Carlo simulation the variance in the results converged after ca. 10.000 
iterations. Hence, all following simulations were based on this number of iterations.  

Inactivation and growth models 
Inactivation of L. monocytogenes was modeled by using publically available inactivation data 
(van Asselt and Zwietering 2006, Combase) in liquid products and fitting the data to first 
order kinetics according to Arrhenius. The fitted values for lnk0 and Ea are -3.77 and 333,433 
respectively. The variance based on the linear fit to the data was added to the model with a 
normal distribution. 
Growth of L. monocytogenes was modeled by using the Gamma model (te Giffel and 
Zwietering 1999) with the following minimum and optimum values (see Table 2): 

Table 2: Minimum and optimum values that where used in the Gamma model. 
Variable Xmin Xopt 

T (oC) 0 37 
pH (-) 4.32 6.70 
Aw (-) 0.92 - 

 
Initially, the values in the gamma model where not varied in the Monte Carlo simulation. 

Cultivation of L. monocytogenes strains 
Three strains of L. monocytogenes (Scott A, L4 and 1E, all milk isolates from the NIZO 
culture collection) were cultivated overnight in BHI at 30oC. Subsequently, the cultures were 
mixed with 20 ml of glycerol and 100 ml of BHI and stored in 1 ml vials at -20oC. After 1 
week the concentration of viable cells was measured. Aliquots of these stocks were used to 
artificially contaminate milk (see details below). 
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Consumer milk cycle on laboratory scale 
Cooling and heating cycles were performed in a GeneAmp PCS system 9700 in order to 
control and monitor temperature and residence time accurately. 
Triplicates of each of the three frozen strains were diluted to result in an estimated final 
concentration of 103 CFU/ml in sterile skimmed milk (Milzani). The contaminated milk was 
then stored at 2oC. Per strain 15 vials were filled with 0.1 ml of contaminated milk and placed 
in a temperature controlled system. The viable numbers per strain were assessed by plating on 
BHI agar plates and incubation was performed at 30oC for 48h. 
The process settings are given in Table 3. 
 

Table 3: Process setting in the PCR system for four subsequent steps. 
Step (conform 

table 1) 
Process Temperature (oC) Time* 

2 Initial storage 5 ± 0.05 2 h 
3 Secondary storage 4 ± 0.05 18 h 
4 Thermisation 62 ± 0.05 30 sec 
5 Pasteurisation 75 ± 0.05 17 sec 

* The cooling time in step 2 and 3 were 30 and 7 sec. respectively. After step 5 a cooling step of 36 sec 
was introduced to a temperature of 1oC. These additional residence times are reflected in the 
distribution of the residence time in table 1. 

Results and Discussion  
Validation of the Monte Carlo model with laboratory experiments 
Since the initial contamination levels of milk differed slightly between the three strains, the 
validation was performed individually for each strain. A typical result of the simulation and 
the laboratory validation is given in Figure 1. 
 

 
Figure 1: Experimental results (black dots) and Monte Carlo simulation (black line) of L. 
monocytogenes Scott A contamination in milk for the first five steps of the consumer milk 
process after 10.000 iterations. Dotted black line: maximum contamination, grey area: 99% 

probability area. Results after the pasteurization step are not shown. 
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From Figure 1 it can be concluded that the experimental results are in line with the simulation 
results. In all cases it appears that the experimental values fit in the 90% probability area of 
the simulation. Inactivation was established at a level of ≥10 2 after the pasteurization step. 
From the model an inactivation of ≥ 10 12 was calculated (not shown in Figure 1). Based on 
the current dilution factor, no full validation of this result can be established. Therefore, the 
results after the pasteurization step will not be included in the validation. 
If we compare the experimental viable counts with the median viable count from the 
simulation the differences between simulation and experiment appear larger than shown in 
Figure 1. Especially in the case of the thermisation step, the experimental results show a 
broad variability even outside the predicted confidence intervals. In case of the two storage 
steps the experiments fit the model data reasonably well. 

Possible causes for non-fitting 
Regarding the large deviation between inactivation data and model, the current kinetics are 
based on single step inactivation experiments without consideration of the effect of 
subsequent cooling and heating steps. In addition, a selection was made for inactivation data 
from liquid products. Expanding the dataset would introduce more (undesired) variance but 
would also make the model more robust. 
Finally, although the variability in the experiment was safeguarded by using three different 
strains and measuring triplicates for every single step, the results are based on one 
experiment. Therefore, the experiment will be repeated. Hopefully, using more independent 
experiments will have an effect on the current unbalanced correlation between model and 
experiments. 

Conclusions  
Currently, the Monte Carlo model does fit the experimental data reasonably well. 
Optimisation routes were identified and can be categorized into: a) using a broader range of 
inactivation data and b) repeat the current laboratory scale experiment. Both routes will be 
evaluated and included in the presentation. 
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Abstract 
Dutch-type Gouda cheeses made from pasteurized milk have not been associated with growth 
of Listeria monocytogenes, the causative agent of listeriosis. To further validate the 
microbiological safety of these cheeses, compounds with potential bacteriostatic or 
bactericidal action against L. monocytogenes were identified and the natural variation in 
concentrations was evaluated (experimentally and through literature review).  In addition, the 
sensitivity of L. monocytogenes for these compounds was experimentally determined using a 
variety of strains and by literature review. The variability of compounds present in Gouda 
cheese and sensitivity amongst L. monocytogenes strains were subsequently incorporated in a 
risk assessment model to predict the fate of L. monocytogenes in Gouda cheese. 
Compounds that potentially inhibit L. monocytogenes in semi-hard cheese were identified as lactic, 
acetic, propionic and citric acid, diacetyl, lactoferrin, nitrate, nitrite and nisin and the enzyme 
lactoperoxidase. Of the potential inhibiting compounds in cheese, undissociated lactic acid has the 
largest inhibiting effects on L. monocytogenes. Additional experiments were performed to assess the 
efficacy of undissociated lactic acid to inhibit 6 different strains of L. monocytogenes at pHs relevant to 
cheese (pH 4.2-6.0). By taking the variation of both product parameters and microbiological growth 
parameters into account, critical factors for growth inhibition of L. monocytogenes in Gouda cheese 
were identified. The approach followed is applicable to all bacteria in all kinds of liquid, soft or 
(semi)hard foods.  
Together with pH, temperature and water activity, undissociated lactic acid has a prominent 
role in inhibition of L. monocytogenes in Gouda cheese. Undissociated lactic acid has 
therefore been incorporated into a predictive model on the fate of L. monocytogenes in Gouda 
cheese in time. 
 
Keywords: Listeria monocytogenes, Gouda cheese, lactic acid, microbial sensitivity, 
inhibiting compounds, MIC, critical factors  

Introduction 
Listeria monocytogenes is a severe food-borne pathogen as it can cause listeriosis, which is a 
rare food-borne infection with a high case-fatality rate (20%). Listeriosis is mainly a risk for 
immune-compromised people, but L. monocytogenes is ubiquitous and difficult to ban from 
the food processing environment. Therefore predictive models for the pathogen during food 
production are necessary. To predict whether L. monocytogenes is unable to grow in a food 
product, simple and more complex predictive models are used. Simple models for growth of 
L. monocytogenes in food incorporate pH, temperature and water activity. More complex 
models are extended with factors like organic acids, CO2 and nitrite concentration. Such 
predictive models do not always incorporate the right critical parameters for growth, as the 
critical factors differ largely for specific foods. It is essential to determine the right critical 
growth parameters, as incorporation of the wrong parameters can lead to strong over- or 
underestimation of risks. This work presents a systematic way to determine the critical factors 
for growth of L. monocytogenes in Gouda cheese in addition to pH, temperature and water 
activity. Gouda cheese is a semi-hard cheese made from pasteurized milk. Semi-hard cheese 
is a highly complex product for food modelers, as it is a solid fermented product, made from 
starter-induced curds. Previous challenge tests show that growth of L. monocytogenes is not 
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promoted in Gouda cheese. The critical parameters for this growth inhibition need to be 
determined in Gouda cheese in order to build a good predictive model for L. monocytogenes. 
The presented approach is applicable for all pathogens in fluid and (semi)solid food products 
and reduces the chance of over- or underestimation of growth. 

Materials and methods 
Identification of critical factors for growth of L. monocytogenes in Gouda cheese 
A literature research was performed for growth-inhibiting factors that inhibit growth of L. 
monocytogenes in Gouda cheese. First, the components were listed that are present in Gouda 
cheese which can cause growth inhibition of Gram-positive bacteria. The concentration of 
these compounds needed for growth inhibition of L. monocytogenes was reviewed, and the 
concentration at which these components are present in cheese was determined as well. A 
compound was evaluated as critical for growth when the concentrations of the compound 
present in Gouda were higher or in the same range as the concentration needed for 
suppression of growth of L. monocytogenes, as observed in culture medium. Undissociated 
lactic acid was evaluated as critical for growth of L. monocytogenes and the existing lactic 
acid data set was limited. Therefore, additional experiments have been performed to 
determine the undissociated lactic acid concentration needed for growth inhibition of L. 
monocytogenes (MIC) at different pHs. 

Determination of MIC of undissociated lactic acid for growth inhibition of L. 
monocytogenes. 
L. monocytogenes strains Scott A (4b, milk isolate), EGDe (1/2a, rabbit isolate), 1F (1/2a, 
cheese isolate), 2F (1/2a, cheese isolate), 6E (1/2a, cheese equipment isolate) and L4 (1/2b, 
milk isolate) were used (NIZO culture collection). The strains were cultivated overnight (18 
hours) in BHI. The cells in the overnight culture were harvested and resuspended in BHI of 
the desired pH and added to 96 wells plates with BHI and lactic acid at set pHs, with final L. 
monocytogenes concentrations of 1.8*106 cfu/ml. L. monocytogenes strains were exposed to 
lactic acid independently and in three-fold and experiments were reproduced in an 
independent experiment. 
The minimal undissociated lactic acid concentration needed for growth inhibition (MIC) was 
determined in BHI in triplicate in 2 independent experiments for 6 L. monocytogenes strains 
at small increments of lactic acid (0-1.67 M) and pH (4.2-6.0) (Table 1) and 12 and 30°C. The 
MIC was evaluated by optical density measurements and enumeration of viable numbers 
(comparison of optical density and viable numbers after 30 days incubation at 30°C to 

alues were calculated by the Henderson-Hasselbalch equation: inoculum). The MIC v
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      (1) 

Lactic acid was set at the target pH by use of predetermined molarities of lactic acid and 
potassium lactate (experiment 1). In addition, the interaction in growth inhibition of lactic and 
acetic acid was studied at 30°C by a combination of 0, 5 and 10 mM undissociated lactic and 
acetic acid (experiment 2). 
MIC values of L. monocytogenes, as determined in BHI at pH 5.0-5.6 were compared with 
literature MICs in broth with cumulative frequency distributions based on Monte Carlo 
simulations (Microsoft Excel with the @Risk add in for Excel, Version 5.5.0, Palisade 
Corporation, New York, USA).  
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Table 1: Intervals of total lactic and acetic acid concentrations and pH chosen in experiment 1 
(lactic acid), experiment 2 (lactic & acetic acid). 

Experiment pH Lactic acid 
concentration (M) 

Acetic acid (mM) 
concentration 

1 4.2-4.4-4.6-
4.8-5.0-5.2-
5.6-5.8-6.0 

0-0.02-0.03-0.04-0.06-
0.08-0.1-0.12-0.15-
0.19-0.24-0.37-0.43-
0.67-1.06-1.67 

- 

2 5.2-5.6 0-0.11-0.23 0-0.02-0.04 

Results and discussion 
Determination of critical factors for growth of L. monocytogenes in Gouda cheese 
Compounds that potentially inhibit L. monocytogenes in semi-hard cheese were identified as 
lactic, acetic, propionic and citric acid (Table 2), diacetyl, lactoferrin, nitrate, nitrite and nisin 
and the enzyme lactoperoxidase (Table 3). The concentrations of the compounds as found in 
Gouda were divided by the concentration at which growth was inhibited by the compound. 
When this resulted in values larger than 1, the compound was evaluated as critical for growth 
of L. monocytogenes. In Table 3 it is shown that diacetyl, nitrate and nitrite do not have an 
inhibitory effect on L. monocytogenes. Nisin is not present in Gouda, but could have an 
inhibitory effect of L. monocytogenes in other types of semi-hard cheeses that contain nisin-
producing starter cultures. At the concentration present in cheese, lactoferrin could inhibit 
growth of L. monocytogenes based on broth experiments, but in milk higher concentrations 
lactoferrin were needed for growth inhibition, so lactoferrin is not expected to inhibit growth 
of L. monocytogenes in Gouda cheese; Calcium could possibly counteract the inhibiting 
activity of lactoferrin. Lactoperoxidase is not completely inactivated after pasteurisation, but 
as it is known to only increase the lag time of L. monocytogenes in milk, lactoperoxidase will 
not prevent growth of L. monocytogenes in semi-hard cheese. As concentrations of diacetyl, 
lactoferrin, nitrate, nitrite, nisin and lactoperoxidase present in Gouda are much lower than the 
concentration needed for inhibition, no further study on the variation of the concentrations 
present and the sensitivity of L. monocytogenes has been performed. 

Table 2 Identification of critical parameters for growth of L. monocytogenes by dividing the 
present concentrations of organic acids in Gouda cheese at pH 5.0-5.6 by the MIC (minimal 

concentration of the compound needed for inhibition of growth of L. monocytogenes). 
Compound Concentration present in Gouda cheese (mM) at pH 

5.0-5.2-5.4-5.6 / Inhibiting concentration (MIC) 
Critical parameter 
for growth? 

Lactic acid 0.6 – 13.8 Yes 
Acetic acid 0.07-0.7 No 
Propionic acid 0 No 
Citric acid 0 No 

Table 3 Identification of critical parameters for growth of L. monocytogenes, next to organic 
acids, by dividing the present concentrations in Gouda cheese at pH 5.0-5.6 by the MIC 

(minimal concentration of the compound needed for inhibition of growth of L. 
monocytogenes). 

Compound Concentration present in Gouda cheese (mM) at pH 
5.0-5.2-5.4-5.6 / Inhibiting concentration (MIC) 

Critical parameter 
for growth? 

Diacetyl 0.012 No 
Lactoferrin <0.6 with decrease in time No 
Nitrate <0.2 No 
Nitrite <0.01 No 
Nisin 0 in Gouda (0.01-280 in semi-hard cheeses with nisin-

producing starters, but decrease of effect in time) 
No 
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Lactic acid was evaluated as critical for growth of L. monocytogenes in Gouda cheese (Table 
2), as the concentration undissociated lactic acid present in Gouda cheese was larger or in the 
same range as the concentration needed for inhibition of growth of L. monocytogenes, as was 
observed in experiments with culture medium. Experimental MIC values were lower than 
literature data, probably due to our experimental setup in which the stepwise intervals of pH 
and lactic acid were smaller (Figure 1). The variability between our strains, however, was 
larger. Additional experiments show no synergistic effects with acetic acid and no influence 
of temperature (although at 12°C the lag time is increased, the MIC values were the same at 
12 and 30°C). 
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Figure 1: Comparison of minimal inhibitory concentration of lactic acid needed for inhibition of 
growth of L. monocytogenes, with a Monte Carlo simulation of the experimental and literature data. 

Conclusion 
Literature and experimental data on concentrations needed for growth inhibition have been 
compared to concentrations that are present in Gouda cheese to determine which compounds 
in Gouda cheese are critical for growth of L. monocytogenes in Gouda. Of all parameters 
reviewed, lactic acid was identified as the most critical growth factor and for that reason this 
factor was included into a L. monocytogenes model for Gouda cheese that incorporates 
variation, together with water activity, temperature and pH. Growth-inhibiting effects of 
calcium and sodium have not been taken into account yet. Preliminary experiments show a 
slight increase in MIC values when calcium and sodium are added to lactic acid at relevant 
concentrations for Gouda cheese, which could lower the growth-inhibiting capacity of lactic 
acid. The influence of calcium and sodium will be further explored. 
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Listeria monocytogenes – process risk modelling of lightly preserved 
and ready-to-eat seafood   

A.C.J. Grønlund, O.Mejlholm, P.Dalgaard 

Seafood & Predictive Microbiology, Division of Industrial Food Research, National Food 
Institute, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800,  
Kgs.Lyngby, Denmark 
 

Abstract 
 
Chilled RTE seafood are of increasing economic importance in Europe but requests for mild 
preservation, including low sodium content, represent shelf-life and safety challenges. A range 
of environmental parameters influence microbial responses in these products and complex 
predictive models are required to predict how growth and survival of pathogenic and spoilage 
microorganisms can be managed. The objectives of the present study were to relate processing 
and storage conditions for cold-smoked Greenland Halibut and marinated cold-water shrimp 
with concentrations of Listeria monocytogenes and lactic acid bacteria (LAB) at the time of 
consumption and the risk of listeriosis in Denmark. Our previously validated predictive 
model for L. monocytogenes was used in combination with a newly developed and 
expanded version of our LAB model to predict growth of the respective microorganisms 
as well as microbial interaction between them. The effect of (a) a series of specific 
product/storage scenarios and (b) distributions of relevant environmental conditions 
were studied. An exponential dose-response model was used to evaluate the risk of 
listeriosis for consumer groups with different relative susceptibility. Cold-smoked 
Greenland Halibut with a high product pH close to 7 represented a significant risk for 
growth of L. monocytogenes. By adding acetic and lactic acids and thereby reducing pH 
close to 6 this risk was reduced to an acceptable level. Also for chilled and marinated 
shrimp, the combined effect of pH and different combinations of organic acids allowed 
growth L. monocytogenes and the risk of listeriosis to be managed. Growth of LAB 
significantly reduced the risk of listeriosis whereas typical concentrations of water 
phase salt (of ~3.5% or lower) had relatively little effect on the risk of listeriosis.       
 
Keywords: listeria, fish, RTE 
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A quantitative microbial risk assessment model for Campylobacter 
and Listeria monocytogenes contamination of boxed beef trimmings 
from Irish abattoirs  

C. Shanahan1, G. Duffy2, F. Butler1 
1Biosystems Engineering, UCD school of Agriculture, Food science and Veterinary medicine, University College 
Dublin, Belfield, Dublin 4, Ireland 
2Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland. 

Abstract 
A quantitative microbial risk assessment using Monte Carlo simulation was developed for 
contamination of boxed beef trimmings in Irish abattoirs. Microbiological survey data from 
an Irish abattoir was used as model inputs. The prevalence and concentration of 
Campylobacter and Listeria Monocytogenes was recorded from the hide of the animal, the 
animals were tracked and the prevalence and concentration was also noted from the carcass 
post de-hiding. The model returned hide prevalence of Campylobacter as 48.5% with a 
concentration of 0.799 log10 CFU/100 cm2, and carcass prevalence as 14.3% with a 
concentration of 0.455 log10 CFU/100 cm2. The prevalence and concentration of Listeria 
Monocytogenes on the hide was 26.3% and 1.76 log10 CFU/100 cm2, respectively and the 
carcass prevalence was 14.6% with a concentration of 0.855 log10 CFU/100 cm2. The effect of 
gut rupture during evisceration was included in the model, faecal contamination data from 
European studies were using to indicate if the faeces were positive for Campylobacter or 
Listeria Monocytogenes. The refrigeration step for Campylobacter was modelled using three 
separate triangular distributions (representing log reductions of high, medium and low) this is 
a major source of uncertainty in the model. The results post chilling are, low reduction; 
prevalence 10.9% concentration 0.239 log10 CFU/100 cm2, medium reduction; prevalence 
10.3% concentration 0.214 log10 CFU/100 cm2 and high reduction prevalence 8.6% 
concentration 0.138 log10 CFU/100 cm2. The refrigeration step for Listeria Monocytogenes 
was modelling using data from an Irish abattoir study, giving post chilling results with a 
prevalence of 11.1% and concentration of 0.694 log10 CFU/100 cm2. The production of 70% 
visual lean beef trimmings was modelled in order to predict the prevalence and concentration 
of the pathogens in boxed beef. 
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Quantitative risk assessment of chemical decontamination on 
Campylobacter on chicken skin 

H. Meredith1,3, E. Cummins2, D. McDowell3, D. Bolton1 
1Teagasc Food Research Centre, Ashtown, Dublin, Ireland. 
2Biosystems Engineering, School of Agricultural and Veterinary Medicine, University College Dublin, Ireland. 
3Food Microbiology Research Unit, School of Health and Life Sciences, University of Ulster, Jordanstown, 
Newtownabbey, Co. Antrim, Northern Ireland, UK. 

Abstract 
Campylobacter is a foodborne pathogen which is excreted by warm blooded animals, mainly 
poultry, and has a low infectious dose. In Ireland, in 2010, there were 1,808 cases of 
campylobacteriosis. The objective of this study was to modify an existing Quantitative Risk 
Analysis (QRA) model for Campylobacter in a poultry slaughterhouse, incorporating a 
chemical decontamination step. The QRA used Monte Carlo simulation techniques to model 
various stages, including: scalding, defeathering, evisceration, chemical decontamination and 
human consumption. The outputs suggest that carcass washing with 14% tri-sodium 
phosphate (TSP) or 5% citric acid (CA) would achieve a lower mean probability of illness of 
0.001 compared with the untreated carcasses with a probability of 0.02. In the poultry 
slaughterhouse, a sensitivity analysis identified the initial level of bacteria on the exterior of 
the carcass to be the most critical determinant of Campylobacter infection (correlation 
coefficient of 0.75). This highlights the importance of biosecurity measures on the farm in 
minimising the ultimate risk to the consumer. Chemical decontamination with TSP and CA 
are also important factors in the reduction of Campylobacter (correlation coefficient of -0.35). 
Leaking of feces during the slaughtering process (correlation coefficient of 0.25) and cross-
contamination via the chopping board in the food preparation environment (correlation 
coefficient of 0.17) were also important determinants of consumer risk. 
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A predictive model for Escherichia coli O157:H7 in Salami: 
quantitative risk assessment 

E. Cosciani Cunico1, J. Baranyi2, G. Maccabiani1, G. Finazzi1, P. Boni1 
1Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Italy 
(elena.coscianicunico@izsler.it) 
2Institute of Food Research, United Kingdom  

Abstract 
The main objective of this study is to analyse the microbial safety of some typical Italian food 
products by predictive microbiology tools. The data studied here have been generated at the 
“Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna” (IZSLER), 
where the processes and the microbiological, physical, chemical variables of Italian meat 
products are regularly tested. A predictive model was developed from relevant data available 
from the ComBase database (www.combase.cc) to describe the effects of aw and pH on the D-
value of E.coli O157:H7. Challenge tests were carried out to validate the model, by 
determining the log reduction of E.coli O157:H7 in fermented meat product during storage. 
The log reduction of this foodborne pathogen during process is one of the safety requests for 
the trading of fermented meats. A correction factor (cf) was established to compensate for the 
bias between the food matrix and the culture medium in which the data used to create the 
predictions were generated. The corrected predictions were compared with observations in 
fermented meat. The validation indicators of the model were calculated with the formulae 
suggested by Baranyi et al. (1999). Predictive models can save cost and time compared to the 
traditional challenge tests. They can help to make decisions in risk assessment quickly, in 
order to guarantee the safety of the food. However, predictive models are just one set of tools 
in decision support and they should not be used without prejudice. The correct interpretation 
of the results needs food microbiology and technology expertise. 
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Probabilistic modelling of dioxins and dioxin-like PCBs consumed in 
dairy products 

A.O. Adekunte1,  B.K.Tiwari2, C.P. O’Donnell1   
1Biosystems Engineering, School of Agriculture, Food Science and Veterinary Medicine, University College 
Dublin, Belfield, Dublin 4, Ireland (adefunke.adekunte@ucd.ie; colm.odonnell@ucd.ie). 
2Manchester Food Research Centre, Manchester Metropolitan University, Manchester, United Kingdom 
(b.tiwari@mmu.ac.uk). 

Abstract 
Dairy products play an essential function in the human diet, especially for infants and 
children, thus their potential contamination with dioxins and DL-PCBs is of public health 
concern. This present study reports the dietary exposure of dioxins and DL-PCBs in infants 
(0-1 year), through consumption of reconstituted powdered infant formula (PIF) in addition to 
intake of butter, cheese, pasteurised bovine milk and yogurt by children (5-12 years) and 
adults (18-64 years) using probabilistic modelling. Probabilistic exposure models of dioxins 
and DL-PCBs in dairy products were developed using Monte Carlo simulation techniques and 
probabilistic distributions were used to account for uncertainty and variability in the models. 
The mean dioxins and DL-PCBs concentration in the dairy products were estimated as (0.72, 
0.61 pg WHO-TEQ/g fat), (0.92, 0.78 pg WHO-TEQ/g fat), (0.73, 0.62 pg WHO-TEQ/g fat), 
(0.50, 0.17 pg WHO-TEQ/g fat) and (1.16, 0.64 pg WHO-TEQ/g fat) for butter, cheese, 
pasteurised bovine milk, PIF and yogurt, respectively. The simulated mean exposure of 
dioxins and DL-PCBs for all age groups due to consumption of dairy products were below the 
Provisional Tolerable Weekly Intake (PTWI) of 14 pg WHO-TEQ/kg bw/week recommended 
by Scientific Committee on Food (SCF) nor Provisional Tolerable Monthly Intake (PTMI) of 
70 pg WHO-TEQ/kg bw/month recommended by Joint FAO/WHO Expert Committee on 
Food Additives (JECFA). 
 
Keywords: Dioxins, DL-PCBS, dairy products, exposure assessment, stochastic models 

Introduction 
Dioxins (PCDD/Fs) and polychlorinated biphenyls (PCBs) are very toxic environmental 
pollutants that are widely distributed around the world (Wang et al. 2009). PCDD/Fs have 
been classified by International Agency for Research on Cancer (IARC) as class 1 
carcinogens that are potential risks to human and animal health (Loufty et al. 2006). Dioxin-
like PCBs (DL-PCBs) have also been considered as toxic chemicals based on their structural 
and toxicological behaviour, which is similar to dioxins (Van den Berg et al. 1998). Exposure 
to dioxins and DL-PCBs is associated with carcinogenic effects, developmental effects, 
thyroid hormone changes, immunotoxicity and delayed psychomotor functions (Tsutsumi et 
al. 2001). As a result of the toxicity of these chemicals, regulatory authorities have 
implemented legislative limits to minimise human exposure on daily, weekly or monthly 
basis. 
Various sources have been identified as the pathways of dioxins and DL-PCBs in the 
environment, including combustion and industrial processes. Contamination of foods occurs 
through deposition of these compounds on plants and soils, subsequently ingested by dairy 
cattles. Incidences of dioxins and DL-PCBs in dairy products has been linked to contaminated 
animal feed (Adekunte et al. 2010), but the consumption of these products is considered to be 
an important source of human exposure  
Dairy products play an essential function in the human diet, especially for infants and 
children. Several studies have been carried out to assess human dietary intake of dioxins and 
DL-PCBs from dairy products (Wang et al. 2009) while other studies attributed 30 % of 
dioxins and DL-PCBs in the total diet to dairy products (Fürst et al. 1992). This present study 
reports the dietary exposure assessment of dioxins and DL-PCBs in infants (0 − 1 year) 
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through the consumption of reconstituted PIF in addition to intake of butter, cheese, 
pasteurised bovine milk and yogurt by children (5 − 12 years) and adults (18 − 64 years). 
Hence, the objective of this study was to estimate the daily dietary exposure of dioxins and 
DL-PCBs in the general population through the consumption of butter, cheese, pasteurised 
bovine milk, PIF and yogurt using probabilistic modelling approach. 

Materials and Methods 
Infants’ consumption data were obtained from Euro-Growth study while children and adults’ 
consumption data were from North/South Ireland food consumption database (IUNA 2001). 
Dioxins and DL-PCBs concentration data was extracted from available research studies. The 
@RISK software package, version 4.0 (Palisade Software, Newfield, USA) was used to run 
the simulations at 10,000 iterations using Latin Hypercube sampling, a Monte Carlo type 
simulation. Considering the opinion of EFSA (2006) on dealing with uncertainties in 
exposure assessment, uncertainty analysis was used to estimate the magnitude of 
concentration and consumption data on the model output.  

Results and Discussion  
The mean dietary exposure of infants, children and adults to dioxins and DL-PCBs through 
the intake of dairy products are presented in Table 1. Several studies have estimated daily 
dietary exposure of dioxins and DL-PCBs by multiplying concentrations data by consumption 
data (Loutfy et al. 2006). However, in this present study, dioxins and DL-PCBs exposure in 
dairy products was obtained employing Monte Carlo analysis to simulate a number of 
possible combinations of uncertainties, thus resulting in output distributions that accounts for 
variability.  
 

Table 1: Mean daily exposure of infants, children and adults to dioxins and DL-PCBs. 
 

                                                                       Daily exposure (pg WHO-TEQ/kg bw/day)     

                                                    Dioxins                                                        DL-PCBs                                                             

 Infants (0 – 1 y) Children (5 –12 y)  Adults (18 – 65 y)  Infants (0 – 1 y) Children ( 5 – 12 y)  Adults ( 18 – 65 y) 

Dairy product Boys  Girls Boys Girls Men Women   Boys Girls Boys Girls Men Women 

Butter - - 0.04 0.02 0.06 0.03  - - 0.03 0.02 0.05 0.03 

Cheese - - 0.11 0.01 0.05 0.02  - - 0.09 0.01 0.06 0.04 

Pasteurised 
bovine milk 

- - 0.23 0.18 0.06 0.04  - - 0.20 0.15 0.05 0.04 

Powdered infant 
formula 

1.76 1.91 - - - -  0.60 0.64 - - - - 

Yogurt  -  - 0.25 0.21 0.009 0.02    -  - 0.14 0.12 0.005 0.01 

 

 
As shown in Table 1, mean daily exposure to dioxins and DL-PCBs is higher in infants than 
children and adults. This result is comparable to a previous study, which reported that infants 
may have relatively high intake of dioxins and DL-PCBs than adolescents or adults, due to 
high consumption per kilogram body weight (Weijs et al. 2006). Similarly, DEWHA (2004) 
reported that high dietary intake relative to body weight results in higher mean intakes in 
infants and toddlers than other age groups. Bergkvist et al. (2008) also reported that the 
exposure to dioxins and DL-PCBs is higher among the young consumers, both girls and boys 
than among adults. Men are slightly more exposed to dioxins and DL-PCBs through butter, 
cheese and pasteurised bovine milk intakes than women. On the contrary, women are more 
exposed through yogurt than men. Higher butter, cheese and pasteurised bovine milk 
consumption by men justifies the estimated higher exposure in men than their female 
counterpart (Figure 1). Llobet et al. (2003) reported that dioxins exposure was mostly higher 
in men than women as a result of lower food consumption by women.  
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Figure 1: Daily DL-PCBs exposure of boys (--), girls (-..), men (-) and women (- - -) from the 

consumption of a) butter, b) cheese, c) pasteurised bovine milk and d) yogurt simulated at 
10,000 iterations using Monte Carlo analysis 

 
The simulated mean exposure for boys and girls from ages 4-12 years was between 0.01-  
0.25 pg WHO-TEQ/kg bw/day for dioxins and 0.01 – 0.20 pg WHO-TEQ/kg bw/day for DL-
PCBs in butter, cheese, pasteurised bovine milk and yogurt. Higher exposure was estimated 
for children is due to higher pasteurised bovine milk consumption (boys; 267 ± 200 g/day) 
and (girls; 209 ± 170 g/day) than men (195 ± 220 g/day) and women (110 ± 141 g/day) 
resulting into higher exposure in the range of 0.15 – 0.23 pg WHO-TEQ/kg bw/day for 
children than 0.04 – 0.06 pg WHO-TEQ/kg bw/day for adults.  Figure 2 show the 
probabilistic models of infants’ dioxins and DL-PCBs exposure estimated in this study. 
Results showed that female infants (girls) are slightly more exposed to dioxins (1.91 ± 0.75 
pg WHO-TEQ/kg bw/day) and DL-PCBs (0.64 ± 0.73 pg WHO-TEQ/kg bw/day) than male 
infants (boys) with dioxins exposure of 1.76 ± 0.67 pg WHO-TEQ/kg bw/day and DL-PCBs 
exposure of 0.60 ± 0.74 pg WHO-TEQ/kg bw/day for DL-PCBs). Higher exposure in girls is 
as a result of lower body weights in comparison to boy’s weight reported in the Euro-Growth 
study (Haschke et al., 2000).  
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Figure 2: Daily exposure of boys (    ) and girls (----) to a) dioxins and b) DL-PCBs through 
the consumption of reconstituted PIF. Horizontal dot lines show the TDI of 2 pg WHO-

TEQ/kg bw/day (SCF, 2001). 
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In general, dioxins and DL-PCBs exposure through consumption of dairy products is higher 
in infants than children and adults. This fact is comparable to previous studies (Schecter et al. 
2001; Bocio and Domingo 2005), which reported that daily exposure to dioxins and DL-PCBs 
decreases at 12 months of age throughout childhood and adolescence until adulthood. The 
utmost finding of this present study is that all age groups (infants, children and adults) are 
below the recommended regulatory limits. However, it is important to specify that the 
uncertainties in the model outputs may occur from the use of upper bound concentrations 
which assumed that all individual dioxins and DL-PCBs that are present at concentrations 
below the detection limit are present at the detection limit, and therefore could be an 
overestimation of exposure. Additionally, the use of Euro-Growth study due to unavailability 
of infant dietary consumption survey in Ireland may under or overestimate food consumption 
patterns of infants. Thus, the estimated outputs in this study are likely to cause slight 
under/over-estimation of infants, children and adults exposures to dioxins and DL-PCBs 
through the consumption of dairy products. 

Conclusions 
This study assessed the daily dietary exposure of infants, children and adults to dioxins and 
DL-PCBs from the consumption of pasteurised bovine milk and dairy products using 
probabilistic modelling. Results showed that the mean exposure of dioxins and DL-PCBs for 
different age groups did not exceed the PTWI of 14 pg WHO-TEQ/kg bw/week (equivalent 
of 2 pg WHO-TEQ/kg bw/day) recommended by the Scientific Committee on Food (SCF, 
2001) nor the PTMI of 70 pg WHO-TEQ/kg bw/month (equivalent of 2.3 pg WHO-TEQ/kg 
bw/day) recommended by Joint FAO/WHO Expert Committee on Food Additives (JECFA, 
2002). 
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Abstract 
Commercial powdered infant formula (PIF) is commonly used for feeding infants as an 
alternative to human breast milk. The occurrence of pathogenic microbial hazards in PIF 
represents a safety concern and may pose health risks to infants, especially preterm, 
underweight and the immunocompromised. The risk ranking of the 5 most industrially 
relevant microbial hazards in PIF was carried out using a semi-quantitative risk assessment 
tool known as Risk Ranger. Risk Ranger provided information relating to hazard severity and 
population susceptibility, probability of infants’ exposure to contaminated reconstituted PIF 
(likelihood of occurrence) and the probability that reconstituted PIF contains an infectious 
dose. From this study, numerical estimates in form of risk scores and the numbers of illnesses 
per annum were obtained. The microbial risk scores were 61, 56, 41, 36 and 21 for 
Cronobacter sakazakii, Salmonella species, Clostridium botulinum, Staphylococcus aureus 
and Bacillus cereus, respectively. The predicted cases per annum were 2.96, 42.1, 0.098, 
0.0049 and 0.14 for C. sakazakii, Salmonella spp., C. botulinum, S. aureus and B. cereus 
respectively. Results showed that C. sakazakii and Salmonella spp. had the highest risk 
scores, which signify the need for novel risk reduction strategies or measures to minimise or 
eliminate the risk of infants’ exposure 
 
Keywords: risk ranking, microorganisms, Risk Ranger, food safety, risk assessment 

Introduction 
Powdered infant formula (PIF) is a human breast milk substitute for infants, and a main 
source of nutrition for some infants, especially infants under the age of 6 months. The 
microbiological safety of PIF is of public health concern due to infants’ vulnerability to 
enteric pathogens. Studies have demonstrated that contamination of PIF with microbial 
contaminants may cause infections and illnesses in infants, which can severely impact their 
development and health; in severe cases it can cause death (Coignard et al. 2006). However, 
PIF containing low levels of microbial contaminants may not cause illnesses in healthy 
infants and young children, but, the ability of these organisms to multiply during and after 
preparation of reconstituted PIF poses significant food safety risk (EFSA 2004).   
C. sakazakii and Salmonella spp., both in the family Enterobacteriaceae have been reported to 
be occasionally present in PIF (Cawthorn et al. 2008). C. sakazakii has been reported to cause 
illness in neonates, low birth weight infants and immunocompromised (Iversen and Forsythe 
2003). Several studies have reported C. sakazakii infections and outbreaks in neonates and 
infants (Coignard et al. 2006). Apart from the reported outbreaks of C. sakazakii, Salmonella 
spp. infections have also been studied. Jourdan et al. (2008) reported a case of Salmonellosis 
in exclusively bottle-fed infants that developed symptoms of febrile diarrhoea due to the 
consumption of PIF. Other microorganisms such as C. botulinum, B. cereus and S. aureus 
have been recognised as sources of food-borne infections in infants. Brett et al. (2005) carried 
out a study on a case of infant botulism which was linked to PIF. Moreover, Redmond et al. 
(2009) reported that staphylococcal contaminations usually arise from mishandling of cleaned 
ready to re-use infant bottles by preparers, thus leading to cross-contamination. In the case of 
B. Cereus, Becker et al. (1994) studied the distribution of PIF in 17 countries and reported 
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that 54 % of 261 samples were contaminated with this organism with levels ranging from 0.3 
to 600 cells/g.  Based on the vulnerability of infants to these microbial contaminants, there is 
a need to rank and provide information required for further risk management. Microbial risk 
ranking provides information on hazard severity, exposure, likelihood of occurrence and other 
information relevant to risk management decision-making. The objective of this study was to 
compare and prioritise the 5 most industrially relevant microbial contaminants in PIF using 
the Risk Ranger software application. 

Materials and Methods 
C. sakazakii, Salmonella spp., C. botulinum, S. aureus and B. cereus were considered the 5 
most industrially relevant contaminants implicated in food-borne outbreaks associated with 
the consumption of reconstituted PIF based on reported research studies.  To compare and 
prioritise the risks of these microbial contaminants, a semi-quantitative spreadsheet software 
(Risk Ranger), developed by Ross and Sumner (2002) was employed. Qualitative data used in 
this study was obtained from existing research studies. Using Risk Ranger (Figure 1), a risk 
rating was assigned to each microbial contaminant based on the susceptibility and severity of 
the hazard, probability of exposure to food and the probability of food containing an 
infectious dose. 
 

Hazard Severity

6 10

If "OTHER" enter a percentage 
value between 0 (none) and 100 0.0000%

If "other", what is the increase 
(multiplic-ative) needed to reach an 
i f ti  d  ?

1.E+02

7 Effect of Processing 11

      
indicates the extent of risk 
increase 1.00E-03

If "other", enter a value that indicates 
the extent of risk increase 0.00E+00
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of days between a 100g 10

8

If "OTHER" enter a percentage 
value between 0 (none) and 100 9.00%
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9

60,000
If OTHER  please 
specify:

60,000
61

RISK RANKING                        
( 0 to 100) 

total predicted illnesses/annum in 
population of interest 2.96E+00
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Serving

How effective is the post-processing control 
system?
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level would cause infection or intoxication to the 
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OTHER 

 
 

 
Figure 1: Risk ranking and estimation of possible infection of C. sakazakii in infants using 

Risk Ranger. 

Results and Discussion  
The Risk Ranger tool was used to convert qualitative statements to numerical values using a 
series of mathematical steps with risk ratings on a scale of 0 – 100. Zero represented no risk 
and 100 represented the consumption of PIF by infants containing a lethal dose of microbial 
contaminant.  Risk Ranger combines qualitative statements to produce three risk estimates; 
risk ranking, predicted annual illnesses and probability of illness per day in a selected 
population (Ross and Sumner 2002). The result of risk estimation made by Risk Ranger tool 
per pathogen in PIF is shown in Table 1. Risk Ranger predicted 2.96 outbreaks of C. 
sakazakii per annum (0.0049 % of the consuming population). Stoll et al. (2004) estimated an 
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Qualitative questions Cronobacter 
sakazakii 

Salmonella 
species 

Clostridium 
botulinum 

Staphylococcus 
aureus 

Bacillus cereus 

1. Hazard  severity Severe hazard Moderate hazard Moderate hazard Mild hazard Mild hazard 

2. Population susceptibility Very susceptible Very susceptible Very susceptible Very susceptible Very susceptible 

3. Frequency of consumption Daily Daily Daily Daily Daily 

4. Proportion consumption (%) 

5. Size of consuming     

   populationa 

Very few (1.5 %) 

60,000 

Very few (1.5 %) 

60,000 

Very few (1.5 %) 

60,000 

Very few (1.5 %) 

60,000 

Very few (1.5 %) 

60,000 

6. Proportion of raw product 

    contaminated (%) 

7. Effect of processing  

Nil 

 

100 % reduction 

Nil 

 

100 % reduction 

Nil 

 

99 % reduction 

Nil 

 

99 % reduction 

Nil 

 

99 % reduction 

8.  Post processing 

    contamination rate (%) 

9. Post processing control 

10. Increase required to cause 

      infection/intoxication 

Minor (1 %) 

 

Controlled  

Moderate,100 
fold 

Minor (1 %) 

 

Controlled  

Moderate, 100 
fold 

None 

 

Controlled  

Slight, 10 fold 

Minor (1 %) 

 

Controlled 

Slight, 10 fold 

1 % 

 

Controlled 

Slight, 10 fold 

11. Effects of preparation     

    on contaminant 

Not applicable to 
PIF 

Not applicable to 
PIF 

Not applicable to 
PIF 

Not applicable to 
PIF 

Not applicable to 
PIF  

Predicted cases per annum 2.96 42.1 0.098 0.14 0.0030 

Risk ranking 61 56 41 36 21 

 

annual incidence of C. sakazakii infections to be 9.4 per 100,000 infants (0.000094 %) for 
very low birth weight. An outbreak of C. sakazakii infections in infants occurred in France in 
2004 (Coignard et al. 2006) with a total of nine cases (including two deaths), which was at a 
higher level than the outbreaks predicted in this study. Moreover, there have been a number 
of recalls linked to the French outbreak that occurred in countries around the world such as, 
Brazil, Hong Kong, Ireland, the Gambia, Gabon and the United Kingdom (FAO/WHO 2006). 
In case of Salmonella spp., a number of outbreaks have been reported in the literature. CDC 
(2004) reported 139.4 cases per 100 000 (0.139 % of consuming population) of salmonellosis 
incidence among infants to be more than eight times greater than the incidence across all age 
groups. In 2005, 104 infants developed Salmonella infections in France (InVS 2005) and PIF 
was reported to be the cause of illness. Thus, 42.1 outbreaks predicted for Salmonella spp. 
(0.07 % of the consuming population) in this present study was lower in comparison to CDC 
report.  
 

Table 1: Risk ranking of selected microbial contaminants in powdered infant formula. 
 

In most infant botulism cases, the source of C. botulinum is not known (Jones et al. 1990), 
nevertheless, honey and corn syrup have been identified as sources of the organism in a small 
number of cases (Midura 1996). Recently, few studies have identified association between 
infant botulism and infant formula milk feeding.  A clinical diagnosis of infant botulism 
linked to the consumption of PIF in United Kingdom was reported as the sixth case since 
2001 (Brett et al. 2005). This shows that 0.098 (0.00016 % of consuming population) 
cases/per annum predicted in our study is comparable to similar studies based on the fact that 
outbreaks of this organism in PIF is minimal. The Risk Ranger predicted 0.14 cases per 
annum (0.00023 % of consuming population) for S. aureus due to consumption of PIF. 
Though, PIF cannot be linked directly to staphylococcal infections and poisoning in infants as 
contamination occurs during preparation and handling. Studies have shown that infants 
usually get infected with staphylococcal poisoning through human carriers preparing their 
foods (Redmond et al. 2009). A study carried out by AIFST (2003) showed that the predicted 
number of cases for B. cereus in France, Germany and the USA was less than 0.1 cases per 
10,000,000 (0.000001 % of consuming population) per annum while Finland, Scotland, 
England/Wales, Hungary and Cuba all report more than 4.0 cases per 10,000,000 (0.00004 % 
of consuming population) per annum were lower. This shows that the predicted number of 
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cases estimated for B. cereus (0.000008 % of consuming population) using the Risk Ranger 
were within the range reported in similar studies. 

Conclusions  
The use of Risk Ranger for ranking microbial contaminants in PIF was described in this 
study.  Risk Ranger provided an estimation of the total number of illnesses per annum in Irish 
infants and identified 2 high risk microbial contaminants, which have been implicated in PIF 
outbreaks.  From the ranking, C. sakazakii and Salmonella spp. are the microorganisms of 
greatest concern in PIF.  Results from this study are comparable to those reported by the 
European Food Safety Authority (EFSA) Scientific Panel on Biological Hazards (BIOHAZ 
Panel) as well as the FAO/WHO (2006). In conclusion there is a high need for novel risk 
reduction strategies or measures to minimise or eliminate C. sakazakii outbreaks among 
infants. 
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Abstract 
Vacuum packed cold-smoked salmon contaminated with Listeria monocytogenes has been 
implicated in food-borne listeriosis. The bacterium has the ability to grow under a wide range 
of temperatures (1 – 45 ˚C), thus possessing the ability to grow throughout the temperature 
fluctuation encountered during food storage and distribution. Modelling L. monocytogenes’ 
dynamic behaviour under fluctuating temperatures is critical for an accurate evaluation of 
food safety. In this study, a product specific model for cold-smoked salmon was constructed 
that covers the retail and consumer phase of the food pathways. The variability in time and 
temperature during retail storage, consumer transport and consumer storage was included in 
the model. Vacuum packed cold-smoked salmon were inoculated with 3-cocktail strains of L. 
monocytogenes, with an initial concentration of 101 CFU/g and stored at 4, 8, 12 and 16 °C 
for 18 days. The primary growth kinetics parameters at each temperature were obtained by 
fitting the observed data in the DMFit Excel add-in. The maximum specific growth rate was 
further modelled as a function of temperature by the square root model. The model was 
validated under two scenarios of dynamic temperature conditions incorporating the 
fluctuations occurring during the various stages of the food pathways (post-production, retail 
and consumer phase). The model predictions were based on the square root model and the 
differential equation of Baranyi and Roberts (1994). The model performance was based on 
the measures of bias factor Bf, accuracy factor Af and goodness of fit GoF. The values of Bf 
and Af of the model were close to unity, indicating good agreement between observations and 
predictions of the model. The model was compared to two growth predictors; Combase and 
Seafood Spoilage and Safety Predictor (SSSP) and the predictions obtained gave an 
overestimation of L. monocytogenes growth. This study illustrates the potential of dynamic 
modelling of L. monocytogenes growth for cold-smoked salmon from retailer to consumer as 
a means of evaluating the product safety at different stages of the food pathways. 

Keywords: L. monocytogenes, smoked salmon, product specific modelling, food-pathways 
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Abstract 
In this work the processing of maize to cornflakes was considered. The starting point was the 
maximum levels in commission regulation 1881/2006 for total aflatoxins. Having these values 
in mind, the process steps were individually considered and PCs determined when required. 
Moreover, according to these PCs, possible PcC and PdC were calculated, using previously 
published results. The present study demonstrates the usefulness of predictive modelling in 
management and prevention of the mycotoxin hazard. It highlights the need for predictive 
model development for mycotoxigenic fungi at the boundaries of growth and for the kinetics 
of inactivation of mycotoxins in food substrates. Finally, uncertainty is a key point to be 
addressed; compliance with maximum levels, as in this example, may depend on the 
magnitude of this parameter. 
 
Keywords: food safety objectives, performance objectives, performance criteria, mycotoxins, 
maize  

Introduction 
A Food Safety Objective (FSO) is the maximum frequency and/or concentration of the hazard 
in a food at the time of consumption that provides the appropriate level of protection and is 
preceded by the Performance Objective (PO), which is the maximum frequency and/or 
concentration of a hazard in a food at a specified step in the food chain before the time of 
consumption. In practice, FSOs are met through the establishment and implementation of 
performance and process criteria. In the food chain it is necessary to know the effect of every 
step and treatment, Performance Criteria (PC), as well as the process parameters, Process 
Criteria (PcC) (t, T, pH, aw) which can be applied in any level, and Product Criteria (PdC) 
(pH, aw, gaseous atmosphere). PdC assure that the hazard level never overtakes safety levels 
before being cooked or consumed (Codex Alimentarius 2007). While Codex considers FSOs 
only for microbial hazards, the concept could apply to other types of hazards as well. 
Mycotoxins are chemical hazards with a microbiological origin. 
Maize is a very important cereal for the human and animal diet; however, it can be 
contaminated by mycotoxins. Aspergillus is a mould genus which can contaminate maize and 
produce mycotoxins. Aspergillus flavus and A. parasiticus can contaminate maize and their 
by-products and synthesize aflatoxins (AFs), causing damage to human and animal health. 
Processing of maize to by products involves a series of steps in which AFs content might 
either increase or decrease.  
Commission regulation 1881/2006 sets the maximum levels of aflatoxin B1 and total 
aflatoxins (B1+B2+G1+G2) for maize to be subjected to sorting or other physical treatment 
before human consumption or use as an ingredient in foodstuffs at 5 and 10 µg/kg, 
respectively, and for all products derived from cereals at 2 and 4 µg/kg, respectively. 

Materials and Methods 
In this work the processing of maize to cornflakes was considered. The process involved 
traditional grits cooking (non extruded), flaking and toasting as main steps (Figure 1). The 
starting point was the maximum levels in commission regulation 1881/2006 for total AFs. 
The FSO was set at 4 µg/kg, and the level 10 µg/kg was used as a guideline PO along the 
processing chain. Having these values in mind, the process steps were individually considered 
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(Table 1) and PCs determined when required. Moreover, according to these PCs, possible PcC 
and PdC were calculated, using previously published results. This process can either be done 
forward, starting from the PO guideline in the raw material, or backward, starting from the 
FSO to be accomplished in the final product. 
 

Receiving of maize

Maize storage

Dry-milling
Maize fractions

other than flaking
grits

Flaking grits storage

Receiving of
granulated sugar, 
malt syrup, salt

Storage of
granulated sugar, 
malt syrup, salt

Mixing

Cooking

Drying

Cooling and tempering

Flaking

Toasting

Packaging

Storage and transportation

Retail market to consumer
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grits

Flaking grits storage
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Cooking

Drying

Cooling and tempering
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Figure 1. Flow chart for corn flakes production from raw maize. 

Results and Discussion  
For the particular case of cornflakes production, relevant steps regarding AFs hazard were 
grouped: 
- Storage steps: maize storage, grits storage, final product storage, in these steps a ‘zero 

increase’ PC was stated to be achieved by proper storage conditions in terms of 
temperature and humidity (water activity, aw). Predictive models can be applied at this 
point. 

- Dry-milling: It is known to be the most important critical control point in maize 
processing, as it allows for separation of the most contaminated outer fractions of the 
maize grain. 

- Thermal treatments: cooking, drying, toasting. Although thermostability of AFs is well-
known, inactivation may occur to some extent. There is a lack of predictive models 
describing AFs destruction as a function of temperature and time in food matrices, and the 
impact of moisture content. 

Storage steps 
In the storage cases, in order to prevent mycotoxin production, control of mycotoxigenic 
mould growth is required. Despite the absence of direct correlation between mould growth 
and mycotoxins production, prevention of fungal growth effectively conduces to prevention 
of mycotoxin accumulation. In general, aw and temperature are regarded as the main 
controlling factors determining the potential for mould growth during storage. Although in the 
past many studies dealt with temperature and aw effects on mould growth and AFs production, 
only a few sought for the conditions limiting growth and toxin production. Thus at this point 
PcC were calculated from the kinetic models given in Samapundo et al. (2007) and Garcia et 
al. (2011), and from the probability model in Garcia et al. (2011) to guarantee a zero increase 
in AFs through temperature/aw control (Table 1). 
For kinetic models a growth rate <0.05 mm/d was considered the no-growth boundary, while 
the probability model p<0.1 was considered indicative of no-growth. Similar PcC were 
calculated for a given isolate from both kinetic and probability models, e.g. for guaranteeing 
no growth of an A. parasiticus isolate a aw under 0.81 would be enough, or a combination of 
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aw bellow 0.85 with a temperature under 15ºC (Garcia et al. 2011). On the other hand, the A. 
flavus isolate studied by Samapundo et al. (2007) showed better adaptation to low aw, leading 
to calculated PcC of, for example: < 0.76 aw, < 11ºC, or <0.80 aw together with a temperature 
under 21ºC (Table 1). There is a need for ecophysiological studies involving a higher number 
of isolates under limiting growth conditions. 

Dry milling 
Dry milling is a crucial step in post-production of grains. Its basic objective is to remove the 
surface parts of the grain with minimum breakage of the endosperm by a physical process to 
produce an edible kernel. By means of removing the outer parts of the corn kernel such as hull 
and bran, the main products obtained include grits, germ, meals and flours. Coarse grits are 
the target fraction for corn flakes production. Taking into account the effect of dry-milling in 
AFs distribution in lots with initial concentration <10 µg/kg, the levels of AFs reduction vary 
from 7% (Castells et al. 2008) to 49-56% (Brera et al. 2006; Pietri et al. 2009). The dry-
milling process may vary in the number of steps involved, leading to different reduction 
levels. A tentative level of PC=50% reduction was chosen in this work as an example. 

Thermal processes 
The application of heat to cook and preserve products is the basis of all thermal processes. 
These processes include cooking, roasting and heat drying. Although the stability of several 
mycotoxins, mainly fumonisins, in various methods of thermal processing has been reported, 
studies with AFs are scarce, except for roasting of nuts. In particular, studies of the kinetics of 
AFs, and other mycotoxin reduction as a function of temperature would be of interest to be 
applied in PcC calculation. The stability of AFs is, among other things, crucially determined 
by the availability of H2O in the medium. Heating an AFs solution containing carbohydrates 
for 30 min led to a decrease in AFs of 50 and 75%, at 150 and 180ºC, respectively (Raters and 
Mattisek 2008).  
Cooking of grits involves steam-heating over 100ºC. Cooking wheat (100ºC, 30min) with 
10% moisture content led to 40-47% AFs reduction (Hwang and Lee 2006). The loss of AFs 
was considerably higher when using a pressure cooker at 160 °C for 20 min (78-88% loss) 
than the ordinary cooker without pressure under similar conditions (31-36% loss) (Je and Kim 
2006). In another study, boiling corn grits gave an average reduction of AFs of 28%. Castells 
et al. (2008) did not find a significant reduction. Thus for a pressure cooking, PC might be 
around 80% reduction (Table 1).  
Drying is usually done at <121ºC until 10-14% humidity is achieved (Arvanitoyannis and 
Traikou 2005). Heating wheat or maize at 100ºC or lower did not lead to any marked 
reduction in AFs (Hawkins et al. 2005; Hwang and Lee 2006). No more data were found in 
AFs reduction through maize drying, thus this point was not considered to clearly contribute 
to food safety. 
Toasting of flakes involves high temperatures (274-329ºC) for seconds (90 s) (Arvanitoyannis 
and Traikou 2005). In a study of corn muffins made from cornmeal naturally contaminated 
with AFs, 87% of the initial amount of aflatoxin B1 in the cornmeal was found in the baked 
muffins (Stoloff and Trucksess 1981). Moreover, Castells et al. (2008) did not find a 
significant reduction. Roasting of nuts has been reported as a crucial step for reducing AFs, 
however, the residence times involved are usually longer than 20 min. Considering the 
existing information, toasting was not considered to clearly contribute to food safety. 

Analytical uncertainty 
For the particular case of mycotoxins, the maximum level as set in the EC Regulation 
1881/2006 (FSO) must be over the final product PO. EC Regulation (401/2006) states as 
criterion for acceptance of a lot or sublot that the laboratory sample conforms to the 
maximum limit, taking into account the correction for recovery and measurement uncertainty 
(U). According to the performance criteria for AFs analysis (EC 401/2006, recommended 
RSDr=24% for a concentration of 4 µg/kg), calculated measurement uncertainty would take a 
value of 1.94 µg/kg. Thus in this case PO for the final product should take a value of 4-1.94~2 
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µg/kg. Thus, in the example, given a recommended value of U, either the PO at the reception 
of the maize should be lower than 10 µg/kg or the PrC might need to be redesigned to comply 
with the maximum level.  

Table 1: Food safety metrics applied to total AFs in cornflakes production from maize. 
Process step PC PrC PdC PO 
Receiving of maize - - - ≤10 µg/kg 

(1881/2006) 
Maize storage Zero increase < 0.76 aw, or < 11ºC, or 

<0.80 aw and <21ºC 
- ≤10 µg/kg 

Dry-milling 50% reduction - - ≤5 µg/kg 
Flaking grits storage Zero increase < 0.76 aw, or < 11ºC, or 

<0.80 aw and <21ºC 
- ≤5 µg/kg 

Cooking 80% reduction 
20% reduction 

160ºC 20 min 
100ºC (30-120 min) 

- ≤1 µg/kg 
≤4 µg/kg 

Storage, transportation and 
retail market 

Zero increase - < 0.76 aw ≤1 µg/kg 
≤4 µg/kg 

Consumer - - < 0.76 aw FSO≤4-U µg/kg 
(1881/2006) 

U=measurement uncertainty 

Conclusions  
The present study demonstrates the usefulness of predictive modelling in management and 
prevention of the mycotoxin hazard. It highlights the need for predictive models development 
for mycotoxigenic fungi at the boundaries of growth and for the kinetics of inactivation of 
mycotoxins in food substrates. 
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Development of predictive model to predict the outgrowth of Listeria 
monocytogenes in Ready-To-Eat food products  
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Abstract 
EU regulations state that the food industry, within the framework of good hygiene practices 
and hazard analysis of critical control point programmes, can make use of predictive models 
to comply with the directives of controlling Listeria monocytogenes outgrowth in food 
products (EC 2073/2005). Hence, it is important to develop validated models, based on 
challenge studies in food products. The objectives of this study are to: (1) Develop a 
mathematical model for Listeria monocytogenes that predicts its potential for growth in food 
products as a function of temperature, pH, water activity and the concentration of organic 
acids and their salts. (2) Demonstrate the significance of lactic acid, acetic acid and their salts 
against Listeria monocytogenes in food products. The model shows that the intervention of 
lactic acid, acetic acid or their salts addition to food products significantly impedes the 
outgrowth of Listeria monocytogenes in a food product. Addition of 0.75 % PURASAL 
Powder S98 to a food product (pH 5.9, moisture 80%, aw 0.988) was simulated at 95 % 
confidence level. At 4 °C, for the treated sample, the time for 2 log growth for Listeria 
monocytogenes was increased from 11 days to 17 days compared to that of control. The 
developed model describes the growth kinetics very well, including independent challenge 
studies, and in general gives fail safe predictions. The developed model gives reliable 
predictions of the potential for outgrowth of Listeria monocytogenes in RTE foods. This 
modeling tool can be utilized by food industry to assess how they can control the growth of 
Listeria monocytogenes by addition of lactic acid, acetic acid or their salts to their product 
formulations, and by sufficient temperature control. 
 
Keywords: Listeria monocytogenes, predictive model, lactic acid, acetic acid 
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Application of predictive microbiology in food and drink SMEs: 
assessment based on 20 years of experience 

M. El Jabri, F. Postollec, D. Sohier, C. Travaille, D. Thuault 

ADRIA Développement, ZA Creac’h Gwen, F-29196 QUIMPER Cedex 

Abstract 
Food industry in the European Union is characterized by a large percentage of Small and 
Medium Enterprises (SMEs, 99%) with 308000 enterprises representing 63% of the direct 
employees and 48% of the turnover of this sector. Consumers and society ask for safe, healthy 
and tasty food. Models which can help the food operators to predict and control food quality, 
are needed and the access of SMEs to these models must be optimized. The development of 
software like Sym’Previus is the best way for SMEs to use these models. Predictive 
microbiology may be useful for the following applications: 
- Support for training course, 
- Help to identify Critical Control Point in a process and formalize an HACCP plan, 
- Classify products according to their safety and to focus more attention on more sensitive 
products, 
- Ensure food shelf-life with the understanding of factors influencing bacterial growth in food 
and reduce laborious challenge studies saving time and money, 
- Optimize the formulation (pH, water activity, additives) in order to assure the best stability 
and reduce time-to-market, 
- Optimize new process conditions (temperature and heat treatment time). 
Examples of research transfer in predictive microbiology in SMEs will be given. The 
provision of this information to food companies (particularly SMEs) requires the presence of 
an expert unavailable in SMEs. Financial supports are needed and can be brought by trade 
associations, programs for research transfer or by regional support. 
 
Keywords: predictive microbiology, HACCP, shelf-life, decision making tool 
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Abstract 
In this study available predictive models are evaluated and adapted with respect to their 
potential use in predicting outgrowth of Listeria monocytogenes in two types of meat 
products, i.e., cooked meat products and aspic products. Major criteria for selecting models 
were the ranges of physico-chemical parameters covered by the model, together with the type 
of broth or type of product used during model development. Challenge test data and 
simulation results of the selected models were compared. Based on this comparison, the 
existing models were evaluated and adapted to take into account the observed differences. 
The adapted predictive models can be a very useful tool for the food industry. It could assist 
companies during product development and in the accurate assessment of microbial food 
safety during shelf life. 
 
Keywords: growth, Listeria monocytogenes, predictive modelling, meat, food safety 

Introduction 
Although the EU regulation specifically indicate predictive models as a tool to document the 
growth of L. monocytogenes in RTE foods, predictive models are until now only being 
applied in a limited extent by companies. The aim of this research is to develop/adapt and 
validate predicting models for specific categories of meat products, i.e., meat products with 
similar intrinsic and extrinsic characteristics. Two categories of meat products are considered 
in this paper, i.e., cooked meat products and aspic products. The resulting models are 
promising tools for assessing shelf life and for product development in the food industry. 

Materials and Methods 
Data collection 
For the category of cooked meat products, cooked ham was prepared on a lab scale; for the 
category of aspic products, a commercial product was purchased from a local producer. 
For each batch of meat products challenge tests (7 °C, 25/30 days) were performed according 
to the EU technical guidance. The meat products were sliced, inoculated with L. 
monocytogenes, and MAP (for the cooked ham) or vacuum (for the aspic product) packed. 
Microbial analyses were performed at regular time intervals to quantify the evolution of L. 
monocytogenes and lactic acid bacteria (background flora). At day 0, the pH, water activity 
(aw), % dry matter, % NaCl, % lactate, % acetate and nitrite were determined. 

Computational environment 
Simulations are performed in Matlab (The Mathworks Inc., Natick), numerial integration is 
performed with the ode23s routine in Matlab. 

Results and Discussion  
In the first step, an inventory was made of available predictive models with respect to their 
applicability to predict growth of L. monocytogenes for different types of meat products. 
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Major criteria for selecting models were the ranges of temperature, pH, aw/salt and acid 
concentrations covered by the model, together with the type of broth or type of food product 
used during model development.  
Based on a study on smoked salmon, Vermeulen et al. (2011) concluded that an appropriate 
predictive model should also include the interaction with background flora. In this work, the 
growth of background flora (lactic acid bacteria) and their effect on the growth of L. 
monocytogenes is modelled as described by Mejlholm and Dalgaard (2007). The interaction is 
modelled by the Jameson effect, i.e., the assumption that all microorganisms are suppressed 
when the total microbial population achieves the maximum population density. 

Cooked meat products 
Based on the screening of models available in the literature, the cardinal parameter model of 
Mejlholm and Dalgaard (2009) was chosen as a starting point. This model was developed for 
seafood, but was also evaluated for predicting growth in meat products (Mejlholm et al. 
2010). Besides temperature, pH and aw/NaCl, this model also takes CO2, nitrite and acid 
levels and the interaction between all these parameters into account: 

 
                
 
           
           (1) 
 
 
 

with µmax,Lm the maximum specific growth rate of L. monocytogenes, T (°C) temperature, aw 
water activity, CO2,eq (ppm) the concentration of dissolved CO2 at equilibrium, NIT (ppm) the 
nitrite concentration, and LACu (mM) and AACu (mM) the concentration of undissociated 
lactate and acetate, respectively. ξ describes the relative effect of the interactions between 
environmental parameters on µmax. The measured values of physico-chemical parameters of 
the meat products were used as input for model simulations. 
Experimental data for the growth of Listeria in cooked ham together with the corresponding 
model simulations (with and without taking interaction with lactic acid bacteria (LAB) into 
account) are presented in Figure 1 (only the results of batch 1 are shown). 
 

 
Figure 1: Experimental data (∗,ο) and model simulations (-) (equation (1)) for cooked ham. 

Right plot: no interaction with LAB; left plot: interaction with LAB (Jameson effect) 

For both batches of cooked ham, the model of Mejlholm and Dalgaard (2009) provides a 
good estimate of µmax,Lm. Taking interaction between L. monocytogenes and lactic acid 
bacteria into account, however, results in an underestimation of the growth curve (Figure 1, 
right plot). L. monocytogenes continues to grow even when lactic acid bacteria have reached 
the stationary phase and thus the assumption of the Jameson effect does not hold for this case. 
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Aspic products 
The pH-values for the aspic products (5.47 and 5.41 for batch 1 and 2, respectively) were 
lower than the lower pH limit (5.6) of the model of Mejlholm and Dalgaard (2009). 
Extrapolation of the model to these lower pH values give rises to an underestimation of the 
growth rate of L. monocytogenes. For batch 2, e.g., a µmax,Lm of 0 was calculated, while an 
increase of more than 2 log10(cfu)/g was observed. 
Lebert et al. (1998) published surface response models for the growth rate of 2 strains of L. 
monocytogenenes as a function of temperature (4 °C - 30 °C), pH (5.4 - 7.0), and water 
activity (0.96 - 1.00). The measured values of the aspic products are within the range of 
model validity. Simulations with these models gave rise to an overestimation of the growth 
rate of L. monocytogenes (results not shown). This is not unexpected since only temperature, 
pH, and water activity are taken into account, while the products also contain significant 
amounts of nitrite, acetic acid and lactic acid. 
To obtain a more accurate estimation of the growth rate for aspic products, the model of 
Lebert, i.e., which can cope with lower pH values, and the model of Mejlholm, i.e., which 
takes the effect of nitrite and acids into account, were combined. The following equation was 
used for simulations 
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with µLebert the maximum specific growth rate according to the model of Lebert for the fast 
growing strain of L. monocytogenes. Simulation results and experimental data are presented 
in Figure 2. 

 
Figure 2: Experimental data (∗) and simulations with the adapted model (equation (2)) for 

batch 1 (left plot) and batch 2 (right plot) of aspic products 

The adapted model provides a good estimate of the specific growth rate for both batches of 
aspic products during the first half of the storage period. Towards the end of the storage 
period the model simulation deviates from the observed growth. The stationary phase is 
reached, but this is not yet included in the model. Therefore the model is further adapted. 
Equation (2) is combined with the model for lactic acid bacteria published by Mejlholm and 
Dalgaard (2007) and interaction between L. monocytogenes and lactic acid bacteria is taken 
into account. Results are presented in Figure 3. 
Taking interaction with background flora into account improves the prediction of the growth 
rate for L. monocytogenes. The deviation between prediction and data for batch 2 are mainly 
due to the poor description of the growth of lactic acid bacteria, resulting in an 
underestimation of the growth curve of L. monocytogenes. For this category, an accurate 
description of background flora is needed to get an accurate estimation of the growth rate of 
L. monocytogenes 
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Figure 3: Experimental data (∗,ο) and simulations with the adapted model (including the 
interaction with LAB) for batch 1 (left plot) and batch 2 (right plot) for aspic products 

Conclusions  
For the cooked meat products, the model of Mejlholm and Dalgaard (2009) provides a good 
estimate of the growth of L. monocytogenes, but only if interaction with lactic acid bacteria is 
not taken into account. For this category, the initial level of back ground flora was very low 
and did not seem to have much effect on the growth of L. monocytogenes.  
For the aspic products, the pH was out of the validity range of the Mejlholm and Dalgaard 
model and extrapolation of the model resulted in an underestimation of the growth rate. 
Therefore this model was adapted by combining it with the model of Lebert. This way a 
model was obtained which can cope with the low pH of aspic products and which takes the 
effect of nitrite and acid concentrations into account.  
In a next stage, the models will be further analysed and compared with data obtained at 
different temperatures or under a time varying temperature profile. This will result in adapted 
models which are valid for specific categories of meat products and which can be used by 
companies as a supporting tool in product development and as a tool for accurate shelf life 
estimation. 
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Abstract 
Traditionally, food safety regulation has been based upon a system of prescriptive legislation 
employing a system of active auditing and subsequent enforcement and prosecution activities 
for non-compliance. Safe Food Production Queensland (SFPQ) is the regulatory authority in 
the state of Queensland, Australia, responsible for the promotion and protection of food safety 
across a span of primary production and processing, to ensure the reliability and safety of the 
food chain. This agency has progressed away from traditional systems of prescription towards 
implementing outcome-based, industry food safety schemes that outline food safety 
requirements without defining the method by which they are to be achieved. This is 
accomplished through a philosophy of responsive regulation and active engagement, to assist 
industry in making better business decisions that concurrently deliver better food safety 
outcomes.  

In synergy with these objectives, SFPQ has evaluated and developed decision-making tools to 
primarily optimise economic efficiencies for primary production and processing. These tools 
aim to assist businesses in identifying critical food safety points within a production chain to 
allow the judicial allocation of resources to maximise efficacy across the chain. As a result, 
enterprises are driven by economics to achieve improvements in food safety and the 
objectives of monitoring and compliance can be readily integrated as a secondary outcome.  
Most recently, systems to enhance monitoring and verification along with the mathematical 
modelling of food safety risks through-chain of primary production systems have been 
developed. These initiatives encompass measures to identify critical food safety points within 
a supply chain, improve monitoring at these points and integrate automatic reporting 
technology in an effort to mitigate risks posed by events that compromise food safety. 

Overall, these systems are designed to support business management decisions and introduce 
economic efficiencies within primary production and processing industries, whilst 
concurrently satisfying regulatory requirements and delivering improved food safety 
outcomes to enable industry to move towards partial self-regulation. 

Keywords: Regulation, verification, monitoring, risk management 

Introduction 
The safety and suitability of food for human consumption is globally managed by 
governments who recognise that they have a primary duty of care to ensure that suitable 
measures are taken to ensure that the health and wellbeing of their citizens is not 
compromised (Jouve 1998). However, both government and food production industries share 
a common goal in ensuring food safety and each fulfil a distinctly separate yet 
complementary role. Industry holds the primary responsibility in the safe production of food, 
whilst government is required to verify that industry is fulfilling this responsibility (Tompkin 
2001).  

In order to achieve this, governments have enacted food safety legislation that embodies 
requirements and procedures intended to minimise the risk to public health. Traditionally, this 
regulation has been based upon a system of rigid, detailed prescriptive legislation enforced 
through active auditing of constituents and subsequent enforcement and prosecution activities 
for reported non-compliance. Government policy has focussed upon industrial management 
practices and was most often reactive in response to immediate or perceived food safety 
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hazards, resulting in ad hoc, fragmented legislation as opposed to providing comprehensive 
coverage of all hazards through a supply-chain. The challenge remains to compel all sectors 
of the food production industry to adopt scientifically validated safe food-handling practises 
as standard operating procedures (Hoffmann 2010, Jouve 1998, Powell et al. 2011). 

In an attempt to combat these issues, major efforts have been made to move food safety 
legislation away from the traditional systems of prescription to preventative, outcome-based 
legislation that provides complete and integrated management of foodborne hazards through 
the entire supply chain. Underpinning this outcome-based legislative approach is a policy 
based on “responsive regulation” which reflects the shared common goal philosophy. 
Traditional regulatory models are principally developed from and based upon achieving a 
scientific risk assessment outcome, whereas the proposed model is based upon a combination 
of science and economics to develop risk management tools that efficiently target critical 
points throughout the production process and allows for flexibility in achieving public health 
goals.  

The purpose of this paper is to examine this concept and its practical application in the 
regulation of food safety in the state of Queensland, Australia, and how management tools in 
combination with the integration of traceability and verification systems may be utilised to 
achieve food safety outcomes, whilst concurrently providing economic incentives for industry 
compliance.  

Materials and Methods 
Safe Food Production Queensland (SFPQ) is the regulatory authority in the state of 
Queensland, Australia, responsible for developing and implementing risk-based food safety 
management schemes to ensure that the primary production and processing of food is carried 
out in a way that ensures it is fit for human consumption. This agency was established as part 
of a national food safety regulatory system to replace former prescriptive legislation that had 
been independently developed and implemented in each separate jurisdiction (Martin et al. 
2003). SFPQ has progressed away from the traditional systems of prescription by developing 
and implementing outcome-driven, industry based food safety schemes that outline regulatory 
requirements without defining the method by which they are to be achieved. In line with this 
strategy, the agency has evaluated and developed a suite of decision-making tools and 
systems that utilise a combination of economic and science-based risk management 
approaches to assist businesses in identifying critical food safety points allow the judicious 
allocation of monitoring resources through the supply chain. As a result, enterprises are 
primarily driven by economic savings and/or increased income to achieve improvements in 
food safety and the objectives of monitoring and compliance are readily achieved as a 
secondary outcome.  

To facilitate this and assist in its regulatory role, SFPQ has undertaken two major projects to 
enhance food safety management in Queensland in this method: firstly, a computer-based 
model has been developed to examine food safety risks in food supply chains and, secondly, 
information collection systems have been introduced to enhance traceability and verification 
of food safety in primary production and processing. In conjunction with collaborators in 
CSIRO and industry, SFPQ undertook a study to develop a prototype stochastic model based 
upon the pathogen Listeria monocytogenes in the fresh-cut lettuce supply chain. This model 
utilised a microbial food safety risk assessment to estimate the prevalence and concentration 
of L. monocytogenes at each step in the supply chain as a way to identify the most effective 
strategies or actions to reduce food safety risk. These methodologies were converted into 
mathematical equations and incorporated into a computer-based model to predict the growth 
of this pathogen along the entire supply chain from production to retail and identify the points 
of greatest risk within the chain. The prototype model was then applied in conjunction with a 
database application to support a traditional risk assessment approach to analyse, recognise 
and respond to potential risks. 
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With the development of computer-based models to identify critical food safety control 
points, such as the one mentioned above, information collection can be applied judiciously to 
maximise the efficiency of these activities through the production chain from farm to factory. 
Data collected from these points can be analysed to provide baseline data and key 
performance indicators for a given primary production and processing supply chain. Such 
indicators can be utilised to monitor individual performances through-chain and their 
individual contribution to pathogen control. SFPQ developed an information database in 
conjunction with the Queensland dairy industry to assist in the monitoring of critical food 
safety parameters within the supply of milk from farm to processing facility.  

Results and Discussion 
Modelling Food Safety Risks within a Supply Chain 
The identification of food safety risks within a supply chain is traditionally difficult due to the 
size and complexity of primary production and processing networks. There are large numbers 
of primary producers in numerous regions supplying a range of processing facilities, 
distribution centres and retail sale through various transport networks and there is a 
considerable lack of knowledge as to the impact of post-harvest handling and transport 
operations in some food production industries. Validation studies to assess the fit of the 
predictions of the model to historical real world data demonstrated that the model in its initial 
form was inconclusive, with modelling data reflecting observations in some, but not all, 
scenarios. Historical observation data relating to Listeria monocytogenes growth after use-by 
dates demonstrated a degree of similarity to those predicted by the model. However results at 
the processing stage were very different, with the model showing larger amounts of growth 
than were recorded in the data. Additionally, the amount of data available to validate this 
model was a major limitation within this analysis and the availability and application of such 
will demonstrate more conclusive results. 

This model was an initial step towards developing new tools to assist in measuring 
uncertainty and indicating risks during transport, packing, processing and distribution, subject 
to available data and research studies. Moreover, this model can indicate to government and 
industry where appropriate intervention can be applied within a supply chain to maximise 
benefit whilst minimising regulatory cost. The modelling philosophy has been founded upon 
the prevalence and concentration of a food safety risk at each stage being represented by a 
probabilistic distribution, allowing for the model to be adapted to a range of new parameters 
(e.g. new pathogens, new temperature distributions) and also be able to support a range of 
perishable products and their relevant supply chains. This initial modelling project has 
provided a sound basis for the further development of computer-based models to monitor 
food safety risks in supply chains and future improvements are currently planned to extend 
the model to encompass other pathogens and food products. 

Monitoring Identified Control Points 
Another facet of responsive regulation involves the replacement of the active enforcement of 
prescriptive requirements with continuous monitoring, traceability and verification via 
information collection. The historical collection of information allows data to be organised 
and analysed in such way so as to not only demonstrate trends of compliance over a period of 
time, but also recognise indicators of food safety hazards and their associated risks.  

In Queensland, technology has been developed in conjunction with the dairy industry to 
collect and record information pertaining to identified food safety critical control points such 
as the temperature of milk, somatic cell counts, pathogen detections and antibiotic residue 
data from production on farm to delivery at a retailer or distributor. This raw data is collected 
by milk processors and independently uploaded to a central on-line database to allow 
monitoring and traceability of product and provide key performance indicators at these 
critical control points. These indicators are established from previously collected data and 
allow industry to detect inefficiencies or failures within the food production chain to enable 
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corrective action and reduce costs associated with product losses and logistics. This allows 
processors to identify individual producers who do not meet the designated performance 
standards and may require assistance with retraining or monitoring, whilst providing evidence 
of compliance to food safety legislation. Furthermore, individual businesses can readily trace 
and monitor product through-chain to ensure that it meets quality requirements and customer 
demands in the most efficient and timely way possible, as well as enabling them to improve 
efficiencies and obtain premiums for higher quality production. Additionally, through the co-
operation of producers and processors, SFPQ as government regulators are also able to 
remotely access, analyse and monitor these production chains, providing instant verification 
and an economic saving to stakeholders in reduced auditing costs. Automatic advice can be 
issued when requirements are breached to trigger a co-ordinated and timely response to 
potential food safety incidents, providing the opportunity to arrest the situation before effects 
are seen in the marketplace and recover product to alternative product streams. Auditing 
resources can then be focussed upon verification of individuals who demonstrate consistently 
lower performance and in-turn drive industry-wide improvements. 

Conclusion 
The development and implementation of these systems in Queensland has allowed SFPQ to 
begin to shift the primary reason for compliance within the food production industry from the 
consequences of enforcement (i.e. financial penalty or suspension of accreditation) to an 
economic driver for compliance. By providing verification systems that support business 
management decisions, it can be demonstrated that improvements in food safety at identified 
critical food safety control points (i.e. reduction in pathogens, time and temperature 
monitoring) create further efficiencies through reductions in cost and increase in production 
quality. Thus, controlling members of primary production supply chains, such as processing 
establishments, are able to provide direct feedback to suppliers and demand high quality, safe 
supply from producers. Food production businesses are able to respond to these demands for 
improvements in the safety and quality of product and in-turn control their individual inputs 
and on-farm hygiene to improve overall quality in an effort to gain market share or increase 
the price obtained for production. Overall, these systems drive industry improvement by 
aligning an improvement in food safety with greater economic efficiencies, concurrently 
removing the emphasis on regulatory intervention and allowing industry partial self-
regulation. 
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Abstract 
Ready-to-eat (RTE) pasta salads from small food outlets are popular but they have short shelf-
life due to growth of spoilage microorganisms. Importantly, RTE pasta salads have resulted in 
several major outbreaks of food-borne disease e.g. due to Salmonella. We studied oil based 
pasta salads with the objective of developing a new predictive tool to support shelf-life and 
safety management. High concentrations (6-8 Log CFU/g) of Enterobacteriaceae, lactic acid 
bacteria (LAB) and Pseudomonas spp. were detected in different commercial products based on 
cooked pasta, raw vegetables, pesto and fermented cheese and olives. Storage trials, challenge 
tests and experiments with liquid laboratory media (Bioscreen C) at 5, 10, 15 and 20°C allowed 
growth of Enterobacteriaceae, LAB, Listeria monocytogenes, Pseudomonas and Salmonella to 
be quantified. The effect of temperature on growth rates (µmax) was appropriately described by 
the simple square root model. Growth responses in pasta salads were compared to our new 
secondary temperature models as well as available models. The most appropriate models were 
then included in a spreadsheet-based Pasta Salad Predictor. Growth of psychrotolerant 
Pseudomonas, originating from raw vegetables and initially present in concentrations as high as 
6 Log CFU/g, limited shelf-life of the pasta salads included in this study. The developed Pasta 
Salad Predictor allowed shelf-life and safety of the product to be evaluated based on both initial 
microbial contamination (hygiene), storage time and storage temperatures (constant or variable). 
This new predictive tool seems useful to help food outlets and authorities reach a common 
understanding of reasonable hygiene requirements and storage conditions for pasta salads. 
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Abstract 
In this study, different temperature (15, 25, and 35 ºC) and relative humidity (60, 70, and 
80%) values were simulated as environmental factors of climate changes in a closed 
environmental chamber, and the combined effects of temperature and relative humidity on the 
growth or survival of Staphylococcus aureus were determined on cabbage. Also, a response 
surface methodology (RSM) was developed for modelling the growth of S. aureus on cabbage 
as a function of temperature (15-35 ºC) and relative humidity (60% - 80%). The growth data 
were collected under different conditions, and were then fitted into the modified Gompertz 
model to estimate the growth rate (GR) at each condition with high determination of 
coefficients (R2 > 0.98). Then, the secondary models were developed for the GRs obtained 
from the modified Gompertz model using the RSM quadratic polynomial equation. The 
established model was significant (P < 0.01), and the predicted values of the growth 
parameters obtained using the model equations were in close agreement with experimental 
values (R2 = 0.995). Furthermore, several statistic characteristics such as root mean square 
error (RMSE), bias factor (Bf), accuracy factor (Af) and %standard error of prediction (%SEP) 
were employed to validate the developed models using the additional experimental data. The 
results showed that the overall predictions had slight deviation with the observations, 
indicating success at providing reliable predictions of S. aureus growth on cabbage. Through 
this study, the impact of the climatic factors such as temperature and relative humidity on 
growth or survival of S. aureus on cabbage was obviously observed, while the predictive 
growth model was also established which could supply sufficient information to HACCP or 
MRA programs in the future.  
 
Keywords: Staphylococcus aureus, cabbage, temperature, relative humidity, response surface 
methodology  

Introduction 
Climate change, affected by temperature, relative humidity, composition of air etc., has 
implications on food production, food security and food safety (FAO 2008). Also, it can 
influence all foodborne pathogens and their associated diseases potentially (ECDC 2007). In 
the last decades, outbreaks of foodborne diseases have become an increasingly important 
public health issue all over the world. Foodborne illnesses caused by Staphylococcus aureus 
have been associated with leafy vegetables (Beuchat 1996; Seo et al. 2010; Sokari 1991). 
Although, numerous literature studies have studied the single or combined effects of 
temperature, high pressure, and radiation on the population dynamics of S. aureus (Gao, et al. 
2006; Lee et al. 2006), there are still few research projects investigated the impact of 
simulated temperature and relative humidity (RH). 
The objectives of this study were to investigate the combined effect of temperature (15-35 °C) 
and RH (60%-80%) on the growth kinetics of S. aureus on cabbage under simulated 
environmental conditions using response surface methodology (RSM). 
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Materials and Methods 
Operation and design of the experiment 
A mixed culture of S. aureus strains (ATCC12598, ATCC13565, and ATCC12480) was 
inoculated on the surface of cabbage samples purchased from a local supermarket in 
Chunchon, Korea. The initial pathogen level was approximately 3.0 log CFU/g. Inoculated 
samples were transferred into a closed environmental chamber which was used to simulate the 
storage temperature and relative humidity. Then, tested samples were exposed on sterile 
aluminum foil and were stored at 15, 25 and 35 °C for 4 days, 2 days and 1 day, respectively. 
At each temperature, experiments were conducted with three RH levels (60%, 70%, and 80%). 
All trials were carried out according to the central composite design (CCD) method. The 
population of S. aureus was enumerated by plating on Baird-Parker Agar Base (Difco) 
supplemented with Egg Yolk Tellurite Solution before 24 h incubation at 37 °C. 

Development and validation of predictive models  
The collected growth data at each combined condition were fitted into the modified Gompertz 
model to estimate the growth rate (GR: h-1), and a secondary model was established for 
obtained GRs using the response surface methodology. Then, a validation step was carried out 
through external validation using independent data sets for selected conditions, which were 
not used for model development. Root mean square error (RMSE), bias factor (Bf), accuracy 
factor (Af), and %standard error of prediction (%SEP) were employed to assess the 
performance of the developed model. 

Results and Discussion  
The effect of temperature and relative humidity on the growth kinetics of S. aureus on 
cabbage 
Experimental data obtained during the storage period at each simulated combined condition 
showed that temperature and relative humidity have a strong influence on the growth or 
survival behaviour of S. aureus (Figure 1). Low temperature or relative humidity was able to 
inhibit the growth of S. aureus, while increasing temperature or RH could lead to a higher 
maximum population density (MPD). Similar result has been published in a previous study 
that a higher MPD of Salmonella enterica serovar Typhimurium DT104 in beef at 10 °C and 
96% RH was observed compared with that at 5 °C and 76% RH after 72 h storage (Kinsella et 
al. 2009). Moreover, it can be obviously observed that the growth or survival curve emerged 
with a sharper decline at lower RH in the later storage period at 15 and 25 °C after a certain 
holding time. 
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Figure 1: The effect of temperature and relative humidity on the growth or survival of S. 

aureus on cabbage at different combined conditions. 
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Development of predictive models 
The primary predictive model was developed based on the growth portion data with high 
determination of coefficients (R2 > 0.98). GR values of S. aureus on cabbage (Table 1) 
generated from the modified Gompertz model were used to develop the secondary model 
using a quadratic polynomial equation. Figure 2 illustrated the GR values of S. aureus in 
response to changes in temperature and relative humidity via three-dimensional surface 
diagrams and showed that shifts of temperature and relative humidity could influence the 
growth rates significantly. The statistical test for the significance and adequacy of the model 
was evaluated using analysis of variance (ANOVA). The P values (P < 0.0001) show that the 
developed model was highly significant, while the lack-of-fit test was not significant (P > 
0.05). The established response surface quadratic polynomial equation was obtained with a 
high R2 (0.995) as follows (Eq. 1): 

 00790 00110032.0039.018.024.0 2
2

2
12121 x.x.xxxxY −++++=                 (1) 

Table 1: CCD arrangement and growth rate (GR) of S. aureus on cabbage estimated from the 
modified Gompertz model. 

Temperature (°C) Relative humidity (%) GR (log CFU/h) 
15 60 0.057 
35 60 0.369 
15 80 0.071 
35 80 0.512 
15 70 0.063 
35 70 0.412 
25 60 0.209 
25 80 0.284 
25 70 0.246 
25 70 0.255 
25 70 0.227 
25 70 0.238 
25 70 0.259 

 

Validation of predictive models 
External validation was conducted using additional experimental data sets for selected 
conditions within the developed model boundaries presented in Table 2. The predicted values 
were calculated by the developed model and were compared with the observations graphically 
(Figure 3) to illustrate the goodness of the proposed model. As shown in Figure 3, most of the 
points fell close to the regression line within the confidence intervals which indicated a high 
line-linear relationship between the observed and predicted values. RMSE, Bf, Af and %SEP 
were employed to evaluate the fit quality of the obtained model. The results (RMSE = 0.034, 
Bf = 1.132, Af = 1.181 and %SEP = 13.043) indicated that the secondary model exhibited a 
good performance for describing the experimental data and was also expected to provide the 
reliable predictions in practice. 

Table 2: Observed and predicted growth rates of S. aureus for model validation. 

Temperature (°C) Relative humidity (%) Growth rate (log CFU/h) 
observed predicted 

15 75 0.090 0.060 
18 70 0.127 0.110 
20 75 0.207 0.159 
27 70 0.238 0.274 
30 65 0.334 0.304 
33 65 0.351 0.353 
35 70 0.467 0.419 
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Figure 2: Response surface plot of the 
obtained growth rate of S. aureus in 

response to changes in temperature and 
relative humidity. 
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Figure 3: Observed growth rates (GRs) of S. 
aureus versus predicted GRs. Dotted lines 

are the linear regression lines, and the 
dashed lines indicate a 95% confidence 

interval.

Conclusions  
A secondary predicted model developed using a response surface methodology was used to 
estimate the effect of simulated combined conditions of temperature and relative humidity on 
the growth kinetics on cabbage. The results demonstrated that temperature and relative 
humidity, two important factors among various climatic factors, were capable of affecting the 
growth or survival of S. aureus. The validation step indicated that the developed predictive 
model showed good performance in describing the experimental data and is able to provide 
credible predictions. It will be useful for conducting HACCP or MRA programs in the future.  
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Abstract 
The main objective of the FIRM funded Safe and Healthy Foods project is to develop and 
maintain a state-of-the-art all-Ireland Food Microbial Database (FMD).  The project partners 
are University College Dublin (UCD), Department of Agriculture, Fisheries and Food 
(DAFF), Food Safety Authority of Ireland (FSAI), Marine Institute (MI), Teagasc Ashtown 
Food Research Centre (AFRC), Teagasc Moorepark Food Research Centre (MFRC), and 
University of Ulster (UU). UCD is working with Open Sky (database provider), in 
conjunction with the other project partners (data providers), to develop a web-based database.  
The database will be populated with up to 4 years validated pathogenic data from the data 
providers by the end of 2012.  Project partners and other key stakeholders will have full 
access to the database and the general public will have limited access.  The database will 
provide relevant, reliable, and timely data on both microbial pathogens (Campylobacter spp., 
Escherichia coli O157, Listeria spp., and Salmonella spp.) and noroviruses, covering 28 food 
and environmental categories.  It is envisaged that the database will strengthen links between 
existing all-island institutional surveillance systems (veterinary, food and clinical), improve 
data quality, identify data gaps, and foster international links. 
 
Keywords: database, pathogens, food, surveillance, web-based 

Introduction 
The EU Zoonoses Directive (2003/99/EEC) mandates that all EU member states must provide 
data on zoonoses and zoonotic agents (EFSA 2006).  This information is passed to the 
European Centre for Disease Prevention & Control (ECDPC) and the European Food Safety 
Authority (EFSA), where it is collated into the EU Zoonoses Reports.  Ireland is a major food 
exporting country, and the quality and comprehensiveness of the information provided from 
Ireland should be the best in the EU.  However, delivering effective surveillance is difficult in 
Ireland, as currently there are no established links between veterinary, food, and public health 
laboratories.  This project brings together established experts in food safety research and 
regulation, to develop and implement a comprehensive programme designed to capture and 
analyse foodborne pathogenic data (Singer et al. 2007; Tebbutt 2007; Younus et al. 2006). 

The main objectives are: (1) to develop and maintain a state-of-the-art all-Ireland Food 
Microbial Database (FMD) and to populate it with validated data from Irish data providers to 
provide relevant, reliable, and up-to-date data in a format that allows timely decision-making, 
risk assessment and management; (2) to develop an inaugural standardised molecular sub-
typing database to include, initially, three food-related zoonotic microbial pathogens; and (3) 
to investigate the feasibility of linking Northern Ireland foodborne pathogen data, methods, 
and reporting systems, to the database so as to provide an accurate all-island overview 
underpinning effective and efficient responses to challenges posed by foodborne pathogens. 

This project is part of a Food Institutional Research Measure (FIRM) funded project, 
involving several major food research institutes in Ireland: University College Dublin (UCD); 
Department of Agriculture, Fisheries and Food (DAFF); Food Safety Authority of Ireland 
(FSAI); Marine Institute (MI); Teagasc Ashtown Food Research Centre (AFRC); Teagasc 
Moorepark Food Research Centre (MFRC); and University of Ulster, Jordanstown (UU). 
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Materials and Methods 
UCD is currently working with the other project partners (data providers) to develop a web-
based database (Figure 1), which is expected to be operational for use between the project 
partners by the end of May 2011.  The database will be populated with up to 4 years validated 
pathogenic data from the data providers by the end of 2012.  Project partners and other key 
stakeholders will have full access to the database and will be able to download data for their 
own use via Microsoft Excel.  The general public will have limited access via Adobe PDF 
information sheets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Overview diagram of the web-based Food Microbial Database (FMD). 
 

Results and Discussion 
The database will provide relevant, reliable, and timely data on both microbial pathogens 
(Campylobacter spp., Escherichia coli O157, Listeria spp., and Salmonella spp.) and viruses, 
covering 22 food and environmental categories (Figure 2).  It is envisaged that the database 
will strengthen links between existing all-island institutional surveillance systems (veterinary, 
food and clinical), improve data quality, identify data gaps, and foster international links. 
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Figure 2: Web-based screenshots of draft microbial data from the FMD using 
Microsoft Business Objects software. 

 

Conclusions 
This database will allow, for the first time, researchers and regulators access to Irish 
foodborne pathogenic data from veterinary, food and clinical surveillance systems, spanning a 
wide spectrum of products from farm to fork. 
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Abstract 
During previous work elaborated models were developed to describe the infection of pigs 
with S. Typhimurium in modern industrialized pig farms and to evaluate the effect of risk 
mitigation strategies, including vaccination. During this work, a number of challenges were 
identified, given the specific characteristics of farms. The objective of this work was to 
disseminate this knowledge and to propose ways to cope with these challenges. Infectious 
disease modeling in farms has a clear distinction from modeling in human and wildlife 
disease modeling and need extra effort to adapt models to specific situations, type of farms 
and adapted pathogens. In order to build a valid model, a number of infection and host 
population characteristics should be taken into account. Models incorporating non-dynamic 
factors can add value towards the optimization of intervention strategies. 
 
Keywords: foodborne infections, modelling, pathogens, pre-harvest, food production chain 

Introduction 
In the last five years there has been an increasing interest in mathematical modelling of 
infectious diseases for food production animals at the farm level towards developing more 
holistic models that will serve from a farm to fork food safety strategy. However, and in order 
to model successfully infectious diseases in pig farms some special characteristics of this 
extraordinary and artificial way of life must be considered. Indeed, food production pigs in 
modern pig farming have a short and generally similar in duration life expectancy. Prolonged 
serological historical data is usually unavailable in contrast to the cases of human or wild life 
animal diseases, since the infection usually has not enough time in order for its dynamics to 
arrive at equilibrium. Moreover, food production animals are usually gathered in farms, either 
in compartmental or free range states, limiting or increasing the probability of an effective 
contact, respectively. In some cases, as with finisher pigs or broiler chicken, all-in-all-out 
farming systems are applied breaking the continuity of the system. The aim of this work was 
to identify these differentiating characteristics and discuss way that could be addressed.  

Materials and Methods 
In order to achieve our aim we have used the finding from primary and secondary sources, 
forming a data triangulation, which increases the validity of the research. Regarding the 
primary sources, data from our previous work on Salmonella infections in pig farms was 
used. S. Typhimurium is a major source of human foodborne salmonellosis with limited 
effects on the health of the pigs themselves. We have used these models as a case study to 
demonstrate the deterministic and stochastic dynamics of the pathogen in a farm (Soumpasis 
and Butler 2009; 2011) and to serve as a base for comparison with other types of farms as 
well with the models developed for human and wildlife animal communities. 
 
Regarding the secondary data a number of papers were reviewed and selected on the basis of 
the modelling followed (infectious disease modelling), the pathogen (to cause to foodborne 
infection) and the type of farm (major farmed food production animals i.e. pigs, cattle, 
broilers). 
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Results and Discussion  
A number of issues were identified that would need special attention when modelling the 
transmission of a pathogen in a farm. These issues along with some actions that could be 
taken are analysed in the following paragraphs.  

Commonalities among Farms  
Current intensive farming of food production animals is much industrialised. Farms generally 
follow specific standards and are organised into a limited number of husbandry systems. In 
contrast the “open” or “green” type of farming, where animals have a greater interaction with 
the environment, animals in industrialised farms are living in building with controlled micro-
clima that it is optimised for their growth. This micro-clima is usually common in countries 
with the same characteristics, e.g. European countries, allowing for generalisation of the 
models and use in wider areas, assuming that similar systems are followed.  

Definition of the Community  
Although in wildlife and human epidemiology the definition of the community may be 
sometimes clear (i.e. a city, a country, an isolated animal population in an island), in farms 
may not always be as straight forward. In the case of pig or broiler farms, the animals may 
live isolated in rooms, while at the same time being affected from external factors, 
replacement of animals, wind transfer of pathogens and more. It has to be thought carefully, 
what would be the community, where the individuals actually can have contact with each 
other, and if and how the imports of the pathogen through other routes in the isolated system 
should be modeled. 

Frequency or Density Dependent Transmission  
Once the community has been defined, the type of transmission should be thought of. In case 
the individuals can have unrestricted access and contact to any other individual within the 
community, the density dependent approach should be followed to ensure the rate of 
transmission is analogous to the probability of contacts. Examples of this case, can be the 
“open” or “green” type of farms, where animals are free to move and have contacts with any 
other individual, or the case of broilers, where again in the house they have unlimited contacts 
with all the other individuals. On the other hand, when the number of contacts with other 
individuals is limited, such as in the case of fattening pigs, dividing a room with fences into 
pens, a frequency dependent approach may be more appropriate. 

Probabilistic Nature  
As it was shown from previous work when the community size is small, then the infection 
may have stochastic fluctuations and may suffer of stochastic extinctions (Soumpasis and 
Butler, 2009). Once the community is defined, the size of the community would guide the 
researcher to the decision of using (or not) demographic stochasticity.  

Host Adaptation and Infection Characteristics  
Salmonella is a very good example of host adaptation and infection characteristics (Kingsley 
and Baumler, 2000). There is a large number of subspecies and serotypes of the pathogen, 
which are adapted to a different extent to different hosts and this has effect also to the 
infection characteristics. E.g. from previous studies it is clear that S.  Typhimurium has very 
different characteristics (shedding period, sero-reaction) compared to all the other major sero-
types of Salmonella, that can be isolated from pigs. This can and should have an effect on the 
transmission of the pathogen and should be captured when the infection is modeled. 

Levels of Transmission  
In contrast to the traditional one level of transmission for homogenous populations (i.e. all the 
individuals share the same characteristics and have the same probability of transmitting the 
infection), a new approach is developing for a number of infectious diseases, where more than 
one level of transmission may occur. This idea has been used in modeling infectious diseases 
with a carrier state, such as hepatitis B (Keeling and Rohani 2007) and in more modern cases 
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modeling influenza and influenza A (Coelho and Codeco 2009). In the cases of modeling the 
transmission in farms of pathogens responsible for foodborne diseases, the transmission of at 
least S. Typhimurium and E. coli seem to be able to be described in such way (Soumpasis and 
Butler 2009; 2011). Although, in the first approache this was modeled using a percentage of 
individuals that will follow one or other path (of low or high infection), in case of farms, 
where the population is small, the decision of which syndrome will occur can be modeled 
using indirectly a dose-response and following the number of animals that are infected in the 
host community (Soumpasis and Butler 2009; 2011); thus the higher the proportion of 
infectious animals, the higher dose that a susceptible animal will receive. Higher doses in this 
way lead to highly infectious individuals and lower doses low infectious individuals.  

Births and Mortality  
Answering the question of defining a community, some more issues may arise on the births 
and mortality. Many times, the term of replacement is used instead of births, because the 
animals that are removed from a closed farm system are being replaced by some already born 
and being already at the appropriate age. This gives rise to the concept of “pulsed” births or 
replacement, where a number of animals are introduced altogether into a farm. On the other 
hand, naturally occurring deaths are rare in a farm, except in the case of chronic diseases 
being present. Mortality occurs either as harvesting again like a “pulse” or because of the 
disease if there is any morbidity. In any case, the research should be very careful modeling 
births and mortality and always these two terms should be equal, in order for the farm to be 
sustainable. 

Immunity  
Immunity against the infection may be active, i.e. following after natural infection or passive 
such as the one passed from the mother to the offspring through the colostrum and the milk. 
The latter can protect the young individuals until they will start developing their own 
immunity system. Active immunity may be for life or may be waning, leading to a vicious 
circle of re-infections. 

Indirect Transmission 
Some pathogens may have a clear and distinct stage out of the host, where they can survive 
for a significant amount of time while still being infectious. Questions such as the survival 
time, the ability to travel in the medium, etc should be thought before deciding to model this 
stage explicitly. In other cases, the concept of imports of the pathogen in the community 
would suffice to describe the situation. 

Host Heterogeneities 
In some cases, such as the fattening pigs and the broilers, the individuals are all of the same 
age, usually of the same breed, with no distinct differentiation and homogenous mixing is 
assumed. However, in other cases, such as the case of dairy farms, there can be a clear 
differentiation of the susceptibility of the individuals, which should be taken into account 
(Turner et al. 2006; 2008).  

Intervention Strategies 
The intervention strategies in farms can be divided into two major categories, management 
and pharmaceutical, including vaccination (Soumpasis et al. 2010). The management 
strategies are geared towards altering the management practices towards reducing the 
susceptibility and the overall transmission rate. Pharmaceutical can have two aims, either 
response using antibiotics in order to reduce the number of infectious individuals or proactive 
reducing the susceptibility of the individuals, either using antibiotics or vaccinating the 
individuals. In either case, the effect of the strategy should be clear and should be modeled 
explicitly. Combining more than one strategies in one framework model, could have better 
results because the strategies are not tested in isolation and a combination of strategies can 
lead to more efficient results (Soumpasis et al. 2010).   

381



Conclusions  
Infectious disease modeling in farms has a clear distinction from modeling in human and 
wildlife disease modeling and need extra effort to adapt models to specific situations, type of 
farms and adapted pathogens. In order to build a model that reflects the situations in the farm 
as realistically as possible, a number of infection and host population characteristics, that 
depend on the type of both the pathogen and the farm, should be taken into account. Models 
incorporating non-dynamic factors can add value towards the optimization of intervention 
strategies. 
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Abstract 
Characterisation of thermal processes remains a challenge as it involves rotating parts and 
reasonably high temperatures, thus making use of measurement techniques such as 
thermocouples unusable. Time Temperature Integrators (TTIs) has been suggested as an 
alternative that would provide information that would allow process design and validation. In 
this work we aim to validate the use of TTIs as measurement tools to validate both the effect 
and also the uncertainty of thermal processes in conditions relevant to industrial processing. P 
values estimated using TTIs compared favourably with those obtained from thermocouple 
measurements for a range of temperature profiles relevant to food processing. Efficiency of 
large mixing vessels has been quantified in a pilot scale vessel. Factors such as fluid 
viscosity; fill level and heating options were examined. The results show that the free TTIs 
show higher P values than the thermocouple situated in the centre of the vessel (but similar to 
the thermocouple positioned on the wall of the vessel) while the TTIs fitted in balls correlate 
well with the centre thermocouple. The results indicate that the mixing performance is 
dependent on the fluid viscosity, the fill level and the heating options. As the free TTIs follow 
the fluid path they gave a more accurate representation of the real thermal impact on the food 
product. This work demonstrates that TTIs can be successfully used as a tool for validation of 
efficiency and uncertainty of industrial processes. 
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Abstract 
Beef fillets were stored aerobically and in modified atmosphere packaging (MAP, CO2 
40%/O2 30%/N2 30%) at six different storage temperatures (0, 4, 8, 12, 16 and 20°C). 
Microbiological analysis in terms of total viable counts (TVC) was performed in parallel with 
multispectral image snapshots and sensory analysis. Odour and colour characteristics of meat 
were determined by a taste panel and attributed into three pre-characterized quality classes, 
namely Fresh (F), Semi-fresh (SF) and Spoiled (S) during the days of its shelf life. The 
obtained images were converted into values that were comparable to the corresponding data, 
using the Minimum Noise Fraction (MNF) transformation and simple thresholding. 
Association of image data with sensory data was undergone using three different 
classification methods: Naive Bayes Classifier as a reference model, Canonical Discriminant 
Analysis (CDA) and Support Vector Classification (SVC). Results showed that image 
analysis provided good discrimination of meat samples regarding their spoilage status as 
evaluated from sensory as well as from microbiological data. The support vector classification 
(SVC) model outperformed other models. Specifically, the misclassification error rate (MER), 
derived from odour characteristics, was 18% for both aerobic and MAP meat samples. In the 
case where all data were taken together the misclassification error amounted to 16%. When 
spoilage status was based on visual sensory data, the model produced a MER of 22% for the 
combined dataset. The obtained results illustrated that it was feasible to employ a multi 
spectral image for the quantitative determination of meat spoilage status during storage in 
different conditions. 
 

Keywords: image analysis, beef fillets, spoilage, Videometer, chemometrics, Support Vector 
Machines 

Introduction 
Today, different microbiological and (bio)chemical methods are employed to assess meat 
spoilage and microbiological counts, the majority of which are slow, time-consuming and 
expensive procedures (Nychas et al. 2008). It would be preferred to replace these established 
methods by faster and directly applicable methods, such as multi spectral imaging. 
Multispectral imaging techniques are a natural extension to normal colour cameras. Colour is 
among the most important factors playing a significant role in the evaluation of meat quality. 
Specifically, muscle colour at the point of purchase is an indicator of freshness and 
anticipated palatability for the consumer (Livingston et al. 2004; Singh et al. 2011). Whereas 
normal colour cameras integrate electromagnetic radiation over three broad banded areas in 
the visual area, multispectral cameras are able to record electromagnetic information in more 
narrow banded areas. Consequently, multispectral cameras are able to record spectral 
reflection properties in narrow bands, which thereby make it possible to assess the 
composition of surface chemistry of the object of interest. Such recordings may thus be used 
to extract intrinsic chemical and molecular information such as water, fat, protein or other 
hydrogen-bonded constituents. Sometimes multispectral images are also referred to as surface 
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chemistry maps or hypercubes (Carstensen et al. 2006). In short, multispectral images can 
provide not only spatial information, as regular imaging systems, but also spectral 
information for each pixel in an image. Thus, using hyper-spectral images, it is possible to 
assess physical and geometric characteristics such as colour, size, shape, and texture. Several 
publications have been written on the subject of using multispectral imaging for food control 
(Gowen et al. 2007; Daugaard et al. 2010; Taghizadeh et al. 2010). In the present study, the 
potential of multispectral imaging techniques was exploited for the rapid assessment of 
spoilage degree in beef fillets stored at different temperatures and packaging conditions.   
 

Materials and Methods 
Beef fillets from different carcasses were purchased from a local meat retail outlet and stored 
aerobically and under modified atmospheres (40%CO2/30%O2/30%N2) at six different 
temperatures (0, 4, 8, 12, 16 and 20°C) for an overall period of 626 hours, depending on 
storage temperature, until spoilage was pronounced. Microbiological analyses in terms of 
total viable counts (TVC) were performed in parallel with videometer image snapshots and 
sensory analysis. Odour and colour characteristics of meat were assessed by a five-member 
sensory panel at the same time intervals as for microbiological analysis and attributed into 
three pre-selected quality classes as fresh (F), semi-fresh (SF) and spoiled (S). Each sensory 
attribute was scored on a ten-point hedonic scale corresponding to: 1-2 (fresh), 3-5 (marginal) 
and 6-10 (spoiled). A score of 3 was assigned to semi-fresh indicating the beginning of 
spoilage. Multi spectral images of meat samples consisted of 18 bands ranging from 
ultraviolet (395 nm) to near-infrared (970 nm). To convert images into usable values, 
segmentation into meat and non-meat was performed using Minimum Noise Fraction (MNF) 
transformation and thresholding. Subsequently, models for predicting the spoilage status of 
beef fillets were generated using the classification methods of Naive Bayes Classifier as a 
reference model, Canonical Discriminant Analysis (CDA) and Support Vector Classification 
(SVC). As a final step, generalization of the models was performed using k-fold validation. 
Model performance was evaluated with the determination of the corresponding confusion 
matrix and calculation of the misclassification error rate (MER) which is the percentage of 
meat samples that were misclassified by the model. Two more indices were calculated: (i) the 
false positive rate (FPR), which is the percent of meat samples that were classified as more 
fresh than really were, and (ii) false negative rate (FNR) which is the percent of meat samples 
that were classified as more spoiled than really were. Data from all temperatures were used in 
the analysis divided in the following four data sets: (i) data from meat stored in air, (ii) data 
from meat stored in MAP, (iii) the whole data set for aerobic and MAP data, and (iv) the 
whole data set with an additional dummy variable discriminating air from MAP data.        

Results and Discussion  
The segmentation using the orthogonal transformation MNF and afterwards thresholding 
using a fixed threshold was a robust and effective method for segmentation into meat and 
non-meat (Figure 1). From the obtained results (Table 1) it was evident that data from aerobic 
storage of beef fillets presented the lowest misclassification error compared to MAP data. In 
addition the use of a dummy variable to discriminate between the two packaging types did not 
produce better results. The model that produced the better classification was SVC (Table 2). 
The majority of misclassification errors in this model were predicting fresh samples as semi-
fresh which falls in the safe side of erroneous predictions. The performance of using SVC for 
both colour and odour spoilage prediction was satisfactory, although colour predictions 
produced better results, which is not surprising as images were used in the analysis. A MER 
of 17.3% and 22.6% for colour and odour spoilage prediction respectively suggests that it is 
possible to make a precise prediction model that can categorize a piece of meat into quality 
classes. It is also worth noting that the fail-dangerous misclassifications for both color and 
odor spoilage prediction were low and that very few spoiled samples were classified as fresh 
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and vise versa. From Figure 2 it is evident that misclassifications were mainly close to the 
boundaries between classes, where the sensory panel was in doubt how to classify the sample. 
 
 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Pseudo RGB images created from multi spectral images of the meat samples (left) 
and the corresponding segmentations (right) into meat (white) and non-meat (black).  

 
 
 
 
 
 
 

 
Table 1: Error measure results for Support Vector Machines predicting the colour of meat 
samples using the four data sets (MER: Misclassification Error Rate, FNR: False Negative 

Rate, FPR: False Positive Rate). 
 
 
 
 
 
 

Table 2: Error measure results for the three models predicting the colour of meat samples 
(MER: Misclassification Error Rate, FNR: False Negative Rate, FPR: False Positive Rate). 
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Figure 2: Classification results of beef fillets quality in three sensory classes using SVC.  
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Abstract 
The shelf life of minced beef stored (i) aerobically, (ii) under modified atmosphere packaging 
(MAP), and (iii) under MAP with oregano essential oil (MAP/OEO) at 0, 5, 10, and 15 ºC 
was investigated. The microbial associations of meat and the temporal biochemical changes 
were monitored. Microbiological analyses, including total viable counts (TVC), Pseudomonas 
spp., Brochothrix thermosphacta, lactic acid bacteria, Enterobacteriaceae, yeasts/moulds, 
were quantified, while in parallel sensory assessment, pH measurement, HPLC analysis of the 
organic acid profiles, FT-IR, and eNose measurements were recorded. 
The aim of this work was to develop classification models for accessing freshness (e.g. 
microbiological and organoleptic parameters) in beef fillet samples using support vector 
machines (SVMs). Data analysed in this work was obtained from FT-IR, eNose and HPLC 
experiments. Additionally to the individual data sets, combined data sets were constructed by 
pairing the individual data sets in order to assess the affect of combined data to analysis 
results. The data was used for training and testing support vector machine models. The 
models were optimised to achieve the best classification accuracy for specific data types or 
data type combinations. The analysis models were implemented into a web-based analysis 
tool - SVM.ist. This tool allows through a simple web page interface an easy way to upload 
data files, perform SVM-based classification according to specified parameters and view or 
download the results of the analysis.  This work was performed as part of the Symbiosis-EU 
project. 
 
Keywords: spoilage, HPLC, Support vector machine, FTIR, converging 
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Abstract 
In this study, minced beef samples inoculated with Salmonella Enteritidis and stored 
aerobically and under modified atmosphere (MAP-40%CO2/ 30% O2/ 30%N2) with and 
without an oregano essential oil (OEO) (2% v/w) slow releasing system and at four 
temperatures (0, 5, 10 and 15°C), were analysed with Raman spectroscopy. The data derived 
from the microbiological analysis (Total Viable Counts, Pseudomonas sp., Brochothrix 
thermosphacta, lactic acid bacteria (LAB), Salmonella Enteritidis) were correlated with the 
Raman spectra. The raman spectra were preprocessed using standard normal variate (SNV) 
and robust PCA was applied to identify the outliers and remove all the saturated spectra. 
Kernel PLS models were subsequently used to build a regression model between the Raman 
spectra and the cell counts of the bacteria, including TVC, pseudomonads, Br. thermosphacta, 
LAB, and S. Enteridis. The factors root-mean-square error of cross-validation (RMSECV), 
cross-validated correlation coefficient (Q2), and percentage of prediction error (% PE) were 
used to evaluate the performance of the models. It was observed that developed models 
regarding the predictions of Br. thermosphacta, LAB and S. Enteridis viable counts showed 
better performance than the rest microbial groups, whereas the models regarding storage 
under MAP and MAP/OEO showed better performance than the models for aerobic storage 
for all the microorganisms tested. In general the results were found promising, suggesting 
Raman spectroscopy as a rapid potential method to evaluate the spoilage and safety of meat.  
Keywords: Raman, spoilage, safety, salmonella 
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Abstract 
Odour is a major olfactory parameter determining the sensory quality of food commodities 
and it would be therefore of interest to investigate whether volatile compounds could be 
considered as potential indicators of quality assessment. In the present study, beef fillets were 
stored aerobically and in modified atmospheres at three different temperatures (0, 4, and 8°C) 
and microbiological analysis in terms of total viable counts (TVC) was performed in parallel 
with e-nose measurements and sensory analysis for a total period of 434 hours until spoilage 
was pronounced. The acquired volatile fingerprints were used in order to discriminate the 
sensory quality of a meat sample during storage at chill temperatures. Correlation of the 
obtained volatile profiles with the spoilage status of beef fillets was performed with Support 
Vector Machines analysis (SVM) in order to classify meat samples in three pre-characterized 
classes, namely fresh (F), semi-fresh (SF), and spoiled (S). Results showed that SVM analysis 
provided good discrimination of beef fillet samples regarding their spoilage status at both 
packaging conditions. Specifically, the overall correct classification for the three sensory 
classes for the aerobically packaged meat samples was 87%, while classification for fresh, 
semi-fresh, and spoiled samples was 58, 92, and 90%, respectively. Results for MAP 
packaging were quite similar. The overall correct classification amounted to 83% while 
classification for fresh, semi-fresh, and spoiled samples was 82, 87, and 76%, respectively. 
The use of e-nose technique in combination with chemometrics could be employed 
satisfactorily to acquire volatile fingerprints of aroma profile and predict the sensory group of 
a sample of beef fillet during storage at various temperatures. E-nose has a considerable 
potential for application in the food industry as a rapid and non-invasive method. 
 

Keywords: beef fillets, spoilage, electronic nose, chemometrics, Support Vector Machines 

Introduction 
It is generally accepted that detectable organoleptic spoilage is a result of decomposition and 
formation of metabolites caused by the growth of microorganisms. Especially changes in 
colour and odour could be regarded as the first indication of spoilage (Ellis et al. 2002, 
Nychas et al. 2008). Odour is a major olfactory parameter determining the sensory quality of 
food commodities and it is therefore of interest to investigate whether volatile compounds 
could be considered as indicators of quality assessment (Balasubramanian et al. 2009). 
During the last decade, electronic nose sensor array systems have been employed extensively 
for quality control of meat and meat products (Hansen et al. 2005; Rajamaki et al. 2006; 
Vestergaard et al. 2007; Zhang et al. 2008). Signal processing and pattern recognition in 
particular, is a fundamental part of data mining of any sensor array system. Developing e-
nose systems to detect changes in active biological systems such as meat is a complex task 
due to the higher uncertainties and nonlinear sensor response involved. For this reason, 
advanced data processing techniques including artificial neural networks and support vector 
machines have been employed to process spectral e-nose data (Zhang et al. 2003; Brudzewski 
et al. 2004). The aim of the present study was to investigate the potential use of volatile 
fingerprints (snapshots) of meat, acquired by an electronic nose, in combination with 
chemometrics in quality discrimination of beef fillets stored at different temperatures and 
packaging conditions.  
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Materials and Methods 
Beef fillets were stored aerobically and under modified atmospheres 
(40%CO2/30%O2/30%N2) at three different temperatures (0, 4, and 8°C) and microbiological 
analyses in terms of total viable counts (TVC) were performed in parallel with e-nose 
measurements and sensory analysis. An electronic gas sensor array system (Libra Nose, 
TechnoBioChip, Italy) implemented with an array of 8 quartz crystal microbalance (QCM) 
non-selective sensors coated with different poly-pyrrole derivatives, synthesized at 
Technobiochip and covered by a European patent [EP1505095], was used to generate a 
chemical fingerprint of volatile compounds of beef fillet samples during storage. Specifically, 
5 g of beef fillet were introduced inside a 100 ml volume glass jar and left at room 
temperature (20°C) for 60 min to enhance desorption of volatile compounds from the meat 
into the headspace. Subsequently, the headspace was pumped over the sensors of the 
electronic nose and the generated signal was continuously and in real time recorded to a PC 
(Figure 1). The acquired volatile fingerprints of aroma profile were used in order to predict 
the sensory group of the sample of beef fillet during storage at the three selected 
temperatures. The volatile patterns collected from e-nose were initially subjected to Principal 
Component Analysis (PCA) to reduce multi-collinearity (e.g. sensors with overlapping 
sensitivities) and allow the information to be displayed in a smaller dimension. Subsequently, 
the scores of the first five principal components accounting for 99% of total variance 
observed in the experiment were further used as input in Support Vector Machines (SVM) 
analysis using linear, polynomial and radial basis function (RBF) kernels, in order to predict 
the quality of a meat sample that was pre-characterized as fresh (F), semi-fresh (SF) or 
spoiled (S) from a taste panel. The resulting database was randomly partitioned into training 
and testing subsets representing approximately 80% and 20% of the data, respectively. Test 
data were not employed in any step of model development, but they were used exclusively to 
determine its performance (i.e., its ability to predict cases for which there was no previous 
training). In each modelling approach, 3 independent runs with different training/testing data 
were performed, randomizing in each run the initial data set. The classification accuracy of 
the SVM model was determined as the number of correctly classified samples in each sensory 
class divided by the total number of samples in the class. 

Results and Discussion  
In this study, e-nose was used to obtain volatile fingerprints of beef fillets during storage at 
different temperatures and packaging systems in an attempt to monitor spoilage. The eight 
sensors had different responses to the samples analysed as illustrated in Figure 1. This could 
be attributed to the intrinsic selectivity of the molecular sensing mechanism and to the mass 
of the molecules that are bounded at the coated surface of the sensors (Di Natale et al, 1997). 
The volatile patterns collected from the eight sensors were initially subjected to Principal 
Component Analysis (PCA) for dimensionality reduction prior to SVM analysis. Results 
showed that SVM with RBF kernels provided good discrimination of beef fillet samples 
regarding their spoilage status at both packaging conditions. Specifically, the overall correct 
classification for the three sensory classes in the aerobically packaged meat samples was 
87%, while classification for fresh, semi-fresh and spoiled samples was 58, 92, and 90%, 
respectively. Results for MAP packaging were quite similar. The overall correct classification 
was 83% while classification for fresh, semi-fresh and spoiled samples was 82, 87, and 76%, 
respectively. For the aerobically stored meat samples, the percentage of erroneous predictions 
in the safe side was 6.48% corresponding to 7 cases out of 108 meat samples, while the 
misclassified cases in the dangerous side were 5.56% corresponding to 6 cases out of 108 
meat samples. Moreover for MAP samples, the percentage of erroneous predictions in both 
safe and dangerous sides was 8.33% corresponding to 9 cases out of 108 meat samples (Table 
1 and 2).  
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Figure 1: Response of the eight sensors of Libra e-nose during sampling. 
 

Table 1: Confusion matrix for Support Vector Machines using RBF kernel performing the 
task of classification of the test samples of beef fillets in sensory classes (Fresh, Semi-fresh, 

Spoiled) during aerobic storage. 
  

SVM 

True class Predicted class Total Correct (%) 

Fresh Semi-fresh Spoiled 

Fresh 8 5 0 14 57% 

Semi-fresh 1 37 2 40 92% 

Spoiled 0 5 49 54 91% 

Overall correct classification (accuracy): 87% 

 
 

Table 2: Confusion matrix for Support Vector Machines using RBF kernel performing the 
task of classification of the test samples of beef fillets in sensory classes (Fresh, Semi-fresh, 

Spoiled) during storage in modified atmospheres. 
  

SVM 

True class Predicted class Total Correct (%) 

Fresh Semi-fresh Spoiled 

Fresh 14 3 0 17 82% 

Semi-fresh 2 54 6 62 87% 

Spoiled 0 7 22 29 76% 

Overall correct classification (accuracy): 83% 

 

Conclusions 
The results obtained in this study demonstrated that volatile fingerprints collected from e-nose 
analysis combined with an appropriate machine learning strategy, such as Support Vector 
Machines, could become a promising tool to monitor beef fillet spoilage through monitoring 
of biochemical changes occurring in meat substrate. The collected aroma profile could be 
considered as biochemical fingerprint containing valuable information for the discrimination 
of meat samples in quality classes corresponding to different spoilage levels. However, 
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further studies are required for the method to be eligible and able to be updated with the novel 
packaging and preservation techniques, which character of spoilage. 
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Abstract 
The migration of chemicals from packaging materials into foods is an important issue in food 
safety and quality. The objective of this work was to develop and validate a mathematical 
model to describe the migration of two antioxidants (Irgafos 168 and Irganox 1076) from 
polyethylene into a food simulant - Tenax®. The migration behaviour into the simulant was 
compared to the migration into an actual food matrix, rice. The parameters of the models 
based on the Fick’s law were estimated at three temperatures: 23, 40 and 70°C. Diffusion 
coefficients ranged between 4.80E-13 and 1.95E-11 cm2/s for the migration into Tenax® and 
between 6.90E-18 and 4.33E-17 cm2/s for the migration into rice. The partition coefficients 
ranged between 6 and 29 for Tenax® and were over 1000 for rice. The activation energy for 
the migration into rice was half of that for Tenax®. The models described relatively well the 
experimental data (ɛ < 12% and < 30% for rice and Tenax®, respectively). Results also 
indicate that Tenax® can be safely used as food simulant for these migrants because it 
overestimates the results as compared to results of migration into actual rice matrix. 
 
Keywords: migration, packaging, mathematical modelling, antioxidants, rice, Tenax®   

Introduction 
Packaging plays an essential role in the food supply protecting and containing food from 
processing and manufacturing, through distribution, handling and storage to the final 
consumer. However, packaging and other food-contact materials are also a source of 
chemicals hazards in food products and beverages through migration and other mass transfer 
processes. Some of these chemicals are additives to prevent the plastic material degradation 
during processing and to enhance its performance during its lifetime (Dopico-García et al. 
2003 and 2007). The direct contact between the material and the food yields the migration of 
low molecular weight compounds in generally low levels but still chronically ingested by 
consumers. European legislation sets specific migration limits depending on the toxicity of 
the migrant and on the potential exposure of the consumer to the migrant (Regulation UE 
10/2011).  
The assessment of materials safety and compliance with regulations includes monitoring the 
specific migration of many chemicals. These specific migration data may be obtained from 
monitoring levels of chemicals in real food systems. However, to overcome analytical 
difficulties migration data are commonly obtained through experiments carried out under 
controlled conditions of time and temperature of contact between the materials and a food 
simulant instead of the food itself. Such simulants include water, ethanol solutions, acetic acid 
solutions and olive oil (Directives EEC 85/572, 82/711, 97/48). Recently, the new Regulation 
UE 10/2011 included a new simulant – the Modified polyphenylene oxide (Tenax®) for solid 
foods.  
Mathematical models describing the mass transfer of migrants from packaging materials to 
foods represent invaluable tools for industry professionals and regulators alike (Poças et al., 
2008). Such models can at least partially, substitute expensive and time-consuming migration 
experiments. Diffusion models for estimation of the migration from plastic materials have 
been allowed for compliance assessment with regulations (Directive 2002 72/EC). These 
models have been used in a considerable extent to simulate migration into liquid foods or 
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liquid simulants. However, models to describe and simulate the migration from packaging 
into solid foods or simulant such as Tenax® are scarce or inexistent (Poças et al. 2011). 
The objective of this work was to develop and validate a mathematical model to describe and 
simulate the migration of two antioxidants commonly used in polyethylene films: Irgafos 168 
and Irganox 1076. The migration behaviour into the simulant was compared to the migration 
into an actual food matrix, rice, in a range of temperature from 23°C to 70 °C. The application 
of two different solutions of the 2nd Fick’s law, described in the literature - Baner et al. 
(1996); Limm and Hollifield (1996) – to the present systems, was studied. 

Materials and Methods 
3.1 Packaging material, Migrants, Food and Simulant 
Plastic packaging material: Low density polyethylene (LDPE), 60µm (Ernesto Morgado, 
Portugal).  
Migrants: Irgafos 168 (CAS No. 31570-04-4) and Irganox 1076 (CAS 2082-79-3) with a 
concentration on the LDPE of 103 µg/g and 351 µg/g, respectively (Sigma-Aldrich). 
The concentrations of migrants in the materials were determined previously by extraction 
with isooctane and determination by GC-MS.  
Food: Japonica precooked medium white Rice Grains (Ernesto Morgado, Portugal). 
Simulant: Tenax® 60/80 mesh, 0.29 g/cm3 of density (Quadrex Corporation, Woodridge, 
UK). It was cleaned up prior to use by extraction with isooctane. 

3.2 Migration Tests 
The food sample or simulant was sandwiched between two circular pieces of plastic, with the 
contact layer facing the sample. The rice (3 ± 0.0020 g) or Tenax® (0.63 ± 0.0010 g) was in 
contact with a total of 0.5652 dm2 of plastic surface area. The set was placed in a petri dish 6 
cm diameter which was then wrapped in aluminium foil and packed in a bag under vacuum 
conditions to promote good contact between the solids and the material. Samples were stored 
at three different temperatures: 23ºC - corresponding to room temperature; 40ºC - the testing 
temperature for the foreseen use conditions; and 70ºC - the temperature for accelerated tests. 
Samples were removed in triplicate at regular time intervals for preparation and analysis.  

3.4 Quantification of Irgafos 168 and Irganox 1076 after migration 
Quantification was carried out by GC-MS after extraction of the migrants from the rice or 
simulant matrix. Extractions were performed with 5 ml isooctane for 2 h. Chromatographic 
conditions: Chromatograph (Varian CP3800, Quad Mass Spectrometer 1200L, COMBIPAL 
autosampler). Column VF5MS (30m x 0.25mm, 0.25µm). Ionization mode: electronic impact 
70eV; Scan mode: SIM: m/z 235+250 ion – IS; m/z 441 ion – Irgafos 168; m/z 647+662 ion – 
Irgafos oxidized; m/z 515+530 - Irganox 1076. Injector temperature: 320ºC. Oven 
temperature: 80ºC for 1min; 15ºC/min up to 320ºC for 10min. Injection volume: 1µl. Extracts 
were injected in duplicate. 

3.5 Statistics and estimation of model parameters 
Statistical Analysis: Statistica 6 (Statsoft, Inc.) and Excel (Microsoft, Inc) were used in data 
analyses. All statistical analyses were performed at a confidence level of 95%. 

3.6 Mathematical models 
Mass transfer process is commonly assumed to be a diffusion process that can be described by 
the Fick’s second law (1): 
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Where CP

A represents the concentration of the migrant species A in the packaging material P, 
t represents the time, x the linear dimension and DP

A is the diffusivity of A in the material. It 
was considered that at the beginning of the mass transfer the migrant is homogeneously 
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distributed in the packaging and that there is no boundary resistance for the transfer between 
packaging and food. It is also considered that the migrant is homogeneously distributed in the 
food, and the total amount of the migrant in the system (packaging plus food) remains 
constant during the migration process. For these assumptions, two solutions can be derived 
from equation (1), according to Baner et al. (1996) and Limm and Hollifield (1996), 
respectively: 
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Where: MF

A is the concentration of A in the food/simulant over time and (MF
A(∞)) at 

equilibrium; L is the packaging thickness; qn are the non-zero positive roots of: tan(qn) = - α 
qn; α is the quotient between the food volume and the product of the packaging volume and 
the partition coefficient of A in the system packaging/food.  
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Results and Discussion  
Migration is represented as the quantity of migrated additive per gram of Tenax® or rice over 
the time in Figure 1. Migration curves of Tenax® and rice present the same pattern. However, 
migration into Tenax® is faster and occurs at higher values as compare to the migration into 
rice. Equilibrium of both antioxidants in Tenax® at 70ºC is achieved after 15 days, at 40ºC 
after 20 days for Irgafos 168 and after 10 days for Irganox 1076. The antioxidants do not 
achieve the equilibrium in rice at any temperature during the study duration. These different 
behaviours may be explained by the properties of Tenax®, particularly its high porosity and 
adsorption capacity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The experimental data was fitted to equations 2 and 3 using a non-linear regression analysis at 
a level of confidence of 95%. Equation 2 fitted well to the experimental data of the migration 
into Tenax® but not to the rice data, where equation (3) gave better fits. Nevertheless 

Figure 1: Migration experimental data (markers) and model (lines): a) Irgafos 168/Tenax®; b)
Irganox1076/Tenax®; c) Irgafos 168/Rice; d) Irganox1076/Rice; ♦ -70ºC;▲ -40ºC;∗ -23ºC.  

a b 

c d 
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Equation 2 does not describe well the migration at very early times at lower temperatures. 
Similar results were obtained in other studies of migration into Tenax® (Poças et al., 2011). 
The diffusion (D) and partition (K) coefficients of the models were estimated and are 
summarized in Table 1. The error (ɛ) of the model is also presented. 

Table 1: Diffusion, partition coefficients and error of the model for Tenax® and rice. 
Antioxidant/ 
Temperature 

Dtenax  
(cm2/s) 

ɛ tenax 
(%) 

Drice 
(cm2/s) 

ɛ rice 
(%) Ktenax Krice 

Ir
ga

fo
s 23ºC 4.80E-13 30.0 9.57E-18 8.8 28.7 1886 

40ºC 5.78E-12 25.3 2.31E-17 8.5 14.9 1443 
70ºC 7.27E-12 20.5 4.33E-17 4.5 6.2 1095 

Ir
ga

no
x 23ºC 8.34E-13 26.8 6.90E-18 7.4 22.8 2194 

40ºC 2.84E-11 80.3 3.68E-17 12.2 8.4 1175 
70ºC 1.95E-11 19.4 3.71E-17 5.3 6.9 1229 

 
The error of the model was higher for the Tenax® than for rice. This is probably related with 
the higher adsorptive capacity of Tenax® and with handling operations because this powder 
tends to stick to the packaging material after long periods of contact time yielding higher 
standard deviation between replicates for each sampling time. The diffusivity values in 
Tenax® are several orders of magnitude higher than in rice. Results also indicate that the 
diffusion coefficient is dependent of the temperature following an Arrhenius-type relationship 
(plot not shown). The impact of the temperature in the migration has the same magnitude for 
both antioxidants. However, temperature has a twice higher impact in the diffusivity of 
Tenax® as compared to rice.  

Conclusions  
Migration into Tenax® is faster and presents higher values than into rice. The influence of 
temperature on the migration rate follows an Arrhenius-type relationship. The temperature 
has similar impact on the migration of both Irganox and Irfgafos when migrating into the 
same matrix. However, the impact of temperature is much higher on the migration into 
Tenax® than into rice regardless of the migrant. The mathematical models described 
relatively well the experimental data (ɛ < 12% and < 30% for rice and Tenax®, respectively). 
Results indicate that the food simulant tends to overestimate migration values and thus can be 
safely used to assess materials compliance when materials are intended to contact with rice.  
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Abstract 
Galactooligosaccharides (GOS) are prebiotics that have a beneficial effect on human health 
by promoting the growth of probiotic bacteria in the gut. GOS are commonly produced from 
lactose in a reaction catalysed by β-galactosidase, termed transglycosylation. In the present 
work the synthesis of GOS from Whey Permeate (WP) using commercially available β-
galactosidases from Kluyveromyces lactis (Maxilact® L2000) was studied. The influence of 
low amounts of organic solvents (acetonitrile, ethanol, diethyl ether, dioxane, and acetone in 
10% (v/v)) on GOS synthesis was examined, with the objective of obtaining valuable 
information on the reaction kinetics. Modelling of GOS synthesis profiles using a full reaction 
mechanism (Kim et al., 2004) fitted the experimental data. However, high correlation 
between kinetic parameters and high standard errors in parameter estimates were found. A 
reduced GOS synthesis mechanism based on simplifying assumptions previously identified in 
literature was devised. This reduced model fitted data appropriately and parameter estimation 
and associated uncertainty was improved. The use of organic solvents was found to modify 
the reaction kinetics, with promising applications to increase GOS yield.  
 
Keywords: Galactooligosaccharides, β-galactosidase, whey permeate, organic solvents 

Introduction 
Galactooligosaccharides produced by the action of β-galactosidase on lactose were identified 
for the first time in the early 1950s. Four species of GOS were formed using Kluyveromyces 
lactis β-galactosidase (Aronson, 1952; Pazur, 1954), and three using E. coli β-galactosidase 
(Aronson, 1952). Experiments conducted with high lactose concentrations detected eleven 
species of GOS (Roberts et al., 1957). Since then, there have been several studies of the 
enzymatic synthesis of GOS by β-galactosidase.  
Reduced water activity (aw) may enhance the enzymatic synthesis of GOS (Goulas et al., 
2007) and help to understand better how to improve the yields of this process. Moreover, 
many enzymes have altered specificity in the presence of organic solvents. 
The objective of this work was to study the effect of the addition of small concentrations of 
organic solvents in the kinetics of enzymatic synthesis of GOS. 

Materials and Methods 
The effect of adding solvents in a 10% (v/v)  to the GOS synthesis reaction mixture assay was 
investigated. The solvents were used in relatively low concentrations, to avoid inhibiting 
enzyme activity. The solvents used were ethanol, acetonitrile, acetone, diethyl ether and 
dioxane.  All reagents were purchased from Sigma-Aldrich (Dublin, Ireland) except for the  
β-galactosidase Maxilact L2000 (Carbon Group (Ringaskiddy, Co. Cork, Ireland). 
Laboratory scale reactions for GOS synthesis were carried out by dissolving demineralised 
Whey Permeate in phosphate buffer (0.1 M, pH: 6.8) to which Maxilact 0.4% (w/v) was 
added. The lactose concentration used was 200 g/L. 
High Performance Liquid Chromatography (HPLC) analysis was used to quantify GOS 
synthesis products. HPLC was carried out using a SUPELCOGEL Ca2+ column (product no. 
5930-U), 30 cm x 7.8 mm I.D., and a flow rate of 0.5 ml/min. A column heater (Waters 
Temperature Control Module I and II) was used to maintain the column temperature at 80ºC. 
The mobile phase used was ultrapure water. The detector used was a Refractive Index (RI) 
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Detector (Waters 410), with an internal temperature of 34ºC. The samples for HPLC analysis 
were diluted 1:100 or 1:500 and filtered (SUPELCO, 25 mm x 0.45µm) before injection.  
Model building and parameter estimation using data from each of the experiments were 
performed using JSim version 1.6.82 (Physiom Project, Washington) (Bassingthwaighte 
2005).  

Reaction mechanism model 
Previous studies (Iwasaki et al., 1996 and Kim et al., 2004) have investigated the modelling 
of GOS formation using the full feature mechanism model of reaction. Generally, this has 
resulted in an ill-conditioned system, where strong correlation between parameters and 
variables has resulted in no statistically meaningful results. The main approach to avoid this 
obstacle in this study focused on simplifying the reaction mechanism and tried to explain 
GOS synthesis with a reduced set of reaction steps (Boon et al. 1999 and 2000; Zhou et al. 
2003; Neri et al. 2009). 
In this work, the GOS synthesis mechanism has been simplified on the basis of the following 
considerations based on previous studies by Boon et al. (1999 and 2000) and Zhou et al. 
(2003): 

- Enzymatic hydrolysis is assumed to be rapidly equilibrated, lumping 
therefore the whole process into a first order process. 

- There is no GOS synthesis inhibition process due to glucose, therefore the 
step of allolactose formation is considered of negligible influence. 

From these hypotheses the following system of ordinary differential equations (ODE) was 
constructed (equations 1-6). 
 
                                                                                                                       (1) 

 

 

                                                                                                                       (2)                                                                                                                                             

 

                                                                                                                        (3) 

 

                                                                            (4) 

  

                                                                                                                      (5) 

 

                                            (6) 

  
Where E, Lac, E:Gal, Gal, GOS stand for the enzyme, lactose, Enzyme:galactose complex, 
galactose, and galacto-oligosaccharide molar concentrations. The kinetic parameters k1, kr3, k5 
and kr5 are expressed in M-1min-1 and k3 is expressed in min-1. 

Results and Discussion  
It was noticed that some solvents, such as acetonitrile and dioxane, inhibited β-galactosidase 
activity. Some other solvents, such as acetone and diethyl ether, permitted β-galactosidase 
reaction. However, the yield of GOS synthesized in comparison to the control was not 
affected (Figure 1).  
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Figure 1: GOS synthesis in presence of different solvents. Average values of three replicates are 
reported with relative error bars. Assays were carried out in phosphate buffer (0.1 M, pH 6.8) with 

Whey Permeate (200 g/l), solvent (10%) and 0.4% Maxilact, at 40ºC, for 300 minutes reaction. Solvent 
added were: acetone, acetonitrile, diethyl ether, dioxane and ethanol. (Where ▲: Lac, ▬: Glc, : Gal, 

and ●: GOS) 
 

Figure 2 shows the kinetic parameters of the enzymatic assays estimated from the 
data in Figure 1.  the changing of ln(k1) between the assays carried out with solvents.  All the 
solvents, within experimental error, allowed for the formation of E:Gal complex at the same 
rate. E:Gal is the precursor to GOS formation. However acetonitrile and dioxane had slower 
kinetics, which is consisted with the initial lactose depletion observed in these assays. It can 
be seen that the introduction of small concentrations of acetonitrile and dioxane affected 
significantly (p<0.05) the initial step of precursor formation in the reaction.  

The comparison of the kinetic parameter ln(k3) and ln(kr3) between the different 
solvents can be seen in Figure 2 as well. The use of organic solvents resulted generally in a 
reduction of both ln(k3) and ln(kr3) compared to the control. This is expected to result in 
slower degradation of the E:Gal complex towards the formation of free Galactose. This might 
have the interesting result of displacing the reaction towards the formation of GOS, which is 
characterised by ln(k5) and ln(kr5). The ratio between ln(k3)/ln(kr3) showed that the use of 
dioxane and diethyl ether reduced this ratio (p<0.05). Therefore the use of solvents had an 
observable effect in the balance of the reaction mechanism. The kinetic parameter ln(k5) did 
not change between the experiments taken into consideration, with no statistically significant 
difference between the different solvents. Finally, for the kinetic parameter ln(kr5), The assay 
carried out with dioxane addition showed a higher value then the other assays (p<0.05). 
Hence, in the presence of this solvent, the transglycosylation reaction is shifted towards the 
degradation of GOS rather than its synthesis. This is consistent with the kinetics shown in 
Figure 1. 
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Figure 2: Comparison of estimated GOS formation kinetics parameters for enzymatic assays carried out 

with the addition of solvents. Error bars show the propagated 95% CI for the estimated parameters 
from individual experiments. 

Conclusions 
The kinetics of GOS enzymatic synthesis were affected by the addition of small 
concentraitons of solvents. Using 10% of acetone, diethyl ether and ethanol influenced the 
profile of the GOS reaction progress, possibly shifting the kinetics towards faster GOS 
production and slower inhibition by hydrolysis. 
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Abstract 
Granola is a dried granulated breakfast cereal product susceptible to moisture uptake. 
Therefore, being a moisture sensitive product it is dependent on the environmental conditions 
of storage, which can lead to undesirable product changes. The kinetics of moisture 
adsorption is an important tool to model product quality deterioration considering varying 
storage conditions. The aim of this study was to investigate the moisture adsorption kinetics 
and loss of firmness of granola under different environmental conditions (temperature and 
relative humidity), and develop a mathematical model describing the kinetics of quality decay 
of granola as a function of temperature and relative humidity. Samples of granola were stored 
in airtight containers at different relative humidities (32-33, 53-57 and 75-76%) and 
temperatures (10, 20, 30 and 40 °C). Moisture uptake and firmness loss showed an 
exponential growth and decay, respectively, which could be described by a first order reaction 
model. The effect of temperature and relative humidity on the reaction rate constant of 
firmness was not significant. The first order reaction model was shown to be a suitable model 
to describe the firmness loss as a function of time. The reaction rate for the moisture gain 
showed a temperature dependency, which was described by the Arrhenius equation. 
Therefore, an overall kinetic model was developed to described the quality decay in granola 
during storage as a function of temperature, and a good fit (R2 = 0.968) was found. 

Keywords: quality decay, kinetic modelling, lumped capacity model, moisture content, water 
activity 

Introduction 
Knowledge of the mechanism of food deterioration reactions that influence food quality, such 
as the rate at which these reactions occur, the effect of temperature, and water allows to 
counteracting the effect of these reactions minimizing undesirable changes in quality.  
Granola breakfast cereals are products whose crispness/ firmness are considered a primary 
textural attribute. Undesirable changes in texture may occur when the product is exposed to 
high conditions of water vapour. The effect of environmental relative humidity can have a 
negative impact when the driving force is too high, the product will absorb moisture until 
reaches the equilibrium, which led to an increase of moisture content and consecutively a 
decrease of crispness. Because water affects the texture of dry food products, as moisture 
content increases above the monolayer value there is a gradual crispness loss, which is a 
function of water activity (Katz and Labuza 1981). 
To minimize the loss in quality of a food product during storage, kinetic models describing 
deterioration rates and their relationship with temperature and water activity must be 
determined. The usefulness of any mathematical model that expresses the effect of intrinsic 
and extrinsic factors on the deterioration rate greatly depends on the accuracy of the model 
parameter estimates. 
The aim of this study were to i) investigate the moisture uptake and the loss of firmness in 
granola breakfast product; ii) investigate the relationship between environmental relative 
humidity, temperature and absorption reaction rate of granola; iii) determine the kinetics of 
water activity and the kinetics of firmness of granola under different environmental 
conditions; and iv) develop a mathematical model describing the kinetics of quality decay of 
granola during storage. 
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Materials and Methods 
Granola breakfast product was stored in airtight containers at different environmental 
conditions (32-33, 53-57 and 75-76% of relative humidity and temperatures 10, 20, 30 and 40 
°C). Appropriate sampling was performed in triplicate to assess the moisture content and 
firmness of granola throughout 15 days of storage.  
The quality decay for most foods can be represented by a first order degradation reaction and 
by integrating and normalising the quality characteristics, an appropriate model can be based 
on the changes occurring between the initial and an equilibrium value, by application of the 
concept of fractional conversion for an irreversible first order reaction (Ochoa et al. 2001): 

( ) ( )ktCCCC eie −−+= exp         (1) 
where, C is the measured quality factor measured; Ci and Ce are the quality parameters 
initially and at equilibrium, respectively, t represents time; and k is the reaction rate constant.  

Results and Discussion  
Kinetics of water activity  
The kinetics of moisture content gain in granola during storage, under different environmental 
conditions, was shown to follow a first order reaction model (Eq. 1), and the results obtained 
show clearly that the model fits the experimental data very well (0.842< R2 <0.988) (results 
not shown). Moisture content by itself is not always the best parameter to follow the effects of 
water on reaction rates; it is preferable to use water activity instead (Saguy and Karel 1980). 
Therefore, water activity was determined from moisture content using the sorption isotherms 
of granola (Eq. 2) (Macedo et al. 2011): 

718.372.43055.4 waMC +=          (2) 
where, MC is moisture content in dry basis and aw is the water activity.  
The kinetics of water activity gain in granola during storage were detemined as a function of 
temperature, time and environmental relative humidity and a first order reaction model was 
fitted (Eq. 3).  
( )
( ) )exp( awtk

aa
aa

wewi

wew −=
−
−         (3) 

where, aw, awi and awe are the water activity of granola at time t, at initial time and at the final 
equilibrium, respectively; and kaw is the reaction rate constant (day-1). As an example, Figure 
1 shows the kinetics of water activity of granola at 40 °C.   
 
 
 
Figure 1: Kinetics of water activity 
of granola over time at 40 °C and at 
different conditions of relative 
humidity (%). The markers 
correspond to the experimental 
values and the lines correspond to the 
predicted values by a first order 
reaction model. 

 
The reaction rate constant (kaw) (day-1) was determined by a non-linear regression method. 
Estimated values, standard errors and the goodness of the fit of the model are shown in Table 
1.  
The coefficient of determination (R2) for all conditions was higher than 0.852 and the mean 
relative deviation modulus (E) was less than 3.24. Moreover, p-levels of all the constants 
estimated were less than 0.05. Therefore, the first order reaction model is suitable for fitting 
the experimental data at each condition. 
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Table 1: Reaction rate constants (kaw) of water activity (± is the confidence intervals), 
coefficient of determination (R2) and mean relative deviation modulus (E) of the first order 
reaction model of granola at different temperatures and relative humidities. 

Temperature (°C) RH (%) Kaw (day-1) R2 E 
10 33 0.266±0.0773 0.929 1.82 
 57 0.252±0.0334 0.978 1.29 
 76 0.503±0.0921 0.940 3.24 

20 33 0.344±0.0804 0.954 1.50 
 54 0.355±0.0508 0.968 1.60 
 75 0.628±0.105 0.951 2.61 

30 32 0.484±0.106 0.970 0.948 
 56 0.665±0.131 0.937 1.35 
 75 0.964±0.136 0.972 2.08 

40 32 0.882±0.401 0.852 1.30 
 53 0.965±0.279 0.889 1.41 
 75 1.00±0.0600 0.995 0.627 

The reaction rate constant for water activity increased with an increase in temperature 
according to an Arrhenius relationship, whereby it was not significantly affected by relative 
humidity (p < 0.05). The increase of the rate constant with temperature can be explained by 
the fact that higher temperature promotes the mass transfer of water vapour from the 
environment to the surface of the product and from the surface to the centre (Zhengyong et al. 
2008). The temperature dependence of the reaction rate constant for water activity gain in 
granola at constant environmental relative humidity is shown in Figure 2. The activation 
energies (Ea) and kref values were determined at each relative humidity, with Ea values 
obtained ranging between 17.1±4 and 34.5±3 KJ/mol, and kref from 0.441±0.039 to 
0.760±0.051 day-1. The activation energy decreased with an increase in environmental relative 
humidity.   
 

Figure 2: Water activity Arrhenius plot for 
granola at different RH (33, 55, and 75%). 

The overall mathematical model describing 
water activity a function of both time and 
temperature (Eq. 4) is given combining the 
first order reaction model (Eq. 3) with the 
Arrhenius equation: 
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The overall model was fitted using a non-linear regression procedure, least squares, to all the 
water activity data, covering a range of temperature from 10 to 40 °C and environmental RH 
from 33 to 75%. The diagnosis plot is shown in Figure 3, as well as the plot of frequency 
distribution of residuals and the plot of residuals vs. predicted values.    
 
 
Figure 3: Diagnosis plot between water activity 
(aw) experimental values obtained by sorption 
isotherm and predicted by the first order model. 
The upper left graph shows the frequency 
distribution of residuals and bottom right graph 
shows distribution of the residuals versus 
predicted values of water activity. 
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The Ea and kref values were estimated to be 23.4±3.2 KJ/mol and 0.612±0.029 day-1, 
respectively, p-levels of all the constants estimated were less than 0.1, the coefficient of 
determination was 0.968 and the mean relative deviation modulus between experimental and 
predicted values was 2.02. From this can be concluded that the first order model can describe 
the relationship between water activity and time with accuracy. 

Kinetics of firmness  
Firmness decreased throughout time, the decrease being more pronounced at high relative 
humidity (RH). At low RH (32-33%) there was no kinetic trend, as there was not a significant 
change in firmness. The kinetics of firmness loss in granola during storage under different 
environmental conditions were modelled using a first order reaction and the results obtained 
showed a good fit (0.953< R2 <0.999 and 8.67< E <19.2).  
Temperature and relative humidity did not show any significant influence (p < 0.05) on the 
reaction rate constant (kF). The diagnosis plot between experimental values and predicted by 
the first order model is shown in Figure 4, as well as the plot of frequency distribution of 
residuals and the plot of residuals vs. predicted values. The kF value was 0.697±0.076 day-1 
and Fe 15.3±2.5 N and p-levels of all the constants were less than 0.1. The coefficient of 
determination was 0.836 and the mean relative deviation modulus was 65. Despite the 
deviation value, the first order reaction model was accepted to describe the relationship 
between firmness and time, considering the inherent firmness variability of the product. 
Figure 4: Diagnosis plot between 
experimental and predicted values of 
firmness. The upper left graph shows the 
frequency distribution of residuals and bottom 
right graph shows distribution of the residuals 
versus predicted values of firmness. 

Conclusions  
Moisture uptake and firmness loss showed 
exponential growth and decay respectively, 
which was described by a first order reaction model. The reaction rate for moisture gain was 
greatly influenced by the temperature during storage, which was described by the Arrhenius 
relationship, whereas relative humidity had no significant effect. An overall model was 
developed to described the quality decay in granola during storage as a function of 
temperature, and a good fit (R2 = 0.968) was  found. 
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Abstract 
Carrots (Daucus carota L.) are root vegetables of the Apiaceae family and are sometimes 
consumed raw or following cursory processing. However, carrots are also thermally 
processed as canned and frozen foods, ingredients in dehydrated soups, baby foods and food 
mixes. Nutritionally, carrots are known for their phytochemical content, including three 
biologically active C17-polyacetylenes (falcarinol, falcarindiol and falcarindiol-3-acetate) that 
may posses several human health benefits. Thermal processing and post harvest treatments 
have been shown to affect the level of some bioactive compounds including polyacetylenes in 
both fruit and vegetables. The objective of this study was to evaluate the change in level of 
polyacetylenes during both pre-and post-harvest stages, including both domestic and 
industrial processing. The model was developed using Monte Carlo simulation techniques to 
simulate the factors influencing polyacetylene levels in carrot cultivars. Probability density 
functions were fitted to relevant data sets collated from scientific literature and experimental 
data. A sensitivity analysis for the baseline model indicated that the cultivar selection had a 
positive influence (~0.20 correlation coefficient) followed by plant growth stage with a 
negative effect of harvest delay (-0.62 correlation coefficient). The mean simulated level of 
polyacetylenes, from initial cultivars to domestic processing (boiling), decreased by 76% (530 
to 129 µg/g dry weight (DW)) and 58% (352 to 147 µg/g DW) for falcarinol and falcarindiol, 
respectively, whereas an increase of 2% (564 to 575 µg/g DW) was noted for falcarindiol-3-
acetate. The model shows an overall decrease in both falcarinol and falcarindiol compounds, 
indicating the thermal degradation during domestic processing. Three industrial processing 
methods, (blanching, water immersion cooking and sous vide processing) were also 
considered in this model. A similar decrease during industrial processing for both the 
farcarinol and falcarindiol with a corresponding increase in falcarindiol-3- acetate was 
observed. This model will assist in optimising procedures to maximise polyacetylenes in 
processed carrots. 
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Abstract 
Modified atmosphere packaging (MAP) relies on the interplay between the product 
respiration and the package film permeability with the aim of maintaining initial quality and 
extending shelf-life of fresh produce. The aim of this work was to evaluate the effect of 
temperature and number of perforations on quality and the shelf life of sliced button 
mushrooms. Sliced mushrooms were packed in a tray, covered with biobased film, and stored 
at 4 levels of temperature (0, 5, 10 and 15 ºC) and 3 levels of perforations for each 
temperature (ranged from 1 to 6) for 7 days. Headspace gas composition and quality 
parameters of sliced mushrooms (weight loss, pH, firmness and colour) were measured 
throughout the storage period. Increasing the storage temperature resulted in the need to 
increase the number of perforations in order to obtain the optimum MAP conditions. 
Temperature had a significant effect (p < 0.05) on weight loss and firmness of sliced 
mushrooms. Firmness was identified as a critical quality parameter therefore a model was 
developed to describe the influence of temperature and time on shelf life of sliced 
mushrooms. The shelf life of sliced mushrooms packed in an optimum package with 1 
perforation was 7.5 and 4 days when stored at 0 and 5 °C, respectively. 
 
Keywords: mushrooms, MAP, fresh produce, optimal gas composition, shelf life 

Introduction 
MAP of fresh produce relies on modifying of the atmosphere inside the package, achieved by 
the natural interplay between two processes, the respiration of the product and the transfer of 
gases through the packaging, which leads to an atmosphere richer in CO2 and poorer in O2. 
MAP design depends of the characteristics of the product, its recommended gas composition 
and its respiration rate as affected by temperature and headspace gas composition; and the 
permeability of the packaging materials (perforated or non-perforated polymeric film) and its 
dependence on temperature (Fonseca et al.  2002). 
Temperature is the most important environmental factor in the postharvest life of fresh 
produce, and decreasing storage temperature causes a reduction in the biochemical reaction 
rates (e.g., respiration) (Robertson 2006). 
Shelf-life extension can also be obtained by a good modified atmosphere package (MAP) 
design, which can be attributed to low O2 and high CO2 concentrations in the atmosphere that 
surrounds the product, decreasing the respiration rate of the product and inhibiting microbial 
growth (Antmann et al. 2008). 
Optimum mushrooms MAP conditions are 3-5 % O2 concentration to reduce the respiration 
rate, but not lower than 3 % to avoid anaerobic respiration, and CO2 concentrations should not 
be higher than 12 % to avoid physiological injuries (Parentelli et al. 2007). 
The aim of this study were to study the effect of temperature and number of perforations on 
headspace gas composition of sliced mushrooms, the effect of time and temperature on 
quality and shelf life of sliced mushrooms. 

Materials and Methods 
Experimental setup 
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Button mushrooms (Agaricus bisporus) were sliced (0.5 cm of thickness) placed 110 g in 
each tray (11.1 x 15.5 x 3.4 cm3) and covered with cellophaneTM 335 PS film (Innovia Films 
Ltd., UK), 23.3 μm of thickness. The film was perforated with a needle of diameter 0.33 mm. 
A label of 10 x 5 cm2 area was placed on the film, similar to the labels found in the 
supermarket packaging. 
An experimental design was used for studying temperature and number of perforations on 
headspace gas composition of sliced mushrooms. 
  

Table 1: Temperature and number of perforations used 
Factors Levels 
Temperature 
(ºC) 0  5  10  15 

Number of 
perforations 0 1 2  0 1 2  2 3 4  4 5 6 

 
After determining the number of perforations at each temperature to keep the desired 
atmosphere inside the packaging, a new experimental design was performed and quality 
parameters were studied with time and temperature, during 7 days, at 4 different temperatures 
(7 packages for each temperature), giving a total of 28 runs. 

Analysis of quality parameters 
The quality parameters, weight loss, pH, firmness and colour (L, a, b and Browning Index 
(BI)), were determined once a day, during 7 days. 

Mathematical modelling 
The Weibull model was used to describe kinetic degradation of quality parameters as a 
function of time and Arrhenius equation was used for the influence of temperature on that.
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where, X0 is the initial quality parameter, X is the quality parameter at time t, Xe is the 
equilibrium quality parameter, t is the time (d), α is the scale parameter (d-1), and β is the 
shape parameter.   
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where, k is the parameter, kf  is the frequency factor, Ea is the activation energy (J mol-1), Rc 
is the gas constant (8.314 J mol-1K-1) and T is the Temperature (K). 
Statistical analysis and determination of parameters was carried out by using Anova and 
Solver tool from Microsoft Excel 2007. 

Results and Discussion  
Effect of Temperature and Perforations on Gas Composition 
Increasing the storage temperature resulted in the need to increase exponentially the number 
of perforations, in order to obtain the optimum MAP conditions. Table 2 shows the number of 
perforations necessary to obtain that condition. 
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Table 2: Number of perforations in the film of the package, at determined temperature, to 
obtain optimum MAP conditions. 

Factors Levels 
Temperature (ºC) 0 5 10 15 
Number of 
perforations 1 1 3 6 

 
A new experimental design was carried out with conditions from Table 2 to study the effect 
of time and temperature on quality of sliced mushrooms, in an optimum MAP design. 

Effect of Time and Temperature on Quality 
Time and temperature had significant effect (p < 0.05) on quality of sliced mushrooms.  
 

  

 
 

Figure 1: Quality parameters profiles of sliced mushrooms with time, at 0 ºC ( ); 5 ºC ( ); 10 
ºC ( ); 15 ºC ( ), in packages with 1, 1, 3 and 6 perforations, respectively. 
 

Mathematical Modelling and Shelf life Prediction  
Firmness was identified as a critical parameter, since presented highest effect produced by 
time and temperature (based on its p-value) and presented higher coefficient of determination 
from the global Weibull model fitted to data (equation 3). 
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A limit of acceptance was established (60% of loss of initial firmness (F0)), therefore the 
global Weibul model  was used to calculate the time (t, days) as a function of its firmness (F, 
N) and temperature (T, K), in order to predict the shelf life of sliced mushrooms. 
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Shelf life was obtained by difference of the time which led to reduce to 0.6 of the initial 
firmness and the time which leaded to reduce to 1, 0.95, and 0.9 until 0.6 of the initial 
firmness. 

 
Figure 2: Shelf life prediction of sliced mushrooms based on firmness at different 

temperatures. 
 
Fresh sliced mushrooms (1 F0) showed 1 day of shelf life, at 15 ºC; 2 days at 10 ºC; 4 days at 
5 ºC and 7.5 days at 0 ºC (Figure 2).  
Sliced mushrooms presented 80 % of initial firmness (0.8 F0), therefore the shelf life would 
be reduced by half, i.e., 0.5 day at 15 ºC, 1 day at 10 ºC, 2 days at 5 ºC and 3 days at 0 ºC. 

Conclusions  
Increasing the storage temperature the number of perforations had to increase in order to 
obtain the optimum MAP conditions. Time and temperature had significant effect on quality 
parameters of sliced mushrooms. The shelf life of fresh sliced mushrooms in an optimum 
package was 7.5 days and 4 days stored at 0 and 5 ºC, respectively. 
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Modelling of antibacterial effect of spice extracts on growth of 
spoilage flora in VP and MAP cooked lamb product on chilled 
storage 

S. AL-Kutby, J. Beal, V. Kuri  

School of Biomedical and Biological Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom.  

Abstract 
Technologies such as vacuum packing (VP) and modified atmosphere packing (MAP) allow 
extended storage of ready to eat (RTE) meats, but issues with chemical and microbial 
deterioration remain. This work aimed to describe the effect of natural spice extracts on the 
growth kinetics of spoilage indicators, including total viable and lactic acid bacteria counts. 
Samples were prepared to resemble a RTE meat product prepared with minced lamb and a 
cereal ingredient following a doner kebab formulation in a pilot plan setting with 
conventional hygiene controls, which allow post-pasteurisation of the product before 
packaging in VP and MAP30% CO2. Factors on the design included the storage atmosphere, 
type of added spice extract (rosemary-R, cinnamon-C, sumac-S and a combination of R, C 
and S) at high (0.2%) and low (0.05 %) levels, with a control without spices, and storage time 
(12 weeks). Weekly bacterial levels (log10 cfu/g) were determined and data was fitted to a 
Baranyi and Roberts model with DMfit v2.0; generally all growth data were satisfactorily 
fitted to growth curves for all the treatments with high R2 values and low standard errors. For 
TVC, no significant differences on model parameters were found between VP and MAP 
samples. The use of cinnamon or rosemary significantly reduced the lag phase of TVC by 
about 2 weeks, and reduces the maximum final growth by 2 log cycles. All spices decreased 
LAB counts over time (P>0.05), with negative growth rate values between 0.11 to 0.78 for 
VP, but just to 0.3 for MAP. The high level of cinnamon addition controlled LAB levels 
below detection limit from the time of addition. The use of spices offers viable alternatives 
for spoilage control and modelling aids the prediction of the shelf life and allows better 
targeting of formulation strategies. 
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Modelling the effect of aw and fat content on the high pressure 
resistance of Listeria monocytogenes 

S. Bover-Cid1, N. Belletti1, M. Garriga1, T. Aymerich1 
1 IRTA. Food Safety Programme. Finca Camps i Armet, E-17121 Monells, Spain (sara.bovercid@irta.cat). 

Abstract 
The inactivation of Listeria monocytogenes CTC1034, inoculated in a dry-cured ham system, 
was modelled as a function of pressure (347 MPa-852 MPa, 5 min/15ºC), water activity (aw, 
0.86 - 0.96) and fat content (10% - 50%) according to a central composite design. The response 
surface methodology through stepwise multivariate linear regression was applied to describe the 
relationship between bacteria inactivation and the studied variables. 
According to the best fitting polynomial equation, besides pressure intensity, both aw and fat 
content exerted a significant influence on the L. monocytogenes inactivation. A clear linear 
baroprotection trend was found lowering the aw of the substrate. Fat content was included in the 
model through the quadratic term and its interaction with pressure, resulting in a particular 
behaviour. A protective effect due to the presence of high fat content was seen for pressure 
treatments above ca. 700 MPa. At lower pressures, higher inactivation of L. monocytogenes 
occurred by increasing the fat content above 30%. The results highlight the relevant influence of 
intrinsic factors on the pathogen inactivation by HP, which make necessary to assess and 
validate the effectiveness of HP on specific food products. 
 
Keywords: Listeria monocytogenes, high hydrostatic pressure, modelling, inactivation, food 
characteristics 

Introduction 
The use in food processing of High Pressure (HP) has captured significant interest as an 
alternative to heat treatment, thanks to its ability to inactivate bacteria with minimal 
consequences for sensorial and nutritional properties of food (Rastogi et al. 2007). 
The different sensitivity of microorganisms to pressure treatment is reported in scientific 
literature. The resistance of microorganisms to pressure in food depends on the HP processing 
conditions (pressure, time and temperature), and intrinsic factors of food. The presence of 
proteins and fat has been reported to act as a protective agent on microbial cells (Black et al. 
2007). Similarly, a low water activity (aw) values have been proved to decrease the efficiency of 
HP treatments (Moussa et al. 2006). Despite the recognised influence of food characteristics on 
the lethality of HP, modelling studies to quantify it are still scarce. 
In this frame, the aim of the present work was to model the influence of the combined effect of 
three selected variables (pressure treatment, fat content, aw) on the inactivation of 
L. monocytogenes inoculated in a dry-cured ham system. 

Materials and Methods 
Experimental design 
A Central Composite Design (CCD) for three independent variables (aw, fat content and 
pressure) was followed as indicated in Table 1; in parenthesis the measured aw values are also 
reported, which were actually used in the mathematical modelling. 

Sample preparation 
The dry-cured ham system was prepared by adding water in different volumes to different 
aliquots of minced lean dry-cured ham (aw = 0.85) to attain the required final aw in the range on 
0.860 – 0.960. Then different quantities of minced fat (from dry-cured ham) were added till 
final target concentration (10% - 50%) was reached. 
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L. monocytogenes inoculation 
L. monocytogenes CTC1034 was previously cultured twice in BHI at 37ºC (for 7 and 18 hours, 
respectively). Samples were inoculated, to a final level of 2.38·106 CFU/g on average, adding 
the culture to the sterile water used for sample preparation.  

High-pressure treatment 
Inoculated samples were vacuum packaged in plastic bags PET/PE and submitted to HP 
according to the CCD (Table 1, 347 MPa-852 MPa, 5 min/15ºC). The Wave6000 NC 
Hyperbaric (Burgos, Spain) and the Thiot ingenierie – NC Hyperbaric (Bretenoux, France – 
Burgos, Spain) HP units were used for pressures up to and above 600MPa, respectively. 

Enumeration of L. monocytogenes 
Samples for each run of the CCD were sampled at least in duplicate. Inactivation of 
L. monocytogenes was measured in terms of logarithmic reductions as Log (N/N0), i.e. 
difference between counts after the treatments (N) and the initial inocula (N0). 
L. monocytogenes was enumerated on Chromogenic Listeria Agar (CLA, 37ºC for 48 h) and, for 
expected concentration below the quantification limit (<4CFU/g), the presence/absence of the 
pathogen was investigates by molecular techniques after 25g-sample enrichment in TSBYE 
(Aymerich et al. 2005). For modelling purposes, positive results below the quantification limit 
were recorded as 0 Log CFU/g while absence in 25g was computed as -1.18 Log CFU/g. 

Mathematical modelling 
To make the magnitude of the experimental variables similar, their values were rescaled (i.e. 
aw*10, pressure/100, fat content/10) before the statistical modelling. Multivariate linear 
regression (Statistica, Statsoft, ver. 8.0) using the stepwise backward procedure was applied, 
which allowed only statistical significant terms (P<0.05) to be included in the final equation. 

Results and Discussion 
Inactivation results 
Table 1 shows the HP-inactivation of L. monocytogenes in the dry-cured ham system, expressed 
as logarithmic viability reduction (Log N/N0), achieved for each combination of aw, fat content 
and pressure of the CCD. A relative low inactivation degree was obtained at pressure levels up 
to 450 MPa (runs 1. 3, 5, 7, 19), varying from 0.92 to 3.92 logs depending on the different fat 
content and aw. These results were not surprising and are in agreement with those previously 
found for L. monocytogenes on sliced dry-cured ham (aw = 0.88; 33.3 % fat) for the same 
pressure levels (Bover-Cid et al. 2010). The absence of the pathogen in 25g-sample was 
achieved only in runs 20, at the highest level of pressure applied (852 MPa) and 6, which 
combines relatively high pressure level (750 MPa) and moderate aw (0.948). 

Modelling of inactivation results 
A multivariate regression analysis was performed on the inactivation data (response variable) to 
obtain the best fitting polynomial equation (Eq.1) describing the relationship between HP 
inactivation of L. monocytogenes and the independent variables aw, fat content and pressure. 
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where Log(N/N0) represents the logarithmic reduction of L. monocytogenes; aw, the measured 
water activity of the food matrix; F, fat content (%) of the food matrix; and P, the pressure 
levels (MPa) of the HP treatment (for 5 min at 15 ºC). 
 
The performance of the polynomial model obtained, was supported by the satisfactory value of 
adjusted R2 (0.84). The significance of the model in terms of p (<0.0001) and F (26.40) was also 
good. 
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A clear representation of the influence of all the three independent variables in the 
L. monocytogenes inactivation is facilitated by the response surface plots presented in Figure 1. 
This graphics are constructed on the basis of the equation obtained and keeping the variable not 
represented in the plot at the central value of the CCD. 
 

Table 1: Central Composite Design including the combinations of experimental variables for 
each run and L. monocytogenes inactivation result for each run.  

Run aw Fat 
(%) 

Pressure 
(MPa) 

 Inactivation 
Log (N/N0) 

1    0.880 (0.883) * 18.18 450  -0.92 
2 0.880 (0.883) 18.18 750  -5.26 
3 0.880 (0.890) 42.18 450  -1.05 
4 0.880 (0.890) 42.18 750  -5.75 
5 0.940 (0.945) 18.18 450  -1.16 
6 0.940 (0.948) 18.18 750  -7.96 
7 0.940 (0.939) 42.18 450  -3.92 
8 0.940 (0.939) 42.18 750  -6.07 
9 0.920 (0.919) 30.18 600  -4.38 
10 0.920 (0.919) 30.18 600  -4.12 
11 0.920 (0.915) 30.18 600  -4.88 
12 0.920 (0.915) 30.18 600  -4.64 
13 0.920 (0.922) 30.18 600  -4.18 
14 0.920 (0.922) 30.18 600  -4.71 
15 0.860 (0.857) 30.18 600  -2.24 
16 0.960 (0.961) 30.18 600  -6.82 
17 0.920 (0.920) 10.00 600  -6.58 
18 0.920 (0.911) 50.36 600  -6.28 
19 0.920 (0.919) 30.18 347  -0.99 
20 0.920 (0.922) 30.18 852  -7.04 

* The column of aw reports target theoretical aw values according to a central 
composite design and the actual measured values are reported in parenthesis. 

 
The influence of pressure and aw was described by the corresponding linear terms. The 
increment of pressure had the most important contribution on the inactivation degree of 
L. monocytogenes, and the extent of its influence remained similar within the range of the 
assayed aw values. The efficacy of HP processing was notably reduced by lowering the aw 
values in agreement with the other studies (Hereu et al. 2011). The baroprotective effect of aw  
has been related to the stabilisation of proteins (particularly enzymes), reducing its pressure-
induced denaturation (Moussa et al. 2006). According to our results, the baroprotective effect of 
aw would follow a linear trend, irrespective of the pressure level.  
The factor fat content (%) was present as second order term. Additionally, its interaction with 
pressure was statistically significant and thus included in the model. The role of fat and its 
contribution as baroprotective agent remains unresolved but its influence seems dependent upon 
the pressure level (Figure 1B). A slight protective effect due to the presence of high fat content 
was seen for pressure treatments above ca. 700 MPa. At lower pressures, higher inactivation of 
L. monocytogenes occurred by increasing the fat content above 30%. The influence of fat 
content on the HP inactivation of bacteria has been scarcely studied and the available published 
results are controversial. A baroprotective action of fat has been occasionally found (Gervilla et 
al. 2000), though the particular mechanisms has not been established. Non significant influence 
of fat on the HP-inactivation of bacteria has also been reported (Escriu and Mor-Mur 2009). 
Additionally, as fat experiences higher compression heating (up to 8ºC/100MPa) than aqueous 
media (about 3ºC/100MPa), a slight thermal inactivation effect synergistically with the non-
thermal HP lethal effects could also be hypothesised (Rasanayagam et al. 2003). 
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Figure 1: predicted inactivation in dry-cured ham system inoculated with L. monocytogenes 
evidenced by the combination of: (A) aw and pressure and (B) fat content and pressure. 

Conclusions  
The HP inactivation of L. monocytogenes is strongly dependent on the physico-chemical 
characteristics of the media or food. The product-oriented modelling approach presented here 
has shown a protective effect of aw against HP treatments following a linear trend, irrespectively 
of the pressure level. The role of fat and its contribution as baroprotective agent is still 
uncertain, but its influence seems dependent upon the pressure level. The results highlight the 
relevant influence of intrinsic factors on the pathogen inactivation by HP, which make necessary 
to assess and validate the effectiveness of HP on specific food products. 
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Effect of nisin and citral on the heat resistance and recovery of 
Alicyclobacillus acidoterrestris spores 
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1 Deparment of Food Engeeniering & Aglicultural Machinery, Technical University of Cartagena, Paseo Alfonso XIII 
48, Cartagena, Spain (alfredo.palop@upct.es) 

Abstract 
Alicyclobacillus acidoterrestris is a Gram-positive, acidophilic, thermophilic, spore-forming 
and spoiling bacterium. Commercial fruit juices are currently pasteurized at temperatures 
between 85ºC and 95ºC for a few minutes or seconds and A. acidoterrestris can survive these 
thermal treatments. These reasons make it an important threat for the fruit juice industry. The 
combination of mild heat treatments with natural antimicrobials (nisin and citral) can be an 
alternative for the control of A. acidoterrestris. Heat resistance determinations of A. 
acidoterrestris in pH 3.5 McIlvaine buffer at 95ºC with or without the addition of different 
antimicrobials (alone or combined) at the heating or recovery medium were assayed. None of 
the antimicrobials reduced the heat resistance of A. acidoterrestris spores when applied to the 
heating medium. However, nisin alone was able to decrease the viable counts of this 
microorganism in more than two log cycles when applied in the recovery medium at a 
concentration of 1.5 mM. The data on the effect of nisin in the recovery medium and on the 
reduction of viable counts were used to build a predictive model. The addition of natural 
antimicrobials such as nisin or citral, which would not affect the flavour or taste of citrus juices, 
alone or even combined, can help to the control of A. acidoterrestris.  
 
Keywords: nisin, citral, Alicyclobacillus acidoterrestris, antimicrobial, synergism, combined 
processes.  

Introduction 
Alicyclobacillus acidoterrestris is a Gram-positive, acidophilic, thermophilic, spore-forming, 
spoiling and non pathogenic bacterium, containing ω-cyclohexyl fatty acids, which contribute to 
its survival at low pH and high temperature. Commercial fruit juices are currently pasteurized at 
temperatures between 85ºC and 95ºC for a few minutes or seconds (Silva and Gibbs 2001) and 
A. acidoterrestris can survive these thermal treatments. These reasons make it an important 
threat for the fruit juice industry (Bevilacqua et al. 2009). Some authors have proposed to 
increase the time or the temperature of treatment of the thermal processes to achieve the 
inactivation of this microorganism. However, thermal treatments cause important losses in 
sensorial and nutritional properties, making such alternative unviable to preserve natural fresh-
like juices (Bevilacqua et al. 2009). The combination of mild heat treatments with natural 
antimicrobials (nisin, citral, etc.) can be an alternative for the control of A. acidoterrestris and 
respond to the demands of the consumers of fresh and natural products. The aim of this research 
was to evaluate the effect of the combination of a thermal treatment with the natural 
antimicrobial compounds nisin and citral on the survival and recovery of A. acidoterrestris 
spores. The data on the outgrowth of spores in the recovery medium and on the reduction of 
viable counts would permit to build a mathematical model that can predict the effect of 
antimicrobial concentration.  

Materials and Methods 
A. acidoterrestris DSM 3922 was provided by the German collection of micro-organism and 
cell cultures (DSMZ). Sporulation was carried out as described by Palop et al. (2000). The 
concentration of the spores was adjusted to 109 spores mL-1 with sterile bi-distilled water. The 
spore suspension was stored at 0-5ºC until used. The natural antimicrobials nisin and citral used 
in this research were provided by Sigma Aldrich Chemie (Steinheim, Germany) and stored at 
4ºC until used. 
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Heat resistance determinations were carried out in a thermorresitometer Mastia as described by 
Conesa et al. (2009), with pH 3.5 McIlvaine buffer as heating medium. Samples were then 
appropriately diluted and immediately plated in PDA and incubated for 24h at 43ºC. Survival 
curves were obtained by plotting the log of the survivors against time, and D values were 
calculated by linear regression. The data on the effect of nisin on the reduction of viable counts 
were used to build a predictive model, based on the Weibull distribution. 

Results and Discussion  
The spores of A. acidoterrestris showed a D95ºC value of 2.26 min in a medium of pH 3.5 (table 
1). Hence, they are able to survive thermal treatments currently applied to fruit juices, which 
even would provide the heat shock treatment necessary to stimulate spore germination and 
outgrowth (Walker and Phillips 2008). The D95 values obtained in our research are similar to 
those reported in the literature (Smit et al. 2011). 

Table 1. D95-values, 95% confidence limits (CL), correlations coefficients (r0), initial log 
number (N0) and log number after 5 minutes of treatment (N5min), in pH 3.5 McIlvaine buffer 
under isothermal conditions with the antimicrobials at the recovery media for Alicyclobacillus 

acidoterrestris. 
 Concentration 

of antimicrobial 
D95 

(min) -95% CL +95%CL ro 
N0 (log 

CFU/mL) 
N5min (log 
CFU/mL) 

0 2.26 2.09 2.46 0.996 5.16 3.03 

Nisin 
(mM ) 

0.1 2.11 1.82 2.51 0.984 4.16 1.82 

0.3 3.38 2.97 3.94 0.988 3.06 1.48 
1.5 4.37 3.48 5.89 0.961 2.66 1.39 

Citral 
(mM ) 

0.055 2.09 1.92 2.29 0.995 5.15 2.82 

0.11 1.69 1.51 1.91 0.992 5.16 2.30 

 
 
When 0.1, 0.3 and 1.5 mM nisin was added to the plating medium without application of any 
previous thermal treatment, significant reductions in the counts were shown, as depicted in Fig. 
1. Average log reductions were of 0.7 log cycles with 0.1 mM nisin, 1 log cycle with 0.3 mM 
nisin and 2.2 log cycles with 1.5 mM nisin. 

 
Figure 1: Influence of nisin concentration (mM) in the plating medium on the log viable 

Alicyclobacillus acidoterrestris spores not exposed to any previous heat treatment. 
 
When nisin was applied to the recovery medium after a thermal treatment, similar log 
reductions were reached, even for the samples taken after only three seconds of heating (Table 1 
and figure 2). 
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Figure 2: Curves obtained when plotting the reduction of viable counts of A. acidoterrestris 

spores against the concentration of nisin in the plating medium (before and after a short thermal 
treatment). 

 
The addition of nisin led to a further decrease in the initial number of surviving microorganisms 
when the thermal treatment was applied. Since the first sample of the survival curves was taken 
3 seconds after inoculation (in order to allow for the distribution of the inoculum into the 
heating medium), it means that even a very short thermal treatment, which did not lead to any 
heat inactivation, has significant synergistic effects on the reduction of viable spores of A. 
acidoterrestris. However, D95ºC values increased with concentrations of nisin of 0.3 and 1.5 mM 
in the recovery media, which could mean that spores able to germinate in presence of nisin 
correspond also to the most heat resistant ones.  The synergism of nisin and heat has already 
been postulated (Komitopoulou et al. 1999; Yamazaki et al. 2000).  
The data on figure 2 were used to build models based on the survival function derived from 
Weibull distribution. The mathematical model for the data on the reduction of viable counts is 
depicted in Eq. 1. These data, obtained when nisin was applied without a previous heat 
treatment, generated a good fit of the experimental data (r=0.99). 

ܰ ݃ܮ ൌ ܰ ݃ܮ െ ቀሾ௦ሿ
.ଶ

 

ቁ
.ସହ

ܰ ݃ܮ  ൌ ܰ ݃ܮ

 (Eq.1) 
 

 
The mathematical model for the data on the survivors to the thermal treatment is depicted in Eq. 
2. Also a good fit of the experimental data was achieved (r=0.95). 
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 (Eq.2) 
 
Citral also showed an antimicrobial effect on A. acidoterrestris spores when applied to the 
recovery medium, but only at the highest concentration tested (0.11 mM citral; table 1). 
Additionally, the effect was different than that of nisin: there was no reduction in the initial 
number of surviving microorganism, but there was a decrease in the D value. 
The addition of nisin or citral would not affect the flavour or taste of citrus juices and can help 
to inhibit the germination or outgrowth of A. acidoterrestris spores, reducing the risk of 
spoilage by this microorganism. 

Conclusions 
None of the antimicrobials reduced the heat resistance of A. acidoterrestris spores when applied 
to the heating medium. However, both nisin and citral, affected the recovery of the survivors. 
Nisin reduced the viable counts of non heat treated microorganisms and also of those exposed to 
a very short thermal treatment. A combination of nisin in the fruit juice with a thermal treatment 
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would help to reduce the spoilage by this microorganism. The best combination is probably 2.5 
minutes at 95ºC with 0.3 mM nisin, since lower amounts of nisin is used, leading to almost the 
same inhibitory effect than much higher amounts. 
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Abstract 
Developing nanocomposites  is one of the emerging research activities in the field of active  
food packaging. Colloidal silver nanoparticles with a size of about 5 nm were prepared by 
chemical reduction using polyethylene glycol (PEG) as reducing agent as well as stabilizer 
and characterized by transmission electron microscopy (TEM). Silver nanoparticles were 
incorporated into low density polyethylene (LDPE) film by two procedures. One method is  
melt blending of LDPE pellets and silver nanoparticles as filler  and  subsequent hot pressing 
and the  another method is layer by layer deposition of silver nanoparticles and chitosan onto 
LDPE film.  Morphology of silver nanocomposite films were characterized by atomic force 
microscopy (AFM). Antimicrobial activity of silver nanocomposites against Escherichia coli 
ATCC 13706, Staphylococcus aureus ATCC12600 was  evaluated  by quantitative dynamic 
shake flask test. Growth kinetic parameters of E.coli and S.aureus  affected by silver 
nanocomposites were  calculated by modeling of absorbance data  at 600 nm according to  
Gomperz  equation. LDPE-silver nanocomposite produced by both melt blending or LBL 
coating, resulted in increasing  lag time  and reducing   maximum bacterial concentration 
significantly (p<0.05). Layer by layer self assembly method is more effective to inhibit 
bacterial growth especially in reducing of specific growth rate (µ) of examined bacteria which 
may be attributed to  easier release of silver ions from surface of LDPE nanocomposite film.  

Introduction  
In recent decades, antimicrobial active packaging is one of the emerging research activities in 
order to prolong shelf life of food products by inhibiting, reducing or retarding of 
microorganisms in foods. An antimicrobial  agent can be incorporated into packaging 
polymer or coated onto polymer surface or   associated with the packaging by using  sachets 
or  pads (Appendini and Hotchkiss 2002). Various synthetic and natural antimicrobial agents 
incorporated to packaging materials such as organic acids, enzymes, chelating agents, metal 
particles and plant extracted essential oils.  
Among all of antimicrobials incorporated to packaging polymers, silver nanoparticles deserve 
special attention due to high thermal stability, long-term activity and their individual 
physicochemical properties. Silver nanoparticles represent one of the most interesting and 
developing area in recent nano-responding  studies which can related to their unique 
physicochemical characteristics such as catalytic activity, optical and electronic properties 
,and especially strong antimicrobial activity and broad spectrum toxicity to microorganism 
(Kim et al. 2007).Silver nanocomposites are polymer composites containing silver 
nanoparticles and deserve special attention in fields of medical industry and active packaging. 
Silver nanocomposites produced by several methods such as plasma depositing (Nobile et al. 
2004),  ion implantation (Li et al. 2007),  melt processing on (Damm et al. 2008),  
impregnation using supercritical carbon dioxide (Furno et al. 2004),  solution casting 
(Shameli, Ahmad et al., 2010) organic-inorganic hybrid coating (Marini et al. 2007). 
Antimicrobial efficiency of silver nanocomposite is strongly depended on silver ion release 
from nanocomposites. Silver ion release occurs  on the surface of  particles and only in the 
presence of water  and oxygen (Damm and Munstedt 2008).   

Materials and Methods 
Silver nanoparticles produced by dissolving of silver nitrate in polyethylene glycol 200 at 
room temperature (25ºC) and. The transparent solution converted to gray-black colloid, which 
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indicated the formation of silver nanoparticles. The size and morphology of colloidal silver 
nanoparticles were characterized by TEM using Philips HMG 400 transmission electron 
microscope operating at 400 kV and by placing a drop of the colloidal dispersion. LDPE-
silver nanocomposites produced by two  methods: (i)melt blending as an industrially thermal 
processing and (ii) layer by layer (LBL) self assembly deposition. In melt processing, silver 
nanoparticles were added into low density polyethylene (LDPE) pellets by melt blending and 
subsequent hot pressing at 140°C in order to produce nanocomposite film by average 
thickness of 0.7mm. In LBL deposition method, nanocomposite films were built by sequential 
dipping of a LDPE film in either anionic silver colloid dispersion or cationic chitosan with the 
thickness of 2, 4, 8, 12, 16 and 20 layers. The surface morphology of melt blended and LBL 
deposited nanocomposites was investigated using atomic force microscope (AFM) operating 
with a Q-Scope 250 in contact mode.  

Antimicrobial activity of silver nanocomposites investigated by dynamic shake flask test. 
Eight  specimens (2×1.5 cm) of the nanocomposite  films  were immersed in Tripton Soy 
Broth (TSB). A 200 ml flask containing TSB and 0.4 g of Tween 80 inoculated with 1mL of 
E. coli  (41.03×105) and S. aureus (19.55×106) and  then incubated at 37 °C  with 150 rpm 
agitation. Evidence of  microbial growth was acquired by reading the absorbance changes at 
600 nm (Han, Castell-Perez et al. 2007)  by using a spectrophotometer at regular intervals (2 
hours). The absorbance data were modeled according to Gompertz equation as modified by 
Zwietering et al. (1990) to estimate microbial growth kinetic parameters: 

ܺሺݐሻ ൌ ܺ   ܣ  ቄ݁ݔ ቂ ఓೌೣൈଶ.ଵ଼ଶ


ሺ ߣ െ ሻݐ  1 ቃቅ (1) 

where X(t) is the cell concentration of inoculated microorganism in the medium (absorbance 
at λ=600 nm), X0 is initial value of absorbance, A   maximum bacterial concentration  attained 
at the stationary phase and its initial value, µmax is maximum specific growth rate (h-1), λ is lag 
phase  and t is time (h). Growth kinetic parameters of bacteria determined using  nonlinear 
regression estimation by  using STATISTICA7.0 for windows (StatSoft, Inc, Tulsa, OK, 
USA) 

Results and discussion 
Atomic force micrographs  of melt blended and LBL deposited nanocomposites illustrated 
that  silver particles are homogeneously distributed on the surface and relatively uniform in 
size. Growth profile of E.coli and S.aureus were curved  by plotting absorbance (600nm) of 
inculcated solutions  as a function of time in contact with LDPE film (control) and 
nanocomposite films  and fitting according to modified Gomertz equation (Eq.1).  The results 
indicated that a modified Gompertz equation (Eq.4) was fitted to all experimental absorbance 
data. The R2(adj.) values ranged from 0.9766 to 0.9972 were obtained for predicted values to 
experimental values and the lack of fit (p value = 0.000) which measure the fitness of the 
model for all samples, indicating the proposed model was sufficiently accurate and significant 
(p<0.05) for describing the examining  data. 
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Figure 1: The growth curves result from fitting the Equation (1) to the experimental data of 20 
layer by layer deposited nanocomposite  for E. coli 

20 layers LBL nanocomposite could extend lag time 52% , 12% and decrease specific growth 
arte 62% , 79% and reduce maximum growth rate 45%, 35% for E. coli and S. aureus  
respectively. More antibacterial activity for LBL deposited nanocomposite than melt blended 
silver nanocomposites was observed.  

Conclusion  
LDPE-silver nanocomposite films influenced growth parameters of E. coli and S. aureus 
significantly. LBL deposited nanocomposite films are more effective to inhibit growth of 
examined bacteria than melt blended nanocomposites. Antimicrobial efficiency of silver 
nanocomposites related to silver ion release from nanocomposites. LDPE-silver 
nanocomposites based on these findings may lead to valuable antimicrobial active packaging.  
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Abstract 
Different heating systems are used in the industry for the inactivation of bacterial endospores. 
However, the data used for industrial processes, such as ultra high temperature heating and 
pasteurization, are commonly obtained from studies conducted using batch-heating systems. 
The aim of this study was to investigate whether there are differences in the inactivation rates 
of spores treated in batch-heating systems and continuous-heating systems. In order to 
determine the effect of the heating system on the kinetic parameters of the spores, inactivation 
experiments for a thermophilic strain, Geobacillus stearothermophilus DSM 5934, were 
conducted on a batch-heating system as well as on two different continuous-heating systems. 
As medium, in which spores were suspended during the heating process, ultrafiltration 
permeate (minerals and lactose) was used. In the batch-heating system, the samples were kept 
in small tubes (1.5 mL) that were heated with steam. Two tubular heat exchanger systems 
with different capacities were used as continuous-heating systems. One of these was a 
laboratory scale continuous-heating system, which enables high temperature short time 
heating up to the temperature of 132 °C (7-60 L/h), whereas the other one was a pilot scale 
continuous-heating system, in which temperatures up to 150 °C can be applied (100-200 L/h). 
In a temperature range of 115 to 135 °C, the kinetic parameters were determined. The 
inactivation curves of the G. stearothermophilus spores were obtained for each system. Lines 
of equal effects for a 9 log reduction were plotted using the determined kinetic parameters. 
Comparison of the heating systems showed that there were differences in the inactivation 
rates. Inactivation was found to be the slowest in the batch-heating system. The results will be 
discussed concerning the applied kinetic model as well as regarding limitations in applying 
the kinetic data obtained from one type of heating system in another type of heating system.  
 
Keywords: heating systems, spores, Geobacillus stearothermophilus, kinetic parameters 

Introduction 
Microbiological spoilage of milk and dairy products is often linked with the detection of 
endospores from genera Bacillus and Geobacillus. The resistance of bacterial endospores 
against heat, chemicals and dryness is very high. To manufacture “commercially sterile” 
products, meanwhile UHT (ultra high temperature) treatment of the food is commonly used in 
dairy industry. In 1995, heat resistant spores (HRS) were found for the first time in UHT 
treated milk from Italy and Austria (Hammer et al. 1995). Thermophilic sporulating bacteria 
present in the spoiled milk were detected in silage feed of milk cows. Although they are not 
dangerous for health, under appropriate nutrient conditions they may germinate, which 
activates enzyme production and acid formation. This leads to “off-flavour” in food (Chen et 
al. 2004). To prevent acute defects and to avoid prospective spoilage of UHT milk, better 
understanding of the inactivation of thermophilic spores is necessary. 
Thermal inactivation of spores has been investigated using different heating systems. Lab 
scale batch-heating systems are often used for determining kinetic data. Most of the available 
data were determined on this convenient way (e.g., Behringer 1989; Horak 1980; Iciek et al, 
2006). However, in practice often continuous systems for heating of milk are used (e.g., direct 
or indirect UHT heating). The kinetic data obtained from batch systems are directly applied in 
continuous processes, although various investigations reported differences between the 
inactivation of spores by means of batch- and continuous-heating systems (Burton et al. 1977; 
Dogan et al. 2009; Fairchild et al. 1994; Wescott et al. 1995). 
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In this work, the kinetic parameters, the activation energy (Ea) and the reaction rate constant 
(k) of Geobacillus stearothermophilus spores for a reaction order of 1 using three different 
heating systems were determined. One batch-heating system, which is assembled in the Dairy 
for Research and Training at the University of Hohenheim, and two continuous-heating 
systems, one located at Tetra Holdings GmbH in Stuttgart and the other is in the Dairy for 
Research and Training at the University of Hohenheim, were used. The obtained kinetic data 
from each heating system were compared to each other and the inactivation effect by means 
of batch- and continuous-heating system was discussed. 

Materials and Methods 
Suspension medium for the heat treatments 
Sweet whey ultrafiltration (UF) permeate powder (Bayolan PT, Bayerische Milchindustrie 
eG, Landshut, Germany) was solved in water and used as heating medium. 

Preparation of spore suspension 
Freeze-dried cells of G. stearothermophilus were purchased at DSMZ (Braunschweig, 
Germany). Cells were revitalized in St-I-NB (Standard Nutrient Broth 1, Merck KGaA, 
Darmstadt, Germany) at 55°C. Petri dishes (Ø 140 mm) were filled with sporulation medium 
(5.0 g L-1 peptone from casein, 3.0 g L-1 meat extract, 20.0 g L-1 agar-agar, 1.0 g L-1 KCl, 0.12 
g L-1 MgSO4*H2O, 1.0 mL L-1 1 M Ca(NO3)2*4H2O, 1.0 mL L-1 0.01 M MnCl2*4H2O, 1.0 
mL L-1, 1 mM FeSO4*7H2O were added). The agar plates were inoculated with 0.5 mL of 
overnight bacterial suspension and then incubated at 55°C for one week. After sporulation of 
about 80% of the vegetative cells, the petri dishes were harvested with sterile, cold water 
(4°C). Washing of the spores was performed four times while keeping the temperature at 4°C. 
For elimination of vegetative cells, the spore suspension was pasteurized at 80°C for 20 min. 
The prepared spores were suspended in 70% ethanol and stored at 4°C. The concentration of 
the spore suspension was approximately 107 cfu mL-1. 

Heating systems 
Batch system: The batch heating system is built up based upon the system described by 
Behringer (1989). For the experiments small stainless steel tubes were filled with 1.4 mL of 
UF permeate and 0.1 mL of spore suspension. The initial spore concentration (C0 in cfu mL-1) 
was log C0 = 7.3. Saturated steam for the heating of the medium and ice-water for the cooling 
were used. Continuous system in Tetra Pak: For determination of kinetic parameters under 
small-scale conditions, a continuous-heating system at Tetra Holdings GmbH in Stuttgart was 
used. This system (7 – 60 L h-1) is built up with KERSYS Mediker modules (hde Metallwerke 
Menden GmbH, Germany). In the modules the liquid is transferred through several coiled 
capillary tubes. Secondary flow in the coiled tubes leads to Dean-swirls, which increase the 
heat transfer and mixing. The heating medium used was saturated steam up to 3 bars, and the 
cooling medium was cold water. Holding times varying from 1 to 30 s and temperatures up to 
130 °C were used. On each day of testing, the cooled UF permeate was inoculated with spore 
suspension (log C0 = 5.2). Continuous system in the Dairy for Research and Training 
(Hohenheim): A second continuous-heating system (Asepto GmbH, Germany) located at the 
Dairy for Research and Training in Hohenheim was used for this study. Heating temperatures 
up to 150 °C and holding times of 2 to 256 s can be performed. The trials were carried out 
with a flow rate of 150 L/h. UF permeate was inoculated with G. stearothermophilus spores 
having a final concentration of log C0 = 5.1.  

Determination of colony count 
The colony count of the samples was assessed before and after heating. The samples were 
diluted in Ringer’s solution and then dilutions were inoculated on Nutrient Agar using spread 
plate technique (Bast 2001). 
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Calculation of kinetic parameters 
The colony counts determined in the experiments were used for the calculation of the kinetic 
parameters Ea, kref for a reaction order of 1 according to Eq. (1) (Dogan et al. 2009). 

0

1 1exp expt a
ref

ref

C Ek t
C R T T

   
 = − ⋅ − ⋅ − ⋅        

 for n = 1     (1) 

Ct: spore concentration at time t [cfu mL-1]; C0: initial spore concentration [cfu mL-1]; kref: reaction rate 
constant at reference temperature 394 K [s-1]; Ea: activation energy [J mol-1]; R: universal gas constant 
(= 8.314 J mol-1 K-1); t: holding time [s]; T: absolute temperature [K]; Tref: reference temperature =  
394 K 

Results and Discussion  
In total, 22 experiments with G. stearothermophilus spores were performed in the batch-
heating system at 120, 125 and 130 °C. The initial spore concentration was log C0 = 7.3±0.05. 
The curves of inactivation of the spores are shown in Fig. 1.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Thermal inactivation of G. stearothermophilus spores in batch-heating (A) and 
continuous-heating (B) system (in the Dairy for Research and Training in Hohenheim). 
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The inactivation of the spores runs nearly linear except the one at 120 °C, where the 
inactivation was preceded with a clear increase of the spore concentration (shoulder 
behaviour). The inactivation of spores of G. stearothermophilus in the continuous-heating 
system in Tetra Pak was performed at 120, 125 and 130 °C (data not shown). The initial spore 
concentration was log C0 = 5.2±0.12. Temperatures at 115, 120, 125, 130 and 135 °C were 
applied for the experiments in the continuous system in the Dairy for Research and Training. 
In both batch and continuous system, 9-log inactivation lines of G. stearothermophilus at  
121 °C were calculated using the obtained kinetic data, in order to compare the systems. 
According to the calculated values, application of a UHT process would not provide a 9-log 
reduction of spores. 

Conclusions  
In this study, the heat resistance of G. stearothermophilus spores was investigated. The heat 
resistance was characterized by the activation energy (Ea) and the reaction rate constant (k). 
Heating experiments were performed in a batch-heating system and two continuous-heating 
systems having different capacities. A slower inactivation of the spores was found in the 
batch-heating system. However, the fastest inactivation of the spores was observed at the 
continuous lab-scale system in Tetra Pak. Activation of spores at the beginning of the 
inactivation (shoulder effect) was observed.  
Collection of the temperature data during heating and cooling stages has to be improved in 
the continuous-heating systems. The heat transfer of the double-pipe heat exchanger and the 
capillary tube heat exchanger in the two continuous-heating systems is affected through the 
mass flow of heating medium (e.g., water, saturated water). The determination of this mass 
flow may help to gain the actual temperature profiles in the systems. Using the actual 
temperature profiles during the heating process, the observed difference between the systems 
can be explained.  
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Abstract 
When dairy products are processed at ultra-high temperatures, a sufficient log reduction of the 
bacterial spore flora has to be achieved to ensure product quality during shelf-life. However, 
prediction of the inactivation behavior of the spores at the applied high temperatures is 
difficult. There is a need for a tool that describes the inactivation effects correctly at 
continuous ultra-high temperature processing for an industrial scale. Therefore, the objective 
of this study was to provide a model which is able to predict the inactivation at ultra-high 
temperatures based on laboratory experiments in static conditions. 
Two data sets for the inactivation of a Bacillus amyloliquefaciens-strain isolated from a dairy 
product using the capillary method (static temperature conditions) and a batch method 
(dynamic temperature conditions) were acquired. The static and dynamic conditions were 
studied from 95 to 125 °C and 105 to 140 °C, respectively. Eight different primary models 
(influence of time) covering linear or non-linear shapes, and their corresponding secondary 
models (influence of temperature), were adjusted to the data from static conditions. The fit of 
the models was evaluated. The models were then used to simulate the inactivation of the 
spores at the dynamic temperature conditions.  
Primary models covering sigmoidal shapes of the inactivation curves provided the best fit in 
static conditions (capillary system). At the secondary level, it was observed that models 
having only a few adjustable parameters at the primary level showed a better fit. The 
simulations for three of the eight models at the studied dynamic temperature conditions 
revealed that the models were able to describe the inactivation at low temperatures. Above 
130°C, the three models failed to predict the inactivation. Changes in the shapes of the 
inactivation curves and an over-estimation of the temperature effect at high temperature 
ranges can be the reasons for the loss of accuracy.  
 
Keywords: Bacillus spores, ultra-high temperature processing, microbial inactivation models, 
dairy products 

Introduction 
Bacterial spores are present in raw milk and they are able to survive the ultra-high 
temperature treatment of milk. For this reason, it is important to choose the correct 
temperature-time conditions for the UHT treatment in order to obtain a safe product with the 
least deterioration of the nutritional value. The challenge in predicting the inactivation 
behavior at ultra-high temperatures is mainly due to the difficulties in acquiring the 
inactivation kinetics. Thus, inactivation kinetics are usually determined at low temperatures 
and extrapolated into the desired temperature range. The usage of a heating system which 
allows the continuous determination of the temperature could help here. Nonetheless, the 
available data for the inactivation of spores of importance for dairies were often acquired at 
static temperature conditions (e.g., Iciek et al. 2006). The applied methods are easy to handle 
and do not require a lot of equipment, but, on the other hand, they do not include the 
examination of ultra-high temperatures. Therefore, there is a need to verify that inactivation 
parameters determined with the help of data from static temperature experiments predict the 
inactivation at continuous ultra-high temperature processes correctly.  
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An important aspect of modeling the thermal inactivation in UHT regions is that the applied 
model describes the inactivation kinetics for a wide temperature range. In this study, eight 
different primary models (effect of time) and their corresponding secondary models (effect of 
temperature) were investigated. The aim of this study was to find a model which predicts the 
inactivation of spores at ultra-high temperature processing (dynamic temperature conditions) 
based on the data from static conditions.  

Materials and Methods 
Test strain, spore production and thermal inactivation experiments 
A Bacillus amyloliquefaciens-strain, previously isolated from a dairy product, was obtained 
from the Department of Food Microbiology (Technical University of Munich). For the spore 
production, B. amyloliquefaciens was incubated at 30 °C in Brain Heart Infusion (BHI) broth 
supplemented with vitamin B12, streak-plated on BHI agar and incubated in broth (always for 
24 h). From the cell suspension, 0.5 mL were plated on sporulation agar (composition: Dogan 
et al. (2009); 1 mL of 0.1 mol L-1 MnCl2 were added) and incubated at 30 °C for 4 days. After 
harvesting the spore crop with phosphate buffer (0.01 mol L-1; pH 7.2), the cells were 
centrifuged 4 times at 2218 x g for 7 min (2 °C), pasteurized (80 °C, 10 min), and washed. 
Ethanol was added (final concentration: 35 %). After 2 days, the ethanol was removed by 
washing. Two heating systems were used. For static temperature conditions, a capillary 
method (volume: 0.1 mL) described by Couvert et al. (2005) was applied. For dynamic 
temperature conditions, a batch-heating system (volume: 1.5 mL) described by Dogan et al. 
(2009) was utilized. Very short holding times with important come-up and cooling times were 
also realized. The spores were heated in ultrafiltration permeate of bovine milk as a model 
solution for milk. The initial spore count was app. 108 cfu mL-1. Ringer solution for dilutions 
and CASO agar as recovery medium (4 days, 30 °C) were used. 

Microbial inactivation models, model fitting and model selection 
The evaluated inactivation models are listed in Table 1. The models were fitted to the data by 
minimizing the sum of squared errors (nlinfit function, MATLAB R2010a, The Mathworks, 
Natick, USA). Either overall (one parameter for all kinetics) or variable parameters (one 
parameter per kinetic) were calculated. The fit of the different primary models was evaluated 
by calculating the Akaike information criterion (AIC; Akaike 1973), the residual sum of 
squares (RSS), the root mean square error (RSME), and by performing an analysis of the 
residuals using hypothesis tests on the normality (lillietest hypothesis test, MATLAB), the 
homoscedasticity (archtest hypothesis test, MATLAB) and the autocorrelation (lbqtest 
hypothesis test, MATLAB). The fit of the secondary models was evaluated with the aid of the 
AIC and the hypothesis tests. 

Table 1: Microbial inactivation models 
Model Primary Secondary Source Remarks 

1 First-order: D-value z-value e.g., Mafart et al. 2010 Log-linear 
2 First-order reaction Arrhenius e.g., Mafart et al. 2010 Log-linear 
3 n-order reaction Arrhenius Müller-M. et al. 2005 Overallb n 
4 Weibull Log-logistic Peleg et al. 2008 Overallb na 
5 Weibull z-value Mafart et al. 2002 Overallb pa 
6 Weibull z-value Mafart et al. 2002 Variablec pa 
7 Geeraerd z-value Geeraerd et al. 2000 Variablec parameters 
8 Mixed Weibull z-value Coroller et al. 2006 Overallb pa, N0, α 

asame shape factor; bone parameter for all kinetics; cone parameter per kinetic 

Simulation of the inactivation at dynamic temperature conditions  
Three selected models (1, 5 and 8) were used to simulate the inactivation for the dynamic 
temperature profiles recorded during the inactivation experiments with the batch-heating sys-
tem. Predicted inactivation curves were compared to experimentally observed spore counts. 
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Results and Discussion  
Thermal inactivation experiments 
At static temperature conditions, the B. amyloliquefaciens-spores were inactivated for 5 log in 
480 min at 95 °C, whereas at 125 °C, a reduction of 6 log was achieved in less than 1 min. At 
temperatures up to 105 °C, the inactivation curves showed a shoulder which did not appear at 
higher temperatures. At dynamic temperature conditions, a shoulder was also apparent at  
105 °C (Figure 1). Above 110 °C, the shape of the inactivation curve changed. A tail was 
observed. At 140 °C, after a holding time of 5 s, the spores were inactivated for 7.5 log. 

Assessment of model adequacy and model selection 
The primary models were fitted to the data from the capillary method. The results for the 
primary model fit are shown in Table 2. With the results for the primary model, the secondary 
models were fitted. The results for the evaluation of the fit are shown in Table 3. The best fit 
to the data was obtained with the models covering sigmoidal shapes of the survival curves 
(models 7 and 8; Table 2). Concerning the simpler models, the Weibull model with a variable 
parameter p yielded the best result. For the secondary models, the models having only few 
variable parameters at the primary level showed a better fit (Table 2). Based on these results, 
model 8 was selected. Model 7 was not chosen for the simulations because this model 
assumes that a level Nres of resistant spores exists. The inactivation curve approaches this 
level only asymptotically. Thus, the extrapolation to higher temperatures is critical. 
Additionally, models 1 and 5 were chosen to cover a linear and a simple Weibull model. 

Table 2: Fit of the primary models to the data obtained with the capillary method 
 Model (no. of variable/overall estimated parameters) 
 1 (2/0) 2 (2/0) 3 (2/1) 4 (2/1) 5 (2/1) 6 (3/0) 7 (4/0) 8 (2/3) 
AIC 176.24 176.24 176.88 170.72 170.72 175.38 151.97 124.78 
RSS 29.19 29.19 28.31 24.67 24.67 16.74 5.80 8.08 
RSME 0.53 0.53 0.52 0.49 0.49 0.40 0.24 0.28 
Hypothesis testsa 10/13 10/13 11/13 10/13 9/13 11/13 10/13 9/13 
a0/13 indicates that the model was accepted for none of the temperatures and 13/13 indicates 
that is was accepted for all the examined temperatures. Bold values indicate the best results. 

Table 3: Fit of the secondary models to the data obtained with the capillary method 
 Model (no. of parameters) 
 1 (2) 2 (2) 3 (2) 4 (2) 5 (2) 6 (2) 7 (2) 8a (2) 8b(2) 
AIC 45.10 41.51 54.69 58.53 42.69 50.65 75.02 40.99 42.78 
Hypothesis testsc acc. acc. rej. rej. acc. acc. rej. acc. acc. 
aFit for δ1. bFit for δ2. cacc.: Model was accepted, rej.: Model was rejected. 

Prediction of inactivation at ultra-high temperatures 
The inactivation at dynamic temperature conditions was simulated with selected models (1, 5 
and 8). The used temperatures profiles were recorded during the experiments conducted with 
the batch-heating system. The results for the comparison of the survival curves are shown in 
Figure 1. For the temperature range (105 – 125 °C) examined in both systems, the models 
mostly underestimated the inactivation. At temperatures ≥ 130 °C, they overestimated the 
inactivation. The model that predicted spore counts closest to the observed spore counts at 
high temperatures was model 1 (first-order). In this study, irrespective the model, the extra-
polation of the inactivation to experimentally non-examined temperature ranges resulted in an 
underestimation of the survivor counts. The best result was obtained with a log-linear model.  

Conclusions  
With the chosen method, it was possible to assess the model adequacy and therefore to select 
the models for the simulations. Two conclusions can be drawn from the simulations for 
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dynamic temperature profiles: (1) Ultra-high temperatures have to be examined to design safe 
processes and (2) a simple model that does not describe well the inactivation curves can 
nevertheless provide the most robust predictions for industrial processing. Changes in the 
shapes of the inactivation curves with increasing temperature and an over-estimation of the 
temperature effect at high temperature ranges can be the reasons for the loss of accuracy. 
Studies need to be continued to improve the predictions at ultra-high temperatures. 
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Figure 1: Predicted and observed survival curves for the dynamic temperature conditions.  
: observed spore count, ─: model 1, ---: model 5, ···: model 8. 
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Abstract 
We evaluated the effect of NaCl concentrations of the heating and recovery media on the 
probability of post-treatment growth of Salmonella Enteritidis. A stationary phase culture was 
treated at 60°C in broth with NaCl concentrations ranging from 0 to 9%. The surviving cells 
were subsequently grown in media with concentrations between 0 and 9% of NaCl. The 
addition of NaCl to the heating medium had no significant effect on the D value, while at 
higher salt concentrations, its addition to the recovery medium reduced the number of 
recoverable cells.  
We developed a model for the probability of regrowth as a function of the heating time and 
the recovery medium. The results were tested using the model of Koutsoumanis et al., 2004 
(Journal of Food Protection, 67, (1), 53–59). 
 
Keywords: Salmonella, heat treatment, salt, recovery, probability of growth 

Introduction 
Salmonella enterica serovar Enteritidis is the cause of a worldwide increase in human 
salmonellosis. During the last three decades Salmonella Enteritidis was involved in a number 
of food poisoning outbreaks mainly associated with the consumption of meats and egg 
products. In recent years there has been an increase in consumer demand for fresh, minimally 
processed foods, but foodborne disease linked to ready-to-eat food has also increased. Several 
recent studies have described outbreaks of S. enterica, associated with ready-to-eat products 
in EU and USA (Nygard et al. 2008; Pakalniskiene et al. 2006; Gupta et al. 2007; Crook et al. 
2003; Pezzoli et al. 2007). The Commission Regulation (EC) No. 2073/2005 and No. 
1441/2007 on microbiological criteria for foodstuffs has established a series of food safety 
rules for ready to eat products. An increased interest in “hurdle technology” has been 
observed because of the increased market demand for minimally processed foods. Hurdle 
technology employs the combinations of various antibacterial treatments to limit the growth 
of spoilage bacteria, improving the microbial safety and maintaining the sensory and 
nutritional quality of food. Among these hurdles, mild heat treatment, low temperature, water 
activity, acidity, etc have been used for centuries. However, these treatments could leave cells 
damaged, but not inactivated, so they may be able to grow in favourable environmental 
conditions. Factors such as temperature of incubation and culture medium influence the 
capacity of cells to repair heat damage. 
The objective of this study was to assess the effects and interactions of temperature (60°C) 
and NaCl (from 0 to 9%) in the heating medium, on the probability of recovery of heat-
injured Salmonella enteritidis in a culture medium supplemented with NaCl concentrations 
from 0 to 9 %. 
 

Materials and Methods 
Bacterial strain 
The strain used in the experiments was Salmonella enterica subs. enterica serovar Enteritidis 
phage type 4. It was stored on tryptone soya agar (TSA) at 6 ºC. Subcultures were prepared 
by inoculating 5 ml of tryptone soya broth plus 0.3% yeast extract (TSYB) with a single 
colony. Cultures were incubated at 37°C for 24 h. 
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Thermal inactivation curves 
Stationary phase cultures were centrifuged (3100 x g for 20 min at 4°C), and the pellets were 
combined and resuspended in 2 ml TSYB. Tubes, sealed with a rubber septum, and 
containing 10 ml of TSYB with NaCl concentrations from 0 to 9% (w/w), were used as 
heating media. The heat treatments were carried out in a water bath at 60°C. Tubes were 
submerged in the water bath to preheat, vented with a sterile needle to release pressure and 
then injected with 100 µl cell suspension directly into the liquid using a precision syringe 
fitted with a long sterile needle. After the appropriate heating time, the tubes were removed 
from the bath and cooled rapidly in ice water. Cooled tubes were refrigerated until ready to 
enumerate survivors. Appropriate dilutions of heated samples were inoculated into five tubes 
of each recovery medium. Recovery media consisted of TSYB containing NaCl 
concentrations from 0 to 9% (w/w). Tubes were incubated at 37°C, and Most Probable 
Number (MPN) technique was used to estimate the number of survivors. The probability of 
growth was calculated for various combinations of temperature of the heat treatment and salt 
concentration of the medium. The estimated numbers of survivors were modelled as a 
function of heating time and the NaCl concentrations of both the heating and recovery media.  

Results and Discussion  
The MPN values were collected as shown in Table 1. The effect of NaCl concentration in the 
heating medium was not noticeable below ca 6% level, so we abandoned the initial factorial 
design and concentrated on the salt concentration of the recovery medium only. We were 
especially interested in whether recovery is possible above 8% NaCl, if the heat treatment was 
also at this high NaCl concentration.  
Because of the high nonlinearity of the effect of salt, we also refined the step and produced 
MPN estimates when both the heating and the recovery medium contained 8, 8.25, 8.5 and 
8.75% NaCl. 
Assuming linear kinetics and that all survivor cells are able to regrow in the optimal recovery 
medium (0.5 % NaCl) the difference between the log concentrations at identical time points 
are:  
 
log y(s) – log y(0.5) = log ( y(s) / y(0.5) ) = log P      (1) 
 
where P is the fraction of cells that were able to grow at s salt concentration. In other words, 
the difference between the respective points of the curves in Figure 1 is the probability of 
regrowth for a single cell after the heat treatment considered. According to our assumption, 
the log P value must be 0 at the time zero, and then should decrease.  
 

Table 1: MPN estimates of cell concentrations as a function of the heating time and NaCl 
concentration of recovery medium, after heating the cells at 60 °C, with 4% NaCl. See also 

Figure 1 

Heating time at 60 °C (min)  NaCl(%) of recovery medium 
 0.5 4 5 6 7 

0  9.52 9.89 9.69 9.23 9.11 
1.5  8.69 8.52 7.52 7.11 7.11 
3  7.89 7.69 7.34 6.52 5.41 
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Figure 1: Effect of NaCl (%) in the recovery medium of cells treated at 60°C in TSYB with 
4% NaCl. 

We ran an ANOVA procedure on the log P values, which showed that the effect of the NaCl 
concentration in the heating medium was not significant (p<0.01). Therefore, we created a 
model for the log P values as affected by the heating time (t) and the NaCl concentration (s) 
of the recovery medium. Based on the features above, the form of the model is chosen as 

log P = -a·t – (eb·s-1)n         (2) 

where a and b are scaling parameters, n  controls the abruptness of the curve for higher s 
values. 

This model expresses that for small s values, the probability of growth depends only on the 
heating time, and then as s increases, its effect on log P is dramatic. 

Using least squares method, the above model was fitted to all data combined and the 
parameter estimates were a=0.3, b=9.4, n=6. 

Conclusions  

The results suggest that ca 10 in a million salmonella cells are able to recover at as high as 
8.75% NaCl, if the heating medium had similar level of NaCl.  This demonstrates a noticeable 
history effect given that Koutsumanis et al (2008) found that the probability of growth for this 
organism was the same order of magnitude at 8% salt, where we predict recovery of more 
than one in a 1000 cells, 

The results show that the more similar the heating and the recovery environments, the higher 
the chance for a cell to recover from sub-lethal heat treatments. 
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Abstract 
The objective of this work was to study a thermochemical non-isothermal inactivation of      
Bacillus coagulans spores in nutrient broth (NB) added with 400 ppm of oregano essential oil 
(OEO). Sealed TDT tubes were used for isothermal, with 0 and 400 ppm of OEO, and non-
isothermal, with 400 ppm of OEO, resistance studies. GInaFiT (Geeraerd and Van Impe 
Inactivation Model Fitting Tool) was used to fit the Weibull model to the isothermal survivors 
curves. The program Matlab® (The MathWorks Inc, Natick, USA) was used to solve the 
dynamic Weibull model, proposed by Peleg (2006), by means of an ode15s solver. 
Temperatures profiles applied for non-isothermal studies were (1) 90/95 °C during 1 min 
each, up to 14 min, and (2) 95/90°C during 5 min each, up to 10 min. Weibull model 
presented a good fit to the isothermal inactivation data of B. coagulans in NB with 0 and 
400 ppm of OEO. For the non-isothermal treatment, a slight overestimation of experimental 
data by the model was observed. The results lead to conclude that the dynamic model, based 
on Weibull primary model, can be used to estimate the inactivation patterns of B. coagulans 
spores under thermochemical non-isothermal heating treatments.  
 
Keywords: thermochemical non-isothermal inactivation, Bacillus coagulans, oregano 
essential oil 

Introduction 
Most of the industrial heat treatment include non-isothermal heating up phases and 
temperature fluctuations during the process. Microbial responses under isothermal conditions 
may differ from the ones observed under dynamic conditions, compromising, thus, the 
process safety (Peleg, 2006). Traditionally, to develop a non-isothermal predictive model, for 
either inactivation or growth, two steps are required. First, kinetic parameters of a model 
describing the inactivation of microorganisms according to time, the primary model, are 
estimated. Afterwards, the influence of temperature on the inactivation primary parameters is 
described by secondary models. Finally, primary and secondary models are used to simulate 
microorganism inactivation under dynamic temperature conditions. To validate the dynamic 
model obtained, experimental data are compared to model prediction  (Valdramidis et al. 
2008). 
Bacillus coagulans is an important food spoilage microorganism. This thermotolerant spore-
forming bacteria is able to germinate at pH values as low as 4, so it is often isolated from acid 
canned vegetables (Lucas et al. 2006). 
OEO has had its antimicrobial activities tested against a wide range of microorganisms 
inoculated in food products (Juneja et al. 2010). No studies describing the antimicrobial 
action of OEO against B. coagulans were found in the consulted literature. 
The main objective of this work was to validate the prediction of the thermochemical 
inactivation of B. coagulans spores in NB with 400 ppm of OEO under variable temperature, 
using the dynamic model proposed by Peleg (2006). To achieve this goal, the inactivation 
curves of B. coagulans spores in nutrient broth with 0 and 400 ppm of OEO under different 
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temperatures were fitted with the Weibull model and a secondary model was used to represent 
the temperature dependence of inactivation parameters.  

Materials and Methods 
The B. coagulans sporulation was performed in Petri dishes containing Nutrient Agar 
supplemented with 5 ppm of manganese sulfate incubated over 10 days at 37 °C. The heating 
medium was NB adjusted to 4 °Brix and pH 4.2. The OEO was emulsified with soy lecithin. 
The heating medium, containing 0 ppm or 400 ppm of homogenized OEO emulsion, was 
inoculated with spores of B. coagulans with an initial concentration equal to 106 CFU/mL. 
TDT were filled with the inoculated heat medium, sealed, and then submerged into a 
thermostatic bath. TDT were individually removed in predetermined times and immediately 
cooled in an ice bath. The come-up-time for the temperature in the TDT tubes has been 
estimated to be 2 min. For the non-isothermal inactivation, two water baths were used; each 
bath at a temperature. Population density was determined by serial dilutions in 0.1% peptone 
water, and dilutions were pour plated in TDA. The plates were incubated at 37 °C for 48 h to 
determine the number of bacterial spores expressed in CFU/mL.  
The isothermal inactivation, with 0 ppm were performed at 95, 97 and 100 ºC, and with 
400 ppm of OEO at 90, 95, 97 and 100 °C. For the non-isothermal inactivation with 400 ppm 
of OEO, two different temperature profiles were studied. In profile 1 the temperature ranged 
from 90-95 °C every 1 minute for 13.5 minutes, and in profile 2 from 90-95 °C for 5 minutes 
at each temperature in a total of 10 minutes. During the experiments, temperatures were 
recorded every 5 seconds by thermocouples attached to a data acquisition system (Agilent 
System Acquisition 34970a). Weibull model (Equation 1) was fitted to experimental 
isothermal inactivation curves through GInaFit (Geeraerd et al. 2005).  

                                                   (1) 
where S(t) is the momentary survival ratio, b and α are parameters of the model  and t is the 
time (min). An exponential type equation was adjusted to the experimental data of parameter 
b(T) values related to the temperature, through the software Excel (Microsoft®). The 
temperature profiles during non-isothermal inactivation, obtained with the data acquisition 
system, were described by a sinusoidal equation, as given by Equation 2, through the program 
Matlab® (The MathWorks Inc, Natick, USA).  

                      ( ) ( ) ( ) ( )888222111 .sin..sin..sin. ctbactbactbatT ++++++=                   (2) 
where T(t) is the temperature  profile (°C) at time t, and ai, bi and ci are the model parameters.  
The expressions b(T) and T(t), then calculated, were combined to produce the b[T(t)] term for 
each non-isothermal profile. The program Matlab® (The MathWorks Inc, Natick, USA) was 
used to solve the dynamic Weibull-type model (Equation 3), proposed by Peleg (2006), by 
means of an ode15s solver.  
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Results and Discussion  
Figure 1 shows the isothermal inactivation curves of B. coagulans with 0 and 400 ppm of 
OEO, fitted by the Weibull model with a fixed α (2.98). The value of 2.98 is the mean value 
of α for the Weibull model with varying α, according to previous research. In Figure 1 is 
possible to observe that at any temperature, spore inactivation is faster with 400 ppm of OEO 
than without OEO (0 ppm). The temperature dependence of parameter b (b(T)) is shown in 
Figure 2, including  the fit of the exponential equation to experimental data. The exponential 
equation, Equation 4 had a good fit to the experimental values of b as can be seen both 
visually and through the R² value next to 1.  

( )TTb 61.0exp10.2)( 29 −= −                R² = 0.972                       (4) 
From the secondary and primary models, the non-isothermal model pointed by Peleg (2006) 
was established and validated to predict the B. coagulans spore thermochemical inactivation 
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in NB with 400 ppm of OEO under variable temperature conditions. Figure 3a shows results 
for the non-isothermal profile 1, and Figure 4a for profile 2. Figures 3b and 4b show the 
experimental temperature values and the fit of Equation 2 to them.  
 

 
Figure 1: Experimental inactivation isothermal curves of B. coagulans in NB with 0 and 
400 ppm of  OEO at different temperatures. The continuous line represents the fit of the 

Weibull model with a fixed parameter α to the experimental data. 

 

 
(a)                                                                                                 (b) 

Figure 2: The temperature dependence of the parameter (a) b(T) of B. coagulans with 
400 ppm described by Equation 2; (b) re-scaled graphic (a) from temperature 90 to 97 °C. 
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Figure 3: (a) Experimental data for isothermal inactivation at ( □) 90 °C and (○) 95 °C, and for 
(Δ) non-isothermal inactivation of profile 1 (90-95°C/1 min). The continuous line represents 

the predictions of Weibull non-isothermal model to non-isothermal data. (b) Temperature 
profile. The continuous line represents the predictions of Equation 2, and (○) represent the 

experimental data. 

(a) 
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Figure 4: (a) Experimental data for isothermal inactivation at ( □) 90 °C and (○) 95 °C, and for 
(Δ) non-isothermal inactivation of profile 2 (90-95°C/5 min). The continuous line represents 

the predictions of Weibull non-isothermal model to non-isothermal data. (b) Temperature 
profile. The continuous line represents the predictions of Equation 2, and (○) represent the 

experimental data. 

 
The difference between predicted and observed inactivation values can be attributed mainly to 
the secondary model fit that does not describe the temperature influence on primary parameter 
accurately. However, Equation 4 showed a good fit to the experimental values of the 
parameter b, mainly between the temperatures used for the non-isothermal inactivation, 90 
and 95 °C, as can be seen is Figure 2(b). 

Conclusions  
The experimental isothermal inactivation curves in Figure 1 showed that OEO enhances the 
sensitivity of B. coagulans to heat treatment, since heat treatments with 400 ppm of OEO 
were faster than without OEO for the tested temperatures. Although only a limited 
experimental database was employed for the analyses and the predicted values overestimated 
the observed values, the survival parameters can be used to estimate the inactivation patterns 
of the spores under non-isothermal heating treatments.  
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Abstract 
Thermal technologies have been one of the most extended processes used in commercial food 
manufacturing. However, its use may imply losses in the sensory and nutritional quality of the 
final product. Therefore it is necessary to optimize the heat treatments, so that they can ensure 
safe, stable foods while maintaining high standards of quality. High heat resistant, 
sporeforming bacteria are one of the main threats for the stability of shelf-stable, low-acid 
heat processed foods. At the same time they are the best indicators to establish the minimum 
requirements for heat processes, but in order to reduce existing heat treatments it is necessary 
to have precise scientific knowledge of the factors involved in their inactivation and good 
modelling tools. 
The aim of the present work was to establish inactivation kinetics in static conditions 
(isothermal) in a food substrate (vegetable soup) and to perform dynamic heating profiles 
simulating processing conditions in the food industry collecting data at different times during 
processing. A thermoresistometer Mastia and spores of Bacillus sporothermodurans as sensor 
element have been used for this study. This equipment can perform non isothermal processing 
of foods under controlled conditions and samples can be taken at different time intervals. 
Results from these experiments have been modelled using a regression analysis under static 
and dynamic conditions similarly to the approach applied by Valdramidis et al. (2008). 
Inactivation parameters were estimated accurately and precisely by using profiles heating 
rates of 1.5 and 2.5oC/min. 
 
Keywords: Thermal technologies, high heat resistant, Bacillus sporothermodurans, 
sporeforming   

Introduction 
Bacillus spotothermodurans is characterized by the production of highly heat-resistant spores 
(HRS), which may survive in food processed by industrial sterilization (Hammer et al. 1995; 
Pettersson et al. 1996). These spores germinate during storage in UHT products causing 
instability due to their proteolytic activities thereby reducing the shelf life and consumer 
acceptability. Thermal technologies have long been at the heart of food processing. The 
application of heat is both an important method of preserving foods and a means of 
developing texture, flavour and colour. An essential issue for food manufacturers is the 
effective application of thermal technologies to achieve these objectives without damaging 
other desirable sensory and nutritional qualities in a food product (Richardson,2004). 
Thermal treatments applied in the food industry have usually been calculated using microbial 
heat resistance data obtained under isothermal heating. Nevertheless, recent studies have 
shown that implementation of modelling in which parameter estimates are obtained under 
dynamic environments is preferable. This kind of estimated parameters give the actual values 
of non-isothermal estimates (Dolan 2003; Valdramidis et al. 2008) 
The thermoresistometer Mastia enables to estimate heat resistance under isothermal and non-
isothermal heating conditions as well as more complex heating profiles, like those usually 
applied in the food industry. Its design allows working with liquid heating media such as 
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buffers, liquid foods or foods containing small particles. It also allows to inoculate 
microorganisms or compounds and to obtain samples in order to study the changes on the 
quantity or the quality of these substances along with the thermal treatment. In this way, the 
intensity of the thermal treatments applied can be calculated and, as a consequence, the 
microbiological safety and nutritional quality of the food produces obtained can be estimated. 
The objective of the present study was to characterize the microbial resistance of B. 
sporothermodurans spores in vegetable soup under static and dynamic temperature conditions 
and assess parameter accuracy and precision for designing optimal thermal process that 
ensure the food stability and safety. 
 

Materials and Methods 
Microorganism and spore crop preparation 
B. sporothermodurans IC4 (Unilever Netherlands Sourcing Unit Oss), was isolated from 
Indian curry soup and was able to survive high heat treatments. The spore preparation was 
based on the method described by Zuijlen et al. (2009). 
The heat resistance of the spores was determined using a thermoresistometer Mastia. The 
temperatures selected for isothermal experiments were 118, 121, 124, and 127 °C. 
Experiments were performed in triplicate for each temperature. For non-isothermal 
treatments, the procedure was similar, but the thermoresistometer was programmed to 
perform the corresponding temperature profile, and the surviving microorganisms were 
enumerated using Brain Heart Infusion (BHI) Media. The non-isothermal treatments for 
vegetable soup were run in a temperature range from 80 to a targeted 121oC at a rate of 
1.5oC/min and from 75 to a targeted 121oC at a rate of 2.6 oC/min. Colonies were counted 
after incubation for 48 h at 37°C. 

Data analysis 

A global identification technique was performed for both the isothermal and the dynamic 
data. Based on preliminary assessment of the isothermal data the appropriate primary model 
appeared to be the classical log-linear. After integration of the Bigelow model in the log-
linear model the following equation is obtained:  







 −⋅⋅−= )(10lnexp1)(log10

ref
ref

TT
zDdt

tNd
       (1) 

Herein, log10N(t) represents the microbial cell density [log (cfu/ml)], Dref is the decimal 
reduction time and z the thermal resistance constant . In the case of the dynamic temperature 
profiles temperature evolution T which was recorded every 5 seconds was plugged into 
equation 1. Linear interpolation was performed for estimating temperatures in between the 
recorded values.  
Three different types of parameter identification approaches were applied during the 
regression analysis of Equation 1: (i) all isothermal data were treated at once (ii) the two 
dynamic experiments were studied separately (iii) the two dynamic profiles were studied 
together. All regression analyses were implemented by the MatLab Optimisation Toolbox 
(The Mathworks Inc., Natick, MA, USA). Statistical analysis included the estimation of Sum 
of Squared Error (SSE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
estimation of the parameters standard error and the 95% confidence interval of the estimated 
parameters.  

Results and Discussion  
Heat resistance of B. sporothermodurans was characterized over a wide range of temperatures 
(isothermal and non-isothermal treatments) in vegetable soup. Figure 1 shows survival curves 
of B. sporothermodurans IC4 under isothermal and dynamic conditions in vegetable soup for 
the different temperatures tested. Table 2 and Figure 1 show the results of the regression 
analysis. 
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Table 2: Parameter estimates and statistical indices of the performed parameter identification 
techniques  

  D121 SE z SE SSE MSE RMSE 
All static data  5.58 0.34 10.37 0.69 2.28 0.07 0.26 
Ramp1  6.14 0.64 6.00 0.26 0.50 0.04 0.20 
Ramp2  9.21 0.53 21.91 0.75 0.10 0.01 0.10 
Ramp1 and 2 5.11 0.36 8.23 0.15 0.73 0.03 0.18 

 

  
 

 
 
 
Figure 1: Example of the regression analysis of all the static data (top left), the dynamic data 

of ramp 1 and 2 (top right), ramp 1 (bottom left) and ramp 2 (bottom right). 

 
Results show that accurate parameters (low SE values) and models with high statistical 
performance can be obtained by using dynamic profiles that are generated at realistic 
temperature conditions in a liquid food products. The values of the thermal resistance constant 
z deviated depending on the selected temperature profile. The most accurate estimates where 
derived when all dynamic data (ramp1 and ramp2) were used for parameter identification. 
Other studies have also shown that the more the microbial system is excited (in this case by 
temperature variations) the more the obtained information related to the microbiological 
responses (Valdramidis et al. 2008). Finally, this type of microbiological results can be 
generated more easily saving time and resources compared to the traditional methodology.   

Conclusions  
Estimated parameters varied with respect to the temperature profiles. The reason of this 
variation could be linked to an evolution of the thermal sensibility of bacterial spore 
depending on the time of the temperature profile (e.g., compare estimated parameters when 
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data of ramp1 or ramp2 are used) and the amount of the data (refer to the accuracy of the 
estimates in case that data from both ramp1 and ramp2 are used). Estimation of parameters 
under dynamic conditions is closer to the real processing conditions and generates a good 
description of the experimental results. Therefore this approach is preferable as it should 
produce more accurate predictions and smaller uncertainty than the traditional one-step or two 
step isothermal approaches.  
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Abstract 
Ready-to-Eat (RTE) meat products constitute an expanding food commodity nowadays. 
Salmonella has been involved in large well-documented foodborne diseases originated by 
RTE meat consumption. In 2008, salmonellosis was ranked as the second foodborne illness 
mostly reported, accounting for 131,468 confirmed human cases in the EU. The aim of this 
work was to model the growth/survival of Salmonella spp. in vacuum-packaged slices of 
stuffed chicken breast stored at temperatures of 7, 11, 15 and 19ºC. A cocktail of four 
Salmonella enterica subsp. enterica strains (ATCC 13076/25928, 4391, 14028 and 13311) 
was inoculated in packages of vacuum-packaged slices of stuffed chicken breast at a level of 
≈3 log10 cfu/g. Samples were stored at different temperatures (7, 11, 15 and 19ºC), and 
samples were periodically withdrawn for enumeration of Salmonella spp. For this, appropriate 
dilutions were spiral plated on XLD following the ISO 6579 standard method. The maximum 
growth rate (μmax) of Salmonella was 0.021, 0.022, 0.059 and 0.073 log10 cfu/h at 7ºC, 11ºC, 
15ºC and 19ºC, respectively. Maximum population densities were 5.3±0.1, 7.1±0.0, 8.8±1.1 
and 8.3±0.8 log10 cfu/g at 7, 11, 15, and 19ºC respectively. After an initial growth, a decay of 
Salmonella was observed at each temperature studied. When Salmonella reached the 
maximum population density, the concentrations of aerobic mesophilic bacteria (AEM) were 
5.4±2.8, 7.1±0.3, 8.7±0.1, and 9.5±0.4 log10 cfu/g at 7, 11, 15 and 19ºC, respectively. The pH 
values of samples varied from 6.34 to 4.87, the latter found towards the end of the 
experiment. The growth kinetic parameters were consistent with published data on 
Salmonella growth in poultry, and ComBase data based on growth of Salmonella on cooked 
ham and bologna. These findings underline the facultative anaerobe character of Salmonella, 
being capable of growing in vacuum conditions even at 7ºC. Salmonella reached high levels, 
being the product still acceptable from a sensorial perspective. 
 
Keywords: Salmonella, survival, growth, modelling, ready-to-eat meat products  

Introduction 
Nowadays, supermarkets provide a wide variety of specialist foods, usually known as ready-
to-eat (RTE) products. Examples of these commodities include sliced RTE meat products 
such as cooked stuffed chicken breast. Operations linked to slicing of RTE meat products 
slicing may pose a human health risk since these foods may come into contact with bacterial 
contaminated surfaces if proper hygiene practices are not applied. Often, these RTE products 
are packaged under vacuum or modified atmospheres and must be kept refrigerated before 
consumption in order to increase the shelf life. As this type of product does not require further 
treatment such as cooking, before consumption, contamination events during processing plays 
a major role in food-borne human diseases, including salmonellosis and other conditions 
linked to meat attribution. According to outbreak data (EFSA 2008), salmonellosis represents 
the second most reported zoonotic disease in humans in the European Union (EU), accounting 
for 131,468 confirmed human cases. Salmonella spp. has been responsible for causing well-
documented illnesses linked to RTE meat consumption around the world (Luzzy et al. 2007). 
Kinetic processes such as growth, survival and inactivation of Salmonella have been deeply 
investigated in order to understand the behaviour of the pathogen under different conditions. 
In this sense, mathematical models of Salmonella have been developed to describe these 
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processes under established circumstances such as temperature during storage. The objective 
of this work was to model the growth/survival of Salmonella spp. in vacuum-packaged slices 
of stuffed chicken breast stored at temperatures of 7, 11, 15 and 19ºC. 

Materials and Methods 
Inoculum preparation 
Four strains of Salmonella enterica subsp. enterica (ATCC 13076/25928, 4391, 14028 and 
13311) were obtained from the Spanish Type Culture Collection (CECT, Valencia, Spain) in 
order to elaborate a cocktail of strains intended to be inoculated in packages of vacuum-
packages slices of stuffed chicken breast. Freezed beads of the four strains were maintained at 
-20ºC in cryovials (MicrobankTM Cryo beads; Pro-Lab Diagnostics, Canada) and then 
transferred to tubes containing 10 mL of Tryptone Soya Broth (TSB, Oxoid, UK) and 
incubated at 37ºC for 24 h. Subcultures were carried out by transferring 0.1 mL of the 
previous cultures to 10 mL of TSB tubes which were incubated at 37ºC for 24 h. These 
subcultures were performed twice and the last one was kept at 37ºC until the early stationary 
phase of Salmonella population was reached. A tube of 10 mL compounded of grown cells 
from the four strains was made up. Subsequently, appropriate decimal dilutions were carried 
out in sterile saline solution in order to obtain the desired inoculation level (≈3 log10 cfu/g).  

Sampling microbiological analysis 
Packages of RTE sliced stuffed chicken breast were collected from the industry in order to be 
inoculated with 0.1 mL of the cocktail above. A number of control samples packages were not 
inoculated in order to study the evolution natural microbial population until the end of shelf-
life and to investigate the presence of Salmonella spp. Just after inoculation, at time 0, a 
control and an inoculated package of product were analyzed for the level of Salmonella and 
aerobic mesophilic bacteria. Also, pH values were measured. All samples were randomly 
assigned to different storage temperatures (7, 11, 15 and 19ºC) until the end of the analysis 
period, between 27-47 days. Periodically, samples were withdrawn and each slice (≈25 g) of 
product was homogenized in 225 mL of peptone water. Inoculated samples of Salmonella 
were then serially diluted and spiral plated (Eddy Jet, Barcelone, Spain) for enumeration of 
Salmonella on Xylose Lysine Deoxycholate agar (XLD) by following the ISO 6579 standard 
method and for enumeration of aerobic mesophilic bacteria on Plate Count Agar (PCA). 
Control samples were analyzed in order to investigate the presence of Salmonella spp. 

Data modelling and model comparisons 
Data growth (time vs concentration) for each temperature were introduced in Excel 
spreadsheet (Microsoft, Redmond, WA), and the growth model of Baranyi and Roberts 
(1994) was fitted to data with the aid of DMFit add-in (Institute of Food Research, Norwich 
Research Park, Norwich, UK). Maximum growth rate (µmax) parameters were estimated by the 
model. Salmonella growth data in different foodstuffs taken from ComBase database (Baranyi 
and Tamplin 2003) and other study (Langstron et al. 1993), were used to compare our results. 

Results and Discussion  
Initial Salmonella concentration (at time 0, i.e. just after inoculation) on RTE sliced stuffed 
chicken breast was approximately 103 cfu/g. Salmonella population increased at all 
temperatures studied (7, 11, 15 and 19ºC). In most cases, short or no lag time evident. 
Maximum growth rates (μmax) of Salmonella were 0.021, 0.022, 0.059 and 0.073 log10 cfu/h at 
7ºC, 11ºC, 15ºC and 19ºC, respectively. Maximum population densities of Salmonella were 
5.3±0.1, 7.1±0.0, 8.8±1.1 and 8.3±0.8 log10 cfu/g at 7, 11, 15, and 19ºC respectively. After 
growth was completed, decay was observed at all temperatures tested. When Salmonella 
reached the maximum population density, the concentrations of aerobic mesophilic bacteria 
(AEM) were 5.4±2.8, 7.1±0.3, 8.7±0.1 and 9.5±0.4 log10 cfu/g at 7, 11, 15 and 19ºC, 
respectively. In control samples, Salmonella was not detected The pH values of slices of RTE 
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stuffed chicken breast varied from 6.34 to 4.87, the latter found towards the end of the 
experiment.   
Performance of microbial predictive models is commonly conducted by comparing 
predictions with microbial growth kinetic parameters published or obtained experimentally in 
different food matrices. The maximum growth rate (μmax) predicted for Salmonella in our 
study was consistent when compared to others found in literature. Langston et al. (1993) 
quantified the variation of the growth rate of Salmonella Enteritidis within and between 
samples on raw chicken stored in air and modified atmosphere at abusive storage 
temperatures. When modelled data from Lanston et al. (1993) with the aid of DMFit, a μmax of 
0.029 at 13ºC was estimated, which represents an intermediate value between those found in 
our study at 11ºC (0.022) and 15ºC (0.059) being therefore consistent.  
The parameter estimates of our study were also favourable when compared to ComBase 
growth data on vacuum-packed cooked ham sausages of pork and bologna sausages (Gill and 
Holey 2000; Nielsen and Zeuthen 1985). ComBase growth records of Salmonella 
Typhimurium at 8ºC showed a μmax of 0.022 when inoculated on vacuum-packed cooked ham 
sausages and bologna sausages, very close to the estimate of our study at 7ºC (0.021). 
Otherwise, ComBase records presented faster maximum growth rates of Salmonella 
Typhimurium at 12ºC and 15ºC (0.046 and 0.087) in cooked bologna-type sausages than 
those observed in our study at the same temperatures (0.022 and 0.059). These variations may 
be due to differences in strains and environmental conditions. Growth data found in ComBase 
were referred to Salmonella Typhimurium, whereas in our study the serovars Enteritidis and 
Typhimurium were used in a cocktail. Also, in the records selected of ComBase, 
environmental conditions like presence of lysozime, nisin and ethylenenediaminetetraacetic 
acid (EDTA) in the food matrices could have inhibited the growth of natural flora, favouring 
the growth of Salmonella on ham and bologna in.   
Overall, it is assumed that most Salmonella serotypes are able to grow over the temperature 
range 7-48ºC, although growth is quite reduced at temperatures below 10ºC (Bell and 
Kyriakides 2002). Literature data suggest that some serotypes may grow at temperatures as 
low as 4ºC, but this is not universally accepted (Bell and Kyriakides 2002). According to our 
study, Salmonella was able to grow in vacuum conditions even at 7ºC. Growth capability 
during extended incubation of Salmonella at low temperatures has been reported (Matches 
and Liston 1968). When Airoldi and Zottola (1988) assessed the behaviour of two strains of 
Salmonella Typhimurium in nutrient-deficient media, they observed that the bacteria were 
able to survive and grow at 7ºC. Even if presumed that most Salmonella serovars are not 
capable of growing at refrigeration temperatures, the pathogen is still able to survive for 
extended periods at chill temperatures. This phenomenon can become significantly relevant 
from a food safety perspective in RTE meat products intended to be stored for long periods of 
time at temperatures above 5ºC. In addition, the product in our study was still acceptable from 
a sensorial perspective at lower temperatures when Salmonella reached high levels.  

Conclusions  
The mathematical model used was capable of predicting the growth of Salmonella on slices of 
RTE stuffed chicken breast as a function of storage temperature. At the temperatures studied 
(7, 11, 15 and 19ºC), significant growth of Salmonella was observed before the product was 
rejected for consumption (at the lower temperatures) on the basis of odour and appearance. 
This may indicate that safety, rather than spoilage, may be the shelf-life limiting factor of 
sliced vacuum-packaged RTE stuffed chicken breast at foreseeable storage conditions.  
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Abstract 
Fermented milks are considered a very important group of functional foods. In this group, 
yogurt is the most popular product and its healthy image supports the dynamic development 
of a vast array of products. The interactions between two thermophilic lactic acid bacteria, 
Streptococcus thermophilus and Lactobacillus delbrueckii subsp. Bulgaricus are critical to the 
successful manufacture of yogurt. This interaction is described by the ecological term proto-
cooperation. In such a relationship, each provides something the other needs and both 
organisms grow better as a result of the association. In this study, the influence of different 
proportions of the starter culture on physicochemical and microbiological properties of yogurt 
was evaluated. The influence of the proportions on the dynamical profiles of pH and acidity 
was analyzed. Results showed that different initial proportions of Streptococcus thermophilus 
and Lactobacillus bulgaricus strongly affect all properties studied and microbiological 
properties such as the duration of the lag and exponential phases. A mathematical model was 
proposed in order to explain and estimate the best proportion of the starter culture to the 
studied properties. 
 
Keywords: proto-cooperation, starter culture, mathematical model, lag phase 

Introduction 
Yogurt is commercially produced through fermentation by lactic acid bacteria. The success of 
milk fermentation relies upon the synergy between Streptococcus thermophilus and 
Lactobacillus bulgaricus, which is known as proto-cooperation. This positive relationship 
often has a beneficial effect on bacterial growth and on the production of lactic acid and 
aroma compounds (Angelov et al. 2009). Due to its beneficial attributes to human health, 
there are increased interest to the fermented milks and their nutritional characteristics (Elli et 
al. 2006). An important trend on the investigation of these products is the study of the 
characteristics of Streptococcus thermophilus and Lactobacillus bulgaricus, as independent 
and associated cultures. The aim of this paper is to study the influence of the starter culture on 
physicochemical characteristics of yogurt. Curves of pH and conductivity profiles are 
presented for different proportions of the starter culture and mathematical modeling of 
microbiological properties is employed as a tool to describe the properties of the system. Such 
a study can provide useful insights about the proto-cooperation phenomenon. 

Materials and Methods 
Raw Material 
Pasteurized milk from the region of Pinhalzinho, Santa Catarina, Brazil, was used in all 
experiments. The following commercial formulations were used: a formulation from Danisco 
Cultures (TA 40, LYO 100 DCU) for Streptococcus thermophilus and another formulation 
from Danisco Cultures (LB 340, LYO 100 DCU) for Lactobacillus bulgaricus. 
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Preparation of Yogurt 
The milk was heated, by means of a circulating water bath, to 90 0C for 5 minutes. Then, the 
product was cooled to incubation temperature, inoculated with different proportions of the 
starter culture (0:1, 1:3, 1:1, 3:2, 11:9, 2:1, 3:1, 4:1, and 1:0 of Streptococcus thermophilus 
and Lactobacillus bulgaricus, respectively), where the proportions of 0:1 and 1:0 represent 
pure culture of Lactobacillus bulgaricus and pure culture of Streptococcus thermophilus 
respectively, poured into 300-mL plastic containers and incubated at 42 0C. The coagulation 
of milk was monitored for pH during the incubation period until a pH of 4,7 was attained. 

Measurements of pH and acidity 
pH was measured using a pH meter (Quimis Q-400MT). Acidity was determined by titration 
with 0.11N NaOH using phenolphthalein as indicator. Profiles of pH and acidity were used to 
monitor and study fermentation process. 

Statistical analysis 
All of the statistical and regression analyses were performed using Origin v.7.0 (OriginLab).  

Results and Discussion  
Figure 1 shows curves of pH versus time for several proportions of the starter culture 
(Streptococcus thermophilus and Lactobacillus bulgaricus, respectively) and Figure 2 shows 
evolution of acidity with time for the same proportions of the starter culture. As can be seen, 3 
phases described the entire fermentation process agreeing with other studies (Soukoulis et al. 
2007). The first is a lag phase (slow pH decline or acidity increase), then it was observed an 
exponential phase (rapid pH decrease or acidity increase) and a slow down of acidification 
rate. All of the curves were fitted using the Boltzmann Equation (Eq. 1) and the results of the 
duration of the lag phase and the duration of the exponential phase were calculated according 
to the procedure proposed by Buchanan and Cygnarowicz (1990). 
 

 
Figure 1: Evolution of pH with time during yogurt elaboration under different proportions of 

the starter culture. 
 

( ) ]0exp[1 Cxx
BABy
−+

−
+=                                                                                                  (1) 

where A, B, C, and x0 are parameters with no microbiological meaning. 
 
Boltzmann´s equation was employed because it describes a sigmoid and the procedure 
proposed by Buchanan and Cygnorowicz (1990) is applicable to any sigmoid. According to 
these authors the duration of the lag phase and the duration of the exponential phase can be 
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estimated through computation of the maximum and minimum of the second derivative of the 
growth (pH or acidity) curves. 

 
Figure 2: Evolution of acidity with time during yogurt elaboration under different proportions 

of the starter culture. 
 
Figure 3 shows results obtained for the duration of the lag and exponential phases for 
different proportions of the starter culture which were obtained using the above mentioned 
procedure with the parameters of Eq.1 obtained after regression analysis. 
 

 
Figure 3: Duration of the lag and exponential phases for different proportions of the starter 

culture. 
 
Both curves were fitted to a third degree polynomial and results for the duration of the lag and 
the exponential phases are presented as Equations 2 and 3, respectively: 
 

32 )(%00002,0)(%00071,0%08822,013449,5)(% SSSStlag ⋅+⋅−⋅−=                       (2) 
 

32
exp )(%00002,0)(%00135,0%03013,020103,4)(% SSSSt ⋅+⋅−⋅−=                      (3) 

where lagt  and expt  are the duration (h) of the lag and exponential phases respectively, and 

S%  is the proportion (%) of Streptococcus thermophilus. 
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Visualization of Figure 3 makes apparent the interaction between the two bacteria. The 
association of both decreases markedly the duration of both the lag and the exponential 
phases of the pH and acidity curves. This behaviour reveals the favourable characteristics of 
the proto-cooperation, because there is a decrease in the time of adaptation of the culture 
(duration of the lag phase) when both micro-organisms were present in the culture in relation 
to the pure cultures. The minimum of the curves was observed for about 53% of 
Streptococcus thermophilus which may indicate that this is the most favourable proportion of 
the starter culture. 

Conclusions  
The fermentation process during yogurt manufacture can be studied by monitoring the pH and 
acidity. These methods are simple and require low-cost equipment. In the evaluation of the 
influence exerted by different proportions of the starter culture on pH and acidity profiles, the 
use of about 53% of Streptococcus thermophilus was found to result in the lower lag phase 
duration indicating that this proportion may be more favourable to the culture growth. Further 
studies are necessary in order to evaluate the influence of environmental parameters (e.g. 
temperature) on the pH and acidity profiles. 
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Modeling the effect of high pressure on the activity of orange 
limonoid glucosultransferase and limonin degradation 
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School of Chemical Engineering, National Technical University of Athens, Greece 

Abstract 
Juices from certain citrus fruits may face commercial problems due to delayed bitterness 
caused by the production of limonin. Limonin production rate depends on processing 
conditions and is accelerated by the enzyme limonin D-ring-lactonehydrolase. On the other 
hand, bitterness can be reduced by the enzymatic conversion of limonin to the nonbitter 
limonoid glucoside. The key enzyme in this conversion is limonoid glucosyltransferase 
(LGTase). The objective of this study was to investigate the effect of high pressure (HP) on 
LGTase activity and mathematically correlate the enzyme activity with the observed limonin 
degradation in citrus juice. LGTase was extracted from navel orange albedo tissue. The crude 
enzyme extract was purified, concentrated and subjected to HP treatments in the pressure 
range of 100-800 MPa. After HP treatment the enzyme activity was assayed by HPLC. The 
HP treated enzyme was further added to citrus juice and after incubation, in selected 
conditions, limonin content was determined.  HP processing in the pressure range of 200-300 
MPa led to the enhancement of LGTases activity, while treatments with pressures exceeding 
300 MPa led to the inactivation of LGTases. Both enzyme inactivation and activation were 
mathematically modeled as a function of pressure at the respective ranges. Enhanced enzyme 
activity led to limonin degradation in juice samples and LGTase activity and was 
mathematically correlated with limonin. The data obtained from this work could be used for 
the determination of the appropriate HP conditions for the processing of citrus juices, for HP 
to be applied as an alternative to the conventional resin based debittering process in citrus 
juices. Furthermore, the developed mathematical model can be used as an effective tool to 
predict limonin in processed orange juice based on LGTase activity. 
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Abstract 
Orange juice is known for its high vitamin C content. Thermal processing continues to be the 
most widely used method of preserving and extending the shelf-life of juices. However, high 
pressure processing (HPP) of orange juice has been shown to result in higher retention of 
ascorbic acid relative to thermally processed juice. Monte Carlo simulation techniques were 
employed to investigate the effect of processing factors on the stability of vitamin C (OVC) in 
high pressure processed orange juice. A model was developed which considered the 
variability which is typically encountered in processing operations. Processing factors 
influencing the level of Ovc in orange juice reported in the literature include; initial level of 
Ovc, storage conditions (i.e. time and temperature), juice extraction, high pressure processing 
and subsequent storage. The model resulted in a number of output distributions which were 
used to predict the likely Ovc content in high pressure processed orange juice and the impact 
of various processing stages on Ovc content of the juice. The predicted mean value for Ovc 
was 47.24 mg 100mL-1 (5th and 95th percentile being 22.9 and 79.38 mg 100mL-1, 
respectively). Sensitivity analysis showed that the initial level of Ovc content of the orange 
cultivar showed a positive correlation (r = 0.82) whereas storage time showed a negative 
impact (r = -0.50) on the vitamin C content of high pressure processed orange juice. A shelf-
life of both HHP and thermally processed juice samples was calculated based on 
concentration of ascorbic acid in orange juice (≥ 25 mg/100 mL) at the expiration date. Mean 
HHP processed juice samples had an extended shelf-life compared to thermally processed 
juice. The model output of shelf-life studies were validated with the experimental findings 
and were found to be within the confidence interval. This study models the effect of 
processing factors on the shelf-life of high pressure processed orange juice. 
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Abstract 
Bacillus cereus and Bacillus licheniformis spores are able to resist heat treatments applied in 
minimal food processing. During the food shelf-life, spores germinate and vegetative cell 
multiplication can be the cause of foodborne poisoning and/or food spoilage. The capacity of 
spores to resist heat treatments is highly influenced by conditions encountered during the 
sporulation process. The aim of this study was to propose a model describing the heat 
resistance of spores depending on sporulation temperature and pH. The heat resistance of 
psychrotrophic B. weihenstephanensis and mesophilic B. licheniformis were characterized for 
spores produced at various temperatures ranging from 5°C to 50°C and pHs ranging from 5.2 
to 8.5. 
The highest spore heat resistance was estimated when spores were produced at temperatures 
of 24.4°C, pH 8.0 and 49.9°C, pH 8.5 respectively for both strains. Outside these optimal 
conditions, at lower and higher sporulation temperature and at more acidic sporulation pH, the spore 
heat resistance decreased significantly. Heat resistance data were fitted from a model 
combining a temperature and a pH cardinal parameter model according to the “gamma-
concept”. The model parameters were the maximum heat resistance, the optimal sporulation 
temperature and pH, and the minimal and maximal sporulation temperature and pH defined 
by vertical asymptotes. Furthermore, the model was validated by the characterization of 
spores produced at different temperatures in soil-based medium and in whey. The observed 
heat resistance values were consistent with those predicted by the model. 
Optimal temperature and pH parameters resulting in the highest heat resistance were 
estimated at values close to those for optimal growth. This suggests that the highest spore heat 
resistance could be acquired when sporulation occurred at optimal growth temperature and 
pH. This study shows that growth cardinal values could represent valuable parameters for 
determining the conditions at which maximal heat resistant spores occurs. 
 
Keywords: modelling, spore, heat resistance, Bacillus, sporulation environment 

Introduction 
Since Bacillus spores are able to resist harsh environmental conditions, optimized heating 
processes are necessary to ensure food safety. The increase in sporulation temperature has 
been extensively reported to increase the spore heat resistance (Baril et al. 2011; Palop et al. 
1999; Planchon et al. 2011). However, at high sporulation temperatures spore resistance were 
stable or even decreased (Gonzalez et al. 1999; Lindsay et al. 1990). Regarding the effect of 
sporulation pH, an increase of pH from 6.0 to 8.1 in buffered sporulation media also caused a 
significant increase in B. cereus spore heat resistance (Mazas et al. 1997).  
Sporulation environment induces obvious variations of spore heat resistance, but is not taken 
into account in heat process calculations. The aim of this study was to propose a model 
describing the spore heat resistance as a function of the two main sporulation environmental 
factors. Therefore, the influence of sporulation temperature and pH on the spore heat 
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resistance of the psychrotrophic species Bacillus weihenstephanensis and the mesophilic 
species Bacillus licheniformis was investigated. 

Materials and Methods 
Spore production and heat resistance determination 
B. weihenstephanensis KBAB4 strain and B. licheniformis AD978 strain were studied. Spores 
were produced in a sporulation mineral buffer (Baril et al. 2011), at temperatures ranging 
from 5°C to 50°C and at pH ranging from 5.2 to 8.5. In addition, spores were produced in 
whey and in soil-based medium, at two temperature levels and one pH level for each 
bacterium and sporulation medium. Spore heat resistance was determined by the capillary 
method (Baril et al. 2011) at heating temperatures ranging from 80°C to 105°C. 

Heat resistance models 
Survival curves were fitted from the Weibull model modified by Mafart et al. (2002) as 
follows: 

( ) ( )
ptNN 






−=

δ0loglog   (1) 

where N (CFU/ml) is the population concentration at time t, N0 (CFU/ml) is the initial 
population concentration, δ (min) is the time to the first decimal reduction and p is a shape 
parameter. 
The modelling of the influence of sporulation temperature and pH on the spore heat resistance 
was inspired by the gamma-concept (Zwietering et al. 1992) and by the cardinal growth 
model (Rosso, 1995). To consider both the influence of sporulation environment (sporulation 
temperature and pH) and the heating environment (heating temperature) on spore heat 
resistance, this model was associated to the Bigelow log-linear model (Mafart et al. 2002), as 
follows: 
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where δ*max is the δ value acquired by spores produced at the optimal sporulation temperature 
and pH for a treatment at the reference heating temperature (T*

HT); γ2(Tspo) and γ1(pHspo) 
correspond respectively to the influence of the sporulation temperature or pH; THT is the 
heating temperature; z is the increase of the heating temperature resulting in a decimal 
reduction of δ values. 
The influence of the temperature and pH on spore heat resistance was described as follows: 
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where Xopt(R) is the optimal sporulation temperature or pH and Xmin(R) and Xmax(R) are the 
theoretical minimal and maximal sporulation temperature or pH within which the spore heat 
resistance (δ) is higher than zero. 

Model fits 
In order to reduce the variances of the studied responses (N and δ), models were fitted by 
minimizing the sum of squared errors of the decimal logarithm of the spore concentration 
(logN) and the decimal logarithm of the spore heat resistance (logδ) (lsqcurvefit, Optimization 
Toolbox, MATLAB 7.9.0, The Math-works, Natick, USA). The 95% confidence intervals 
were estimated using nlparci function (Statistical Toolbox; MATLAB 7.9.0; The Math-works, 
Natick, USA). The goodness of fit was assessed by the root mean square error (RMSE). The 
literature available data set of B. cereus ATCC7004 (Gonzalez et al. 1999) was also fitted 
from the equation 2 to test the robustness of the model. 
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Results and Discussion  
Influence of sporulation temperature and pH on spore heat resistance 
As shown on figure 1, the highest spore heat resistance was estimated when spores were 
produced at temperature of 24.4°C (±1.9) (logδ90°C=0.90, p=1.3) and 49.9°C (±1.9) 
(logδ100°C=0.78, p=1.0) for B. weihenstephanensis KBAB4 and B. licheniformis AD978, 
respectively. For lower and higher sporulation temperatures, a decrease in the spore heat 
resistance was observed. Following the same trend, the highest spore heat resistance was 
estimated for sporulation at pH 8.0 (±0.6) and pH 8.5 (±0.7) for both strains, respectively. For 
lower sporulation pHs, a decrease of spore heat resistance was observed. In addition, the z 
parameters were not significantly dependent on the sporulation temperature or pH and were 
estimated at 9.0°C (±0.7) and 7.3°C (±0.5) for both strains respectively.  
The model was also fitted with a set of published data regarding B. cereus ATCC7004 
(Gonzalez et al. 1999). The sporulation temperature resulting in maximal heat resistance was 
estimated at 37.7°C (±2.5) (logδ100°C=-0.70, p=1.0) and the z parameter at 7.8°C (±1.2). 

 
Figure 1: Modelling the influence of sporulation temperature on Bacillus spore heat resistance 
at different heating temperatures. (A) B. weihenstephanensis KBAB4 spores, treated at 95°C 

(circles), 90°C (diamonds) and 85°C (triangles). (B) B. licheniformis AD978 spores, treated at 
100°C (circles), 95°C (diamonds) and 90°C (triangles). (C) B. cereus ATCC7004 spores 
(Gonzalez et al. 1999), treated at 102°C (circles), 100°C (squares), 96°C (diamonds) and 

92°C (triangles). Symbols correspond to independent experimental data. Black lines 
correspond to estimated values from the equation 2. 

Robustness of the model 

 
Figure 2: Predicted values of spore heat resistance (logδpred) versus observed values of spore 
heat resistance (logδobs). B. weihenstephanensis KBAB4 (A) and B. licheniformis AD978 (B) 

spores produced in whey (white filled symbols) and in soil-based medium (black filled 
symbols). 
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The heat resistance of B. weihenstephanensis KBAB4 and B. licheniformis AD978 spores 
produced at different temperatures in whey and soil-based medium were estimated from the 
model (sporulation temperature parameters were fixed at previous estimated values). 
Whatever the strain and the sporulation medium, the model provided an accurate prediction of 
the spore heat resistance as a function of sporulation temperature and heating temperatures 
(Figure 2). The mean error was evaluated between 0.08 and 0.23. 

Conclusions  
The predictive model we propose in this study enables the quantitative assessment of spore 
heat resistance as a function of temperature and pH for one sporulation environment. 
Estimated optimal temperature and pH resulting in maximal heat resistance are close to 
temperature and pH values determined for optimal growth. This suggests that the highest 
spore heat resistance could be acquired when sporulation occurred at optimal growth 
temperature and pH. This study shows that growth cardinal values could represent valuable 
parameters for determining the conditions at which maximal heat resistant spores occurs. 
Moreover, the environmental conditions of sporulation and subsequent recovery may act 
synergistically on the probability of survival and outgrowth. For instance, the decrease of 
spore heat resistance is favoured by acidic sporulation conditions as well as acidic recovery 
conditions decrease the outgrowth (Mafart et al. 2001). Estimating the sporulation 
temperature and pH at which spore heat resistance is maximal is useful for the food industry 
in their efforts to design appropriate process parameters given the presence of a particular 
spore population. Further research is needed to extend this study to anaerobic spore forming 
bacteria. 
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Abstract 
Bacillus spores are the main targets in most of the thermal treatments of canned foods. 
Essential oils are natural products extracted from herbs and spices, which can be used as 
natural preservatives in many foods because of their antibacterial, antifungal, antioxidant and 
anti-carcinogenic properties. Recently, some studies have recorded the antimicrobial efficacy 
of essential oils, alone or in combination with other preservation methods, against spoilage 
and food-borne pathogens. The aim of this study was to evaluate the influence of different 
concentrations of thymol in the heating and in the recovery media on the heat resistance of 
spores of B. subtilis, B. licheniformis and B. sporothermodurans. Heat resistance 
determinations were carried out in a thermoresistometer Mastia. The treatment temperatures 
were 100ºC and 110ºC. Different concentrations of thymol (from 0.1 to 0.6 mM) were added 
to the heating and to the recovery medium. The effect of thymol in the heating medium was 
rather small and no differences were found between the different microorganisms. When the 
thymol was added to the recovery medium significant differences were found between the 
control and the different concentration tested. The data on the effect of thymol in the recovery 
medium were used to build a predictive model. In view of their effects in lowering the heat 
resistance, together with their antimicrobial and sensorial properties, essential oils like 
thymol, could be used in combination with heat in order to reduce the intensity of the thermal 
treatments applied to some products like soups or vegetable dishes. 
 
Keywords: Bacillus, thymol, recovery medium, heating medium 

Introduction 
Bacillus spores are the main problem in most of the food industries due to its capacity to 
survive to the industrial sterilisation processes. In the last years, high heat resistant spore-
forming bacteria have increased challenges in industrial sterilisation processes to assure food 
safety and prevent spoilage. A large amount of over-processing is often applied to the 
products that have a prolonged shelf life. This is unfavourable for the product quality, so 
combined processes are needed in order to ensure microbial safety without affecting the 
sensorial and nutritional properties. The addition of thymol to the foods that are going to be 
heat treated could reduce process times and temperatures considerably. 
Essential oils are natural products extracted from herbs and spices used as flavourings in the 
food industry. Nowadays their use as natural preservatives in many foods is gaining interest 
because of their antibacterial, antifungal, antioxidant and anti-carcinogenic properties. 
Recently, some studies have recorded the antimicrobial efficacy of essential oils, alone or in 
combination with other preservation methods, against spoilage and food-borne pathogens 
(Esteban and Palop 2011). Thymol is a phenolic compound present in the essential oil 
fraction of Oreganum and Thymus plants. Essential oil has been shown to exhibit 
antibacterial and antifungal activity including food pathogens (Ultee et al. 2000). The aim of 
this study was to evaluate the influence of different concentrations of thymol in the heating 
and in the recovery media on the heat resistance of spores of B. subtilis, B. licheniformis and 
B. sporothermodurans. 
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Materials and Methods 
Bacterial strains and culture conditions 
The strains used in this study were Bacillus subtilis CECT 4071, Bacillus licheniformis CECT 
4525 (both supplied by the Spanish Type Culture Collection), and Bacillus 
sporothermodurans   IC4 (supplied by Unilever Netherlands Sourcing Unit Oss). The spore 
suspensions were stored in sterilized distillate water at 4ºC until used. 

Chemicals 
Thymol (Sigma-Aldrich Chemie, Steinheim, Germany) stock solution 0.5 M was made in 95 
% ethanol and stored at 4 °C. 

Heat treatment 
Heat resistance determinations were carried out in a thermoresistometer Mastia (Conesa et al. 
2009). The D values were determined in Brain Heat Infusion (BHI) (Scharlau Chemie, 
Barcelona, Spain) at temperatures of 100 and 110ºC. Different concentrations of thymol were 
added to heating medium and recovery medium, Brain Heat agar (BHIA) (Scharlau Chemie, 
Barcelona, Spain). 

Results and Discussion  
The effect of the concentration of thymol in the heating medium on the heat resistance was 
rather small for all microorganisms under study and no dose dependent effect was found. No 
differences were found on the effect of thymol in the heating medium among the different 
microorganisms. 
When thymol was added to the recovery medium after the thermal treatment at 100ºC applied 
to B. subtilis spores, significant differences were found between the D100 value of the control 
(without thymol added) and the different concentrations tested (Table 1). A dose dependent 
effect was found up to concentrations of 0.3 mM. Higher concentrations did not lead to 
further decreases in the D100 values. A similar effect was found at 110ºC for this 
microorganism. 
 

Table 1: D-values (minutes) for Bacillus subtilis CECT 4071 heated to 100ºC and recovery 
media with thymol. 

 Concentration 
mM 

Thymol 

  D (min) SD 
Bacillus subtilis 0 2.84 0.27 
CECT 4071 
Heating TºC:100ºC 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

2.33 
1.55 
0.95 
0.95 
0.88 
0.95 

0.22 
0.15 
0.1 

0.28 
0.33 
0.48 

 
Similar results were obtained with B. licheniformis at 100ºC (Fig 1). However, B. 
sporothermodurans spores were not affected by the addition of thymol to the recovery 
medium (data not shown). Conesa et al. (2009) showed that the heat resistance of Bacillus 
cereus spores was also affected by the addition of thymol to the recovery medium up to 
concentrations of 0.3 mM. The heat resistance of this microorganism was neither affected by 
the presence of thymol in the heating medium. 
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Figure 1: Indication of the paragraph format list box in the MS Word user interface. 

The data on the effect of antimicrobials in the recovery medium were used to build a 
predictive model. This predictive model was based on the model of Mafart and Leguerinel 
(1998) (Eq. 1) 
 

-     (1) 
 
In our case, the zthymol value was 0.69 mM for B. subitlis at 100ºC, which means that a 
concentration of 0.69 mM thymol in the recovery medium is necessary to reduce the D100 
value to one tenth. However, as stated before, the effect was only kept for concentrations up 
to 0.3 mM, since higher concentrations did not lead to further decrease in the D values. 
Lekogo et al. (2010) also found a relationship based on the same model, which enabled them 
to describe the effect on the heat resistance of B. cereus and Clostridium sporogenes of the 
addition of different fatty acids to the recovery medium. These authors also did not find any 
effect of these fatty acids when added to the heating medium. In view of their effects in 
lowering the heat resistance and hampering the recovery of the survivors to the thermal 
treatment, together with their antimicrobial and sensorial properties, essential oils like thymol, 
could be used in combination with heat in order to reduce the intensity of the thermal 
treatments applied to some products like soups or vegetable dishes. 

Conclusions  
The effect of the addition of thymol was different in the heating and in the recovery media. 
Thymol had a stronger effect on the recovery medium. A progressive decrease in heat 
resistance was observed when increasing thymol concentration in the recovery medium up to 
0.3 mM. The addition of thymol to the heating medium did not significantly decrease the heat 
resistance of these microorganisms at concentrations up to 0.6 mM. B. sporothermodurans 
spores were not affected by the presence of thymol in the heating and in the recovery media. 
A mathematical model was built to predict the Dvalues of B. subtilis and B. licheniformis at 
concentrations of thymol up to 0.3mM.  
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Abstract 
Leuconostoc mesenteroides are especially important in the sugar and dairy industry due to its ability to 
produce CO2, flavor compounds as a function of heterofermentative consumption of lactose and citrate, 
and dextran gum from sucrose. The dextran produced by Leuconostoc in sugary ingredients, can render 
a final product of lower sensorial and/or microbiological quality due to the physical barrier of dextran 
which could affect the efficiency of pasteurization. The objective was to determine the thermal 
inactivation of L. mesenteroides, by sealed TDT method, between 60-121ºC, in a solution of dextran 
100ppm, and when it was added to liquid sugar 40% (v/v), whole milk or cream 40% (v/v). The 
survival data were adjusted by the GInaFiT program for kinetic parameters estimation. After obtaining 
adjusted models, it was determined the time required to promote five (5) decimals log reductions of L. 
mesenteroides population in these ingredients. The results showed that, in the four substrates the target 
microbial, Leuconostoc mesenteroides, in the presence of 100ppm dextran, is heat sensitive, however 
presents a non-linear kinetics with "tailing" in the final heat treatments that would enable their survival 
in higher content lipids ingredients. When comparing the time for five reductions t(5), for whole milk 
with dextran (R2=0.979 and t(5)75C=24.40 sec) with only dextran 100ppm solution  (R2=0.984 and 
t(5)75C=8.73 sec), both complying with the Mafart Model, the thermal resistance was higher in milk 
with dextran and, when comparing the resistance of the microorganism in cream (R2=0.998 and 
t(5)60C=574.85 sec) and liquid sugar 40% (R2=0.993 and t(5)60C=478.20 sec), both containing 100ppm 
dextran and obeying the Cerf Biphasic Model, the thermal resistance was higher in the cream, 
delineated by Kmax1=5.53min-1 and Kmax2=0.49min-1. 
 
Keywords: thermal inactivation, cream, liquid sugar 

Introduction 
Leuconostoc mesenteroides are defined as Gram positive cocci in pairs and chains, facultative with 
optimum growth temperature at 28°C, but no growth at 45°C (Mossel et al. 1995) it is an aciduric 
microorganism (Nickerson and Sinskey 1978). Metabolically, are defined as heterofermentative 
organisms, which converts one mol of glucose producing lactic acid to small parts of ethanol, acetic 
and fumaric acids and CO2, using of glucose was aerogenic fermentative dissimilation (Mossel et al, 
1995). The mainly sources of this bacteria first is sugar cane where the count normally range between 
105 and 107CFU/mL for normal cane juices and 108CFU/mL for juices obtained from sour cane 
(ICMSF 2005), and second, the lactic products. This bacteria produce, frequently, dextran, a 
polysaccharide that causes significant processing problems for both raw sugar factories and refineries. 
Dextran increases the viscosity of process liquid sugar. Besides that, dextran damage pumps and 
increase the need and frequency of cleaning of equipments (ICMSF 2005).  
For food industries, that use liquid sugar as an ingredient, recontamination with Leuconostoc is 
observed during inadequate storage conditions, before use, where insufficient attention is given to 
hygiene. When Leuconostoc mesenteroides growths in foods, it could promote spoilage by production 
of flavor compounds (diacetil due to fermentation of citric acid), lactic acid and CO2 that causes in a 
pack a springer condition. Moreover, the viscosity of food was changed because dextran was also 
produced by L.mesenteroides. The microorganism heat resistance was lower but these values could be 
increased with dextran presence. The effect of the presence of dextran on the thermal resistance has not 
been reported in literature. 
This research aimed to determine the thermal inactivation of L.mesenteroides, in a solution of 100ppm 
dextran and when it was added to liquid sugar 40% (v/v), whole milk and cream 40% (v/v). 

Materials and Methods 
Test organism and vegetative suspension production 
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For this study Leuconostoc mesenteroides strain recognized as a dextran producer was 
isolated from lactic ingredients. The cells suspension was produced by inoculation of 
L.mesenteroides, in Lactobacilli MRS Medium (Difco, 288130) plus 2% of Agar (Difco), 
incubated at 28°C/24h. After, growth the bacterial cells were collected using sterile water and 
the suspension was adjusted for 2.1x108CFU/mL, by Densimat (bioMérieux). 1mL of this 
suspension was added to 99mL of dextran solution at 1000ppm (Sigma), previously sterilized 
at 115°C/30minuts.  
Heat resistance determination 
For heat resistance determination was applied the TDT (Time Death Time) tube Method 
(Stumbo 1965). For this, 1.8mL of each substrate with 100ppm dextran, previously sterilized, 
was dispensed in a Pyrex TDT tube, 0.2mL of vegetative suspension in dextran were added. 
The tests suspensions and the temperature x time applied were: dextran 100ppm (75°C; 3, 5, 
16, 20 and 25s); liquid sugar 40% (v/v) (60°C; 1, 2, 3, 4 and 5min); whole milk (75°C; 3, 5, 
16, 25 and 35s) and cream 40% (v/v) (60°C; 1, 2, 3, 4 e 5min). For all the tests suspensions, 
inside the TDT tube, the dextran concentration was 100ppm, in order to test the influence of 
dextran on microorganism heat resistance and the lag time of the suspension in the TDT tube 
was measured. The subculture was prepared in formulated Vancomycin Agar Medium, added 
with 20µg/L of vancomycin. The incubation was carried out for 5 days at 28°C, according to 
Mathot et al. (1994).  
Treatment of thermal resistance data  
Using obtained data (log of survivors x time) at each constant temperature, for each tested 
substrate  was constructed a survivor curve adjusting the data by GInaFiT program (Geeraerd 
and Van Impe Inactivation Model, v.1.4.2), for kinetic parameters estimation. Two models 
were used for the destruction curves with best determination coefficient: Cerf (1977) – 
equation 1 and Weibull as proposed by Mafart et al. (2002) – equation 2. By Cerf model were 
obtained the parameters: kmax1 (more sensitive fraction death constant), kmax2 (more 
resistant fraction death constant), f (more sensitive fraction of the bacteria population) and 
LOG10N0 (initial population log). This biphasic model is capable of describing survivor 
curves of shapes linear, linear with tailing and biphasic, and can, if being used for time-
varying conditions, be written under the form of two first-order differential equations, one for 
N1 (the major subpopulation) and one for N2 (the minor subpopulation) (Geeraerd et al., 
2005). 

)).1(.(10log)(10log)(10log .2max1max tktk efefNoN −−− −++=  
where: f is the fraction of the initial population in a major subpopulation, (1-f) is the fraction 
of the initial population in a minor subpopulation (which is more heat resistant than the 
previous one), and kmax1 and kmax2 [1/time unit] are the specific inactivation rates of the 
two populations, respectively.  

ptNLOGNLOG 





−=
δ

)0(10)(10  

where: δ [time unit] is a scale parameter and can be denoted as the time for the first decimal 
reduction if p=1, and p [–] is a shape parameter. For p>1, convex curves are obtained, while 
for p<1, concave curves are described.  
After obtained adjusted models, it was determined the time required to promote five (5) 
decimal log reductions of L.mesenteroides population in each tested suspension, using the 
equations defined by models (equations 1 and 2) applying Excel Solver tool.  

Results and Discussion  
The results showed that, in the four substrates the target microbial, Leuconostoc 
mesenteroides, in the presence of 100ppm dextran, is heat sensitive, however presents a non-
linear kinetics behavior with tailing at the finals heat treatments that would enable their 
survival in higher content lipids ingredients such as cream (Figure 1B). Figure 1A shows a 
survivor curve for L.mesenteroides in liquid sugar solution 40% with 100ppm of dextran, at 
60°C. 

(1) 

(2) 
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Figure 1: Survivor curve of Leuconostoc mesenteroides at 60ºC: A - in liquid sugar solution 

40% with 100ppm of dextran and B: in cream 40% with 100ppm of dextran. 

The microorganism destruction curve showed a non-linear biphasic behavior by Figures 1A 
and B, in liquid sugar solution and cream both with 100ppm dextran. At the first minute a 
quick destruction occurred (about 3 log cycles) but, after, the destruction was slower, and 
after 5 minutes, there is still a remaining population (6.5x101CFU/mL), a typical tailing effect 
probably due to the presence of dextran that at higher times has increased its viscosity. For 
this situation, the biphasic model Cerf (1977), adjusted very well by GInaFiT program, with 
R20.9936, equivalent D60°C 191.4 sec, calculated from 2.303/kmax2 (Table 1). Concerning the 
time for 5 log cycles reductions, t(5), obtained by equation 1, it is necessary 478.20s to 
accomplished this target. The parameters obtained by the model were: kmax1=12.56min-1; 
kmax2=0.72min-1; f=0.9968 and LOG10No=6.04. So, it is possible to affirm that the more 
sensitive population is ~99.7% but the residual population (0.3%), corresponds to a 
population fraction with slow death, represented by a tailing.  
Comparing the results obtained for sugar liquid solution 40% and cream (Figure 1B), both 
containing 100ppm of dextran, the thermal resistance was higher in cream with equivalent 
D60°C 281.88s, kmax1=5.53min-1, kmax2=0.49min-1; f=0.9990 and R20.9980 (Table 1). All the 
results for both ingredients were obtained by Cerf Biphasic Model, using GInaFiT Program. 
For this case, the more sensitive population is ~99.9% and the residual population (0.1%) 
corresponds to a population fraction with slow death, represented by a tailing. The high 
resistance shown in cream is probably due to protection given by the lipids and the gum.  
For whole milk with 100ppm dextran and 100ppm dextran solution a concave survivor curve 
was observed, both complying with the Weibull Model (Mafart, 2002), with p<1. When 
comparing the time for five reductions t(5), for whole milk with dextran on Figure 3A 
(R2=0.979; δ=0.069min, p=0.27 and t(5)75C=24.40 sec) against only dextran 100ppm 
solution on Figure 2B (R2=0.984; δ=0.055min, p=0.32 and t(5)75C=8.73 sec), the thermal 
resistance was higher in milk with dextran, 0.069min for the first log cycle reduction (Table 
1). It is important to emphasize that for whole milk (Figure 2A), after the first five seconds, 
the population was not reduced over 3 log cycles and for t>30sec, there were no more 
survivors. It is possible to affirm that the linearity deviation is a function of dextran presence, 
which provides a protection for cells.  
Concerning the dextran 100ppm solution, there were no additional substrates besides dextran, 
so, it is possible to affirm that the presence of dextran it is the main responsible for linearity 
deviation.  

 
Figure 2: Survivor curve of Leuconostoc mesenteroides at 75ºC: A. in sterile whole milk with 

100ppm of dextran and B. in dextran solution 100ppm.   

A B 

A B 

(s) 

(s) 

(min) 
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Table 1: Kinetic parameters for Leuconostoc mesenteroides in different ingredients, added of 
100ppm of dextran. 

Ingredients t1* t5(s)** T(°C) D (s) R2 Applied Model 
Liquid Sugar 
Solution 40% 12.29 478.20 60 191.4 0.9936 Cerf (1977) 

Biphasic non-linear model 

Cream 40%  25.06 574.85 60 281.88 0.9980 Cerf (1977) 
Biphasic non-linear model 

Whole Milk 0.069 24.40 75 0.069 0.979 Mafart et al. (2002) 
Non linear model 

Dextran 
solution 0.055 8.73 75 0.055 0.9841 Mafart et al. (2002) 

Non linear model 
Where: *t(1): time for the first log cycle reduction; t(5): time for 5 log cycle reductions  
 

When the D values, obtained here are compared with literature, it is possible to observe that 
for liquid sugar, the D values is 2 times higher than the ones reported by Franchi et al. (2003) 
for sugar cane juice 14°Brix, pH 6.5, with no dextran added. These authors reported a linear 
destruction curve for L.mesenteroides. This confirms the fact the presence of dextran causes 
non linear behavior. Stumbo (1973), reported a D value for Leuconostoc and other lactic acid 
bacteria, from 0.5 to 1 min at 65°C, with z from 4.4 to 5.6°C. So, according to these values, it 
is possible to conclude that for liquid sugar, D75°C estimated was <4.78s (using Stumbo z 
value), was lower than the heat resistance for dextran solution and whole milk added of 
dextran, obtained by this research. Besides that, the time for 5 reductions, at 60°C, for cream 
was the highest, 281.88s, probably because of milk proteins, fats and gum promoting 
protection for L.mesenteroides cells.  

Conclusions  
The survivors curves for Leuconostc mesenteroides were non-linear and affect by the 
presence of dextran. The Leuconostc mesenteroides heat resistance was higher in cream 40% 
than liquid sugar, at 60°C, and in whole milk compared with dextran solution 100ppm, at 
75°C; all added of 100ppm of dextran. For all the tested substrates, the microorganism 
showed a heat sensitive behaviour. The parameters calculated in this research are important to 
help design adequate pasteurization process when this organism is present as a contaminant. 
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Abstract 
Denaturation of the ribosome is an important inactivation mechanism of Gram-positive 
bacteria which can be evaluated by the use of Differential Scanning Calorimetry (DSC), in 
which bacterial cells concentrated by centrifugation are heated while their energy flow is 
recorded. Hence the microbial cell dynamics are studied in an experimental set-up different 
than usually chosen for inactivation studies. The validity of the results depends on factors that 
can affect the thermally induced changes in the DSC and the microbial inactivation kinetics in 
pellet form, as compared to static microbial inactivation of planktonic cells.  
In this study Listeria innocua ATCC 33090 was preheated from 20ºC to 66-80ºC (5ºC/min), 
rapidly cooled to 20ºC and scanned from 20 to 120ºC. The thermograms were integrated 
between 60-90ºC to obtain the residual enthalpy corresponding to ribosome denaturation, 
showing a linear decrease with increasing dynamic pre-heating temperature. Ribosome 
denaturation could not be detected with preheating to 66ºC. The aspects of using DSC to 
elucidate inactivation mechanisms rely on the assumption of similar inactivation kinetics in 
the DSC samples as those used to determine thermal resistance. Based on this assumption, our 
results show that dynamic preheating to 66ºC should lead to an approximate log 3 reduction 
when linked to static inactivation experiments performed with planktonic cells (57ºC to 
63ºC). Isothermal heating of pellets (62ºC and 68ºC) resulted in a log reduction of about 2-3 
within one minute, but subsequent heating did not further reduce the total viable count (TVC).  
 
Keywords: Differential Scanning Calorimetry, Inactivation, Listeria, Ribosome denaturation  

Introduction 
Listeria monocytogenes has been recommended as a target organism for thermal processing 
of refrigerated ready-to-eat foods. A six log reduction (e.g., 70ºC/2 min) is generally advised, 
also for seafood products (Rocourt et al. 2000). L. innocua is more heat resistant than L. 
monocytogenes and a well suited surrogate organism for thermal inactivation processes 
(Fairchild and Foegeding 1993). The thermal resistance of L. monocytogenes has been 
investigated in different foods and the environmental conditions during heating can have 
significant effect on the inactivation (Doyle et al. 2001). The prime cause of cell death related 
to heat exposure may vary with the severity of the stress, e.g., mild heat has been observed to 
cause membrane damage, and leakage of solutes to correlate with loss of viability (Lambert 
and Hammond 1973). At higher temperature, protein denaturation may play a major role. 
Ribosome denaturation is recognised as one of the inactivation mechanisms of Gram-positive 
bacteria. (Anderson et al. 1991; Bayles et al. 2000; Mackey et al. 1991). The objective of this 
study is to assess the inactivation of L. innocua ATCC 33090 by the use of both DSC and 
static microbial inactivation experiments. 

Materials and Methods 
Cultures of L. innocua ATCC 33090, stored frozen at -80ºC in cryovials (Microbank, Pro-Lab 
Diagnostics, CA), were recovered in Tryptic Soy Broth (Oxoid, Basingstoke, UK) with 0.6% 
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yeast extract (Merck, Darmstadt, DE) (TSBYE, 10 ml) at 37ºC over night prior to each 
experiment. Inoculum was prepared in TSBYE and grown to early stationary phase 
(12h/37ºC/150 rpm). Pellets were prepared by centrifuging the inoculum (10 mL, 8000 x g , 
15 min) and resuspension in an equal volume of a cold buffer (10mM Tris-HCl, pH 7.5; 6 
mM MgCl2; 30 mM NH4Cl). The cells were repelleted and the supernatant was removed. 
Static inactivation of planktonic cells. Experiments were carried out with sterile glass 
capillary tubes containing re-suspended inoculum (100 μL, 109 CFU/ml) placed in a water 
bath (Lauda E300, Dr. R. Wobser GmbH & Co. KG, Lauda-Königshofen, DE) at static 
temperatures from 57ºC to 63ºC. At regular times one capillary was removed from the water 
bath, placed in an ice-water bath and analysed within ca. 45 minutes. Decimal serial dilutions 
of the samples were prepared in a TSBYE solution in order to reduce stress related to 
changing of medium, and surface plated on Tryptic Soy Agar (Oxoid, Basingstoke, UK) with 
0.6% yeast extract (Merck, Darmstadt, DE). Plates were incubated at 30ºC for 48 hrs and 
colony forming units were enumerated, plates were checked after 96 hrs to ensure that all  
culturable cells were counted.Plates were incubated at 30ºC and colony forming units were 
enumerated at 48 hrs, and checked at 96 hrs to ensure that all culturable cells were counted. 
Each experiment was performed in duplicate.  
Static inactivation of pellet. Pellet (± 70 mg) was transferred to glass tubes (Ø=4 mm) and 
heated (62 and 68ºC) in a water bath (GR150-S12, Grant Instruments Ltd, Shepreth, UK). At 
appropriate time intervals samples were removed and analysed as described above. Each 
experiment was performed in triplicate.  
Dynamic heating in Differential Scanning Calorimetry. Pellet (± 70 mg) was transferred into 
a stainless steel DSC crucible (Medium pressure - 120 μL, Mettler-Toledo GmbH Analytical, 
Schwerzenbach, CH) and hermetically sealed. Preheating was carried out in a DSC (DSC 1 
system, Mettler-Toledo GmbH Analytical, CH) from 20ºC to end temperature 66-80ºC at a 
rate of 5ºC/min. After preheating, the samples were immediately cooled to 20ºC (300ºC/min) 
and scanned from 20 to 120ºC (5ºC/min). The area below the thermogram was integrated 
between 60-90ºC, using the instrument’s software (Stare Excellence Software, Mettler-Toledo 
GmbH Analytical, Schwerzenbach, CH). 

Results and Discussion  
The inactivation of planktonic cells in capillary glass tubes showed a log-linear decrease. The 
D-value was calculated for each experiment. Based on the calculated D-values at different 
temperatures the z-value was estimated to 4.7°C. Inactivation kinetic studies of a similar 
pellet as used for DSC were performed in glass tubes.  
The pellet showed very different kinetics compared to inactivation of the planktonic cells. 
From an initial TVC of approximately 1011 CFU the isothermal treatments of pellets resulted 
in a reduction of about 2-3 log within the first minute at the temperatures investigated (62 and 
68ºC), as shown in Figure 1. 
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Figure 1: Inactivation (log reduction in function of time) of Listeria innocua for (a) plaktonic cell in 
capillary tubes (b) pellet in glass tubes.  
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Subsequent heating beyond 1 minute did not further significantly reduce the TVC. In a study 
with pellets of Esherichia coli cells in polypropylene tubes, log-linear inactivation was 
observed for isothermal heating of pellet (Lee and Kaletunc 2002). This may be related to the 
water content (83% of the E. coli pellet, 79% for our L. innocua pellet) or the species. 
In our experiment, pellets were also analysed in the DSC and thermograms were obtained 
during heating from 20ºC to 120ºC, after dynamic pre-heating to 66, 68, 70, 72, 74, 76 and 
78ºC at 5ºC/min. Examples are shown in Figure 2. The most prominent changes in the 
thermograms due to preheating took place between 60 and 90ºC, with a peak around 76ºC 
which could be associated to the denaturation temperature of the 50S subunit and the 70S 
particle of the ribosome (Bayles et al. 2000). 
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Figure 2: Typical thermograms obtained with preheating temperatures from 66 to 78ºC. 

By integration of the thermogram in this temperature region the remaining enthalpy, ΔH 
[mJ/mg], could be determined for each dynamic profile; indicating to what degree the sample 
has absorbed energy, non reversibly, during the pre-heating. The remaining enthalpy showed 
a linearly decreasing trend with increasing pre-heating temperature. Preheating performed to 
temperatures below 66ºC did not show any increase in energy uptake during the subsequent 
scan to 120ºC, as compared to 66ºC. Hence it appears that the first ribosome denaturation 
takes place during treatment to temperatures higher than 66ºC. It should be noted, however, 
that it is not the total denaturation of the ribosome or other active molecules that is 
determining inactivation of microorganisms, but the enthalpy difference between the active 
and inactive states of the system.  
Based on the inactivation kinetics (D and z values) of planktonic cells in capillary tubes, the 
microbial inactivation can be simulated by using the dynamic form of the linear model:  
 

)(
1)(log10

TDdt
tNd

−=          

 (1) 
 
with dlog10N/dt being the change in surviving organisms per unit time. The relation between 
the value of the decimal reduction D(T) at the actual temperature T was derived based on the 
inactivation experiments of planktonic cells: 
 

Log10D(T) = -0.2121 T + 13.055       
 (2) 

 
The temperature evolution during the dynamic pre-treatment of the DSC experiments is 
described by: 
 

T = 20 + 5 t          
 (3) 
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The inactivation caused by the dynamic heating profile could be calculated and used to 
estimate an isothermal heating temperature giving rise to the same inactivation as the dynamic 
heating profile within the same time span. Calculated this way, a dynamic heating from 20 to 
66ºC at 5ºC/min will correspond to 59.6ºC for 9.2 minutes, although this calculation is solely 
related to inactivation, and not to ribosome denaturation. Although the DSC results indicate 
no enthalpy change during dynamic preheating to 66ºC, the available data cannot support to 
suggest that this is also the case at the equivalent isothermal temperature (59.6ºC for 9.2 
minutes). Collection of isothermal calorimetric data might contribute to further interpreting 
this specific mechanism. Furthermore, very high cell densities of nonsporing micro-
organisms, like the pellet samples used in this study, are associated with increased heat 
resistance (Hansen and Riemann 1963), as is also shown in Figure 1. 
If independent of the specific form of the cells (pellet or planktonic form) then no 
denaturation of the ribosome would be expected during the studied heating process, which is 
in accordance with previous findings indicating that mild heat treatment primarily cause 
inactivation due to cell membrane damage (Lambert and Hammond 1973).  

Conclusions  
Our results indicate that in order to estimate the effects of the denaturation of the ribosomes, 
measured by the energy uptake during dynamic heating (5ºC/min), on thermal inactivation of 
L. innocua ATCC 33090, attention should be given to the specific form of the cells used in 
the analyses. The relationship between thermal death of planktonic cells and thermograms 
obtained from dynamic heating of pellet between 60-90ºC are of interest to further understand 
a major inactivation mechanism of Listeria species. Thermograms from isothermally pre-
heated pellets would, however, further strengthen the relationship and the links between 
thermodynamic and microbial kinetic data obtained from isothermal inactivation studies.  
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Abstract  
The objective of this work is to investigate and further understand the effect of a solid(like) 
environment on the heat tolerance of bacteria, i.e., Escherichia coli K12 and Salmonella 
Typhimurium. Stationary phase bacterial cultures were gained after growth at 37oC in 
laboratory medium which contained 1.5% (w/v) or 2.5% (w/v) xanthan gum. Afterwards, heat 
inactivation experiments took place at 54oC. Generally, increased heat tolerance, i.e., slower 
inactivation, and higher viability, was observed in the solid matrix compared to the liquid 
system. Similar heat resistance was observed for 1.5% (w/v) and 2.5% (w/v) xanthan gum. 
The structure seems to protect the bacterial cells from heat stress, leading to an increased 
survival compared to the liquid systems. Results indicate that there is no clear effect of the 
concentration of the gelling agent on the microbial heat tolerance.  

Key-words: heat inactivation, E. coli, Salmonella, colony formation, solid(like) matrix 

Introduction 
Generally, food products can be either liquid or solid(like). In a liquid system microorganisms 
grow planktonically whereas bacteria are immobilized and grow as colonies in a solid 
environment. Due to the colony formation, diffusion of nutritional components into the 
colony and of cellular metabolites out of the colony is mainly based on (limited) diffusion. 
Therefore, microbial behaviour in a solid(like) matrix differs from the one in a liquid system.  
The majority of predictive models, which describe growth, survival and/or inactivation of 
microorganisms as a function of environmental conditions, are based on studies in liquid 
systems. These models can efficiently predict the microbial behaviour in liquid foods or oil in 
water emulsions (Wilson et al. 2002). However, an accurate prediction in a solid(like) matrix 
is not guaranteed. 
As opposed to the increasing research conducted on the effect of a solid(like) matrix on 
microbial growth, limited research has taken place with respect to thermal inactivation in a 
solid(like) system. This work studies the effect of a solid(like) environment on the heat 
tolerance of Escherichia coli K12 and Salmonella Typhimurium.  
 
Materials and Methods 
Inoculum preparation  
E. coli K12 MG1655 and Salmonella Typhimurium stock cultures were stored at -80 oC in 
Brain Heart Infusion (BHI) and Tryptic Soy Broth (TSB), respectively (Oxoid Limited, 
Basingstoke, UK) with 25% (v/v) glycerol (Acros Organics, NJ, USA). For the preparation of 
the inoculum, a loopful of the stock culture was transferred in 20 mL of BHI/TSB and was 
incubated at 37 oC on a rotary shaker (175 rpm) for 9.5 h. Next, 20 µL of this cell suspension 
was transferred to 20 mL of fresh BHI/TSB and incubated 15 h under the same conditions, 
until the stationary phase (109 CFU/mL) was reached.  
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Preparation of gelified matrix 
Xanthan gum, chosen as the gelling agent, was added in BHI/TSB at a concentration of 1.5% 
or 2.5% (w/v) and vigorously stirred for at least 30 min (OST 20 basic, IKA Werke GmbH & 
Co). This mixture was autoclaved at 121 oC for 15 min and entrapped air bubbles were 
removed by centrifugation, before as well as after autoclaving. 

Inoculation and growth in the gelified matrix 
The (liquid) inoculum –prepared as described above– was diluted in order to obtain an initial 
inoculum level of 104 CFU/mL and added in tubes with 10 mL of gelified medium. Next, 
these tubes were centrifuged for homogenization and removal of entrapped bubbles. 
Afterwards, they were incubated at 37 oC for 24 h until the population reached stationary 
phase.  

Microbial thermal inactivation 
Static inactivation experiments took place in sterile glass tubes in which a volume of 2 mL 
(prepared as described above for the liquid and the gelified matrix) was pipetted. Tubes were 
immersed in a water bath (GR150-S12, Grant Instruments Ltd, Shepreth, UK) at 54 oC. The 
time needed for the internal temperature of the tube to reach 54 oC was tested with the use of 
a thermosensor (Keithley 2700 multimeter) and was approximately 30 seconds and 3 minutes 
for the liquid broth and the gelified matrix, respectively. Inactivation experiments started at 
this time instance.  At regular times, tubes were removed from the water bath, placed in an 
ice-water bath and analyzed within approximately 45 min. Decimal serial dilutions of the 
samples were prepared in a BHI/TSB solution and surface plated on BHI/TSB agar (1.2% 
(w/v)) using a Spiral Plater (Eddy Jet IUL Instruments, Barcelona, Spain). The samples were 
pipetted approximately from the centre of the tube with special pipettes for viscous media 
(MICROMAN, Gilson, Middleton, WI, USA). Plates were incubated for 24 h at 37oC and 
colony forming units (CFU) were enumerated. The detection limit was 3 log CFU/mL -
because of the solid(like) nature of the samples, it is not possible to plate without diluting, 
therefore the detection limit is rather high-. All experiments were performed at least in 
duplicate.  

Mathematical analysis 
The experimental data (cell density data) were log-transformed and plotted as a function of 
time. The inactivation model of Geeraerd et al. (2000) was fitted to the data (Equation 1)  
 

                                                                                                                                                                  

(1) 

                                                                                                   
 

with N [CFU/mL] the cell population, N(0) [CFU/mL] the initial cell population, kmax [1/min] 
the maximum specific inactivation rate, Sι [min] the shoulder period and t [min] the time. 
For data analysis MatLab® Version 7.4 (The Mathworks, Inc., Natick, USA) was used. The 
mathematical model was fitted globally to all data sets obtained under the same experimental 
conditions,, i.e., one kmax value was determined to describe all data starting from the same 
initial cell level. The SSE was minimized using the lsqnonlin routine of the Matlab 
Optimization Toolbox Version 3.0.2.  

Results and discussion 
The experimental data followed a log-linear trend with a preceding shoulder and/or a 
preceding tail, depending on the conditions. Experimental data were described after parameter 
identification using the inactivation model of Geeraerd et al. (2000). Changes in 
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thermotolerance are defined as a prolongation of the shoulder and/or a reduction of the 
inactivation rate and/or the formation of a tail. 
In order to check whether bacterial heat stress adaptation takes place in the gelled matrix 
during the temperature adjustment time, 3 min in the solid(like) medium compared to 0.5 min 
in the liquid, a stationary phase liquid culture was added in the solid(like) medium medium 
right before inactivation at 54 oC. In this case, there were no colonies in the solid(like) matrix, 
but individual cells –since growth took place panktonically in liquid BHI broth-. Inactivation 
kinetics were identical to the ones obtained for a liquid system, indicating that no stress 
adaptation occurs at the beginning of the inactivation in the gelled matrix (data not shown). 
 
Escherichia coli K12 
The survival of E. coli at 54 oC in a gelled medium is significantly higher compared to the 
liquid system, i.e., inactivation curves from the xanthan system are in almost all cases situated 
above the inactivation curve in plain BHI. This is reflected in a lower inactivation rate, i.e., a 
slower inactivation, compared to the liquid BHI broth (Figure 1 – left plot). No difference in 
the heat tolerance was observed in the xanthan system when increasing the concentration of 
xanthan from 1.5 % (w/v) to 2.5 % (w/v), as can be seen in Figure 1 (right plot). 

 
Figure 1: Thermal inactivation curves of E. coli and global fits of Geeraerd et al. (2000) 

inactivation model at 54oC. (Left) (■, --) normal BHI broth and (o, ∆, ◊ , +, □, v, *, -) gelified 
matrix (1.5 % (w/v)). (Right) (■, -,-) normal BHI broth, (o, ∆, ◊, +, □, v, *, -) gelified matrix 

(1.5 % (w/v)) and ( o, ∆, +, ◊, ···) gelified matrix (2.5 % (w/v)). 

Salmonella Typhimurium 
Similar results were obtained for Salmonella Typhimurium. More specifically, when 
Salmonella was inactivated in a gelified matrix (xanthan gum in TSB), a higher heat tolerance 
was observed at 54 oC, i.e., a lower heat inactivation rate, compared to liquid TSB. No 
significant difference was observed in the inactivation kinetics for an increase of the 
concentration of the gelling agent from 1.5 to 2.5 % (w/v) (Figure 2, right plot). 

 
Figure 2: Thermal inactivation curves of Salmonella Typhimirum and global fits of Geeraerd 
et al. (2000) inactivation model at 54oC. (Left) (*, -) normal BHI broth and (o, ∆, ◊ , +, □, v, 
*, --) gelified matrix (1.5 % (w/v)). (Right) (■, --,) normal BHI broth, (o, ∆, ◊, +, □, v, *, -) 

gelified matrix (1.5 % (w/v)) and ( o, ∆, +, ◊, ···) gelified matrix (2.5 % (w/v)). 
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Generally, our findings indicate that the microbial heat tolerance in the selected solid(like) 
environment is higher compared to the liquid system. This observation indicates that cells 
within a colony are better protected against heat stress than planktonically growing cells. 
Possibly, the higher heat stress resistance is related to a self induced acid stress response. The 
solid character of the environment not only results in the formation of colonies, but also in 
accumulation of the produced (acetic) acid in and around the colony. The high acid 
concentration results in a suboptimal pH, which is lower in the inner part of the colony, 
compared to the outer part due to limited diffusion (Malakar et al. 1999). The lower, 
suboptimal, pH most likely triggers the acid tolerance response (Davis et al. 1996). A myriad 
of studies has already proven that (pre-)exposure to acid can increase the general microbial 
stress resistance, see, e.g., Leyer and Johnson (1993), Tetteh and Beuchat (2003), Velliou et 
al. (2010). This phenomenon is defined as cross protection (Juneja et al. 2003) and its 
occurrence in a (complex) food system is of significant importance for microbiological safety 
issues. 

Conclusions 
As a general conclusion, it is observed that the gelified environment protects the E. coli and 
Salmonella Typhimurium cells from heat stress, leading to an increased survival compared to 
the liquid system. Results indicate that there is no clear effect of the concentration of the 
gelling agent on the microbial heat tolerance. 
This work is a first step towards more detailed studies that investigate the effect of 
immobilization on microbial inactivation dynamics. Investigating and understanding this 
effect is of great importance for microbial safety issues in the food industry, as most food 
systems are solid(like).  
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Abstract 
Thermal processing is a widely used and an extensively studied method for food preservation. 
Destruction of spoilage agents (e.g., microbial spores) during thermal processing of foods is 
inevitably accompanied by quality degradation. Thus, for optimum product quality retention, 
there is a need for accurate design of a thermal process. Modeling and simulation of food 
processes is an effective tool for process optimization. The objective of this work was to 
apply Computational Fluid Dynamics in studying the flow field and the temperature profile, 
as well as microbial inactivation, in thermally processed still cans filled with peaches halves 
in sugar syrup. The software FLUENT 6.3.26, 2006© with 3-D, double precision, pressure – 
based, laminar flow, natural convection was used to solve numerically the system of 
governing equations for mass, momentum and energy conservation, applied in finite volumes 
for the system under investigation, coupled with first order microbial inactivation kinetics. 
The slowest heating zone during the heating cycle and the slowest cooling zone during the 
cooling cycle of a thermal process were investigated. The location of the critical zone, that is 
the region in the product receiving the least effects of the process, in terms of microbial 
destruction, was identified. For example, for the case of a metal can (7.6 cm in diameter, 10.9 
cm in height) filled with 20% sugar syrup and five peach halves, symmetrically located on the 
can’s central axis, the critical point, as far as the destruction of microorganisms (characterized 
by a z value of 10 °C) is concerned, was located at the center of the second peach half from 
the can bottom. It was assumed that the can was initially at 25 °C and thereafter heated for 30 
min in boiling water at 100 °C followed by cooling in water at 25 °C with an infinite heat 
transfer coefficient being used for both heating and cooling cycles. 
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Abstract 
All models used in the field of predictive mycology were previously developed for bacteria. 
This study presents a new model dedicated to germination of fungi. Attention was focused on 
the capability of the model to provide an accurate estimation of the germination time. This 
parameter was defined as the time at which half of the viable spores had germinated. The 
percentage of germinated spores, P(%), depended on the maximum percentage of germination 
Pmax (%), the germination time, τ (h) and a design parameter, d (-) according to : 

ഓ

P = Pmax ሾ1 െ
ଵ

ଵାቀ tቁ
dሿ. In contrast to the logistic model, the new model is by essence 

asymmetric. Therefore, its use is consistent with skewed distributions of the individual 
germination times that were observed experimentally in many cases. In contrast to the 
Gompertz equation, the germination time is one of the parameters of the asymmetric model. 
Thus the germination time can be accurately determined by the new model. A dimensionless 
analysis showed that different shapes of the curves (P/Pmax) versus (t/τ) can be obtained 
depended on the design parameter, d. A new data set for Aspergillus niger, percentage of 
germination vs time was used to compare the models (i.e., asymmetric, Gompertz and 
logistic) based on goodness of fit. It was shown that the design parameter was in the range 3-
45. Greater this parameter is, less is the variance of the germination time among a population 
around the mean.  
 
Keywords: germination, model, fungi, mould, Aspergillus niger  

Introduction 
For fungi germination can be considered as the main step to focus on, because a product is 
spoiled as soon as visible hyphae can be observed. A spore is considered to have germinated 
when the length of the longest germ tube is greater than or equal to the greatest dimension of 
the swollen spore (Dantigny et al. 2006). But since spores do not germinate at the same time, 
the distribution of the germination time amongst a population of spores should be considered. 
From the cumulative frequencies distributions, germination curves can be drawn (Nguyen et 
al. 2010). The shape of the germination curves, percentage of germinated spores versus time, 
would therefore depend on these distributions. Right skewed distributions were observed 
experimentally, thus leading to asymmetric germination curves (Judet et al. 2008).  
Even assuming that the maximum percentage of viable spores equals 100%, the probability of 
examining the population of spores when exactly 50% of the spores had germinated is close 
to zero. Therefore the percentage of germinated spores, P(%), is plotted against time and 
kinetic models are used to estimate tg. Many mycologists agreed to define the germination 
time, tg (h), of a population of spores as the time required to obtain a percentage of germinated 
spores equal to 50% of the viable spores (Huang et al. 2001). A practical interest of the 
definition is whatever the percentage of viable spores, the germination time can be 
determined. For example, if the germination time is defined as the time required to have 50% 
of the inoculated spores, this time cannot be determined if the percentage of viable spores is 
40% only. In contrast, 50% of the viable spores is synonymous to 20% of the inoculated 
spores.  
The logistic model and the Gompertz equation that were used previously for fitting 
germination curves for fungi, were tested against many data sets available in the literature 
(Dantigny et al. 2007). Based on RMSE values, it was impossible to determine which one of 
the models performed better than the other one. The Gompertz model is asymmetrical but the 
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germination time cannot be determined directly thus leading to inaccuracy of this parameter. 
In contrast, the logistic equation provided accurate estimations of Pmax and tg, but concerns 
were raised because attempting to fit the symmetrical logistic function to actual asymmetrical 
data sets seemed inappropriate. Recently, a new asymmetric model based on the maximum 
percentage of germination and the germination time was described (Dantigny et al. 2011). 
 The objective of this presentation was to highlight the advantages of the new model. 
Firstly, the characteristics of the asymmetric model were detailed. Secondly, the goodness of 
fit of the model was tested against the Gompertz and the logistic equations. Thirdly, the 
model was fit to germination data for Aspergillus niger (Gougouli and Koutsoumanis 2010). 

Materials and Methods 
Logistic model  

The logistic function is: 
)]τ(exp1

max
t[k

P
P

−+
=       (1) 

where Pmax (%) is the asymptotic P value at t→+∝, τ (h) is the inflection point where P equals 
half of the Pmax, t is the time (h) and k (h-1) is related to the slope of the tangent line through 
the inflection point. The slope of the tangent line at τ, is equal to k.Pmax/4. The germination 
time tg is equal to τ. 

Gompertz model 

The modified Gompertz equation is: )1t)(
A

)1(e.µmexpA.exp.(P ⎥⎦

⎤
⎢⎣

⎡
+−−= δ   (2) 

where A (%) is the asymptotic P value at t→+∝, µm (% h-1) is the slope term of the tangent 
line through the inflection point (ti) as defined further, δ (h) is the t-axis intercept of the 
tangent through the inflection point and t is the time (h).  
The inflection point is: ti = δ + A/(µm e(1)). 
The germination time tg (h) can be determined for P = A/2 as: tg ൌ ߜ െ ሾlnሺିlnሺ.ହሻሻିଵሿA

µmeሺଵሻ
 (3) 

Asymmetric model  
The asymmetric model : P = Pmax ሾ1 െ

ଵ

ଵାቀ t
ഓቁ

dሿ      (4) 

is derived from the non competitive inhibition model described by Yano and Koya (1973). 
Pmax is the asymptotic P value at t→+∝, τ(h) the point where P equals half of the Pmax. The 
germination time tg is equal to τ. It was shown that whatever the value of d, the model was 
asymmetric (Dantigny et al. 2011). In practice, only values of d greater than 3 can represent 
the shape of germination curves. 

Results and Discussion  
Goodness of fit 
Overall the logistic model performed better than the Gompertz and the asymmetric model, 
respectively, Table 1. The asymmetric model was characterized by smaller RMSE values in 
only 2 cases out of 10. But, in all the other cases, the asymmetric was consistently ranked 
second, with RMSE values very close (less than 17%) to that of the best model. These results 
indicate that the asymmetric model is a good trade-off between the other models and suggest 
its capability to adjust to either apparent symmetric and asymmetric germination curves 
(Figure 1). 
 

475



Table 1: Determination of RMSE values by fitting the germination data of A. niger (data from 
Gougouli and Koutsoumanis 2010) to different models (bold values indicated the best 
goodness of fit). 

Temperature                          Model  
(°C) Logistic Gompertz Asymmetric 
10.5 4.51 3.77 3.80 
12.5 1.57 1.39 1.54 
15 8.50 9.85 8.60 
19.5  5.18 5.84 5.25 
25.5 8.81 9.69 8.95 
30 2.57 2.70 2.41 
35 2.04 3.46 2.09 
37 5.97 7.13 6.14 
40.1 5.70 4.60 5.35 
41.4 1.17 1.29 0.646 

Estimation of the parameter values 
In all cases, the asymmetric model provided estimations of the maximum percentage of 
germinated spores that did not exceed 100% significantly. This was also observed for the 
other models (not shown). The estimation of the germination τ, was very accurate. With the 
notable exception of 10.5°C, the standard error was less than equal to 0.15h. This result is 
very important because a good accuracy of the germination time would allow to demonstrate 
significant effect of experimental conditions on the germination of fungi. The values of d 
were greater than 15, except at 10.5°C. The germination curves were very sharp thus 
suggesting that the conidia of A. niger did germinate at almost the same time. 

Table 2: Parameter estimates obtained by fitting the germination data of A. niger (data from 
Gougoulis and Koutsoumanis 2010) to the asymmetric model. 

Temperature Parameter estimates : value (se)  
(°C) Pmax (%) τ (h) d (-) 
10.5 102 (3.12) 207 (4.98) 3.96 (0.321) 
12.5 98.6 (0.690) 73.9 (0.103) 30.5 (2.17) 
15 100 (4.39) 32.1 (0.150) 43.1 (7.49) 
19.5  100 (2.15) 17.9 (0.101) 22.9 (2.55) 
25.5 101 (5.09) 11.2 (0.130) 17.8 (2.81) 
30 98.8 (1.02) 7.88 (0.0214) 23.6 (1.18) 
35 99.4 (0.928) 6.85 (0.0183) 20.3 (0.874) 
37 100 (2.34) 7.06 (0.0502) 19.1 (2.05) 
40.1 101 (3.08) 8.00 (0.106) 13.7 (2.50) 
41.4 100 (0.395) 9.95 (0.0144) 16.3 (0.347) 

 

Conclusions 
Based on RMSE values, it was impossible to determine which model performed better, 
because this was dependent on the experimental conditions. It should be reminded that one of 
the major roles of a model is to provide accurate estimations of a parameter that cannot be 
determined easily. The asymmetric model can be used easily by mycologists because it is 
based on biological parameters. For germination of a population of spores, the widely 
accepted parameter amongst mycologists is the germination time. The asymmetric model 
gave accurate estimations of this parameter, in addition to the percentage of viable spores, 
Pmax. The new model proved also versatile, as it can be adjusted to either apparent symmetric 
or asymmetric germination data. This versatility was obtained through the design parameter d. 
Depending on temperature, the values of d varied in the range 3-45. The value of d did not 
depend on the other parameters and can be related to the variance of the germination time 
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among a population of spores. The greater the parameter d, the less was the variance of the 
germination time.  
 In the present study, only one example of the potential applications of the equation 
was shown. There are many possibilities that the equation can be used, maybe after some 
transformations, to model inhibition or inactivation kinetics observed not only in fungi but 
also in bacteria or other organisms. 
 
 

 
 
Figure 1: Germination curves obtained for A. niger at  10.5°C,  12.5°C,  15°C,  19.5°C, 

 25.5°C,  30°C,  35°C,  37°C,  40.1°C and  41.4°C by the asymmetric model (data 
from Gougouli and Koutsoumanis 2010)  
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Abstract 
In most of the studies dedicated to fungi, germination experiments were carried out 
immediately after spores were produced and harvested. Very few studies were concerned with 
the effect of storage conditions on the germination of fungal spores. After spores are 
disseminated there is a period of time, usually called storage, where the environmental 
conditions are not favorable enough to allow germination. This period of time may increase 
the germination time τ.  
The effects of relative humidity, RH, time of storage, t and temperature, T on τ were assessed 
according to a Doehlert design in the range, 20-100%, 2-28 days and 5-25°C, respectively. In 
the experimental domain, the main factors that affected the germination time were by 
decreasing order of importance, RH, t and T. An increase of the germination time was shown 
for P. chrysogenum at reduced RH's, for increased periods of time and at lower temperatures. 
The key factor was relative humidity, but time may be also of paramount importance for 
storage periods that exceed many weeks.  
 
Keywords: germination fungi, mould, Penicillium chrysogenum, storage, humidity, 
temperature 

Introduction 
The physiological state is an important factor for explaining biological responses, such as 
fungal spore germination and viability (Nanguy and Dantigny 2009). The physiological state 
is affected by environmental conditions during the production of spores and also during 
storage. In general, temperature, conidial moisture content, and the humidity of the storage 
atmosphere are the major factors that influence spore viability (Hong et al. 1997). For most 
fungi, their ability to germinate decreases as temperature, conidial moisture content, or 
relative humidity (RH) increase (Smilanick and Mansour 2007). At a fixed RH, increasing 
temperature (but below that which kills spores) generally decreases the viability of fungal 
spores, whereas lower temperatures (above freezing) increase viability. The relationship 
between RH and viability of fungal spores does not appear to be as simple; most persist 
longer at lower humidity, conversely, some species die more rapidly at lower humidity. An 
isolate of Aspergillus flavus was reported to lose viability rapidly at 75% RH while persisting 
much longer at lower or higher RH (Teitell 1958). 
The effect of the period of time after discharge of ascospores of Gibberella zeae from 
perithecia on germination was also studied (Beyer and Verreet 2005). It was shown that 
freshly discharged ascospores germinated within 4h at 20°C and 100% RH, but the rate of 
germination and the percentage of viable ascospores decreased over time. Humidity during 
storage was a key factor in germination of G. zeae. By incubating ascospores at 53% RH, the 
percentage of viable spores decreased from 93 to 6% within 10 min. To our knowledge there 
are no studies that focused on the effect of the storage conditions on the germination time of 
fungal spores. 
In laboratory studies, freshly harvested conidia are used to study the effect of environmental 
factors on germination time. In contrast, conidia that are disseminated into the environment 
can spend a period of time under unfavourable conditions prior to germination. The objective 
of this study was to assess the effects of RH, time of storage and temperature on the 
germination time of Penicillium chrysogenum by means of a Doehlert design, in the range 20-
100%, 2-28 days and 5-25°C, respectively. 
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Materials and Methods 
Mould 
Penicillium chrysogenum was isolated from a spoiled pastry product and identified according 
to the descriptions of Samson et al. (1995).  

Production of dry harvested conidia 
Potato Dextrose Agar (PDA) medium, 0.99 aw was central point inoculated and incubated at 
25°C for 7 days. Conidia were collected by turning the plates upside-down then gently 
tapping the bottom of the dishes. Dry-harvested conidia were collected on the lid of the 
dishes, the bottom parts were substituted for sterile ones. Conidia were stored into closed 
boxes that contained glycerol solutions to control RH and placed into incubators at various 
temperatures for different periods of time according to the experimental design. 
Germination assessment 
The stored conidia were re-suspended into sterile saline solution (NaCl, 9g/l of water) 
containing Tween 80, 0.05% (vol/vol). After counting the conidia on a Malassez cell, the 
suspensions were standardized to 1x106 conidia ml-1. 10µl of the suspension was poured at the 
surface of a thin layer of PDA medium to allow automatic monitoring of the germination 
without opening the devices (Sautour et al. 2001). At least 100 spores (20-25 per microscopic 
field) were examined through the Petri dish lid every hour. Experiments were carried out in 
triplicate. The length of the germ tubes was measured by means of a Leica DMLB (x200) 
(Leica, Rueil-Malmaison, France) connected to a IXC 800 (I2S, Pessac, France) camera. 
Pictures were analyzed using Matrox Inspector 2.2 (Matrox Electronics Systems Ltd, Dorval, 
Canada). Spores were considered germinated when the length of the germ tubes was equal to 
the greatest dimension of the swollen spore (Dantigny et al. 2006). 

Germination model  
The asymmetric model (Dantigny et al. 2011): P = Pmax ሾ1 െ

ଵ

ଵାቀ t
ഓቁ

dሿ   (1) 

was used to determine the percentage of viable spores, Pmax, the asymptotic P value at t→+∝ 
and the germination time τ(h), the point where P equals half of the Pmax.  

Experimental design 
An experimental domain was defined over 20-100%, 2-28 days and 5-25°C. The Doehlert 
design allows the description of a region around an optimal response and contains k2+k+1 
points for k variables. For 3 variables, a set of 13 experiments was required. In this study, the 
germination time τ (h) was the experimental response. The influence of three environmental 
factors (i.e. variables): RH (X1), time (X2), and temperature (X3) on τ was assessed. The 
experimental values of these three factors are listed in Table 1. The coded values in the range 
(0-1) are used for the determination of the model coefficients.  

Analysis and interpretation of the results 
Multiple regression analysis based on the least square method was performed by using 
Nemrod software (LPRAI, Marseille, France). The analysis concerned the linear and 
quadratic effects of the three factors and their interactions. Thus, the equation giving T90 was a 
second-order polynomial model with 10 coefficients (b0, b1, b12...b23):  
Y = b0 + b1X1 + b2 X2 + b3 X3 + b11 X1

2 + b22X2
2 + b33 X3

2 + b12 X1X2 + b13X1X3 + b23X2X3 
where X1, X2 and X3 = coded factors studied.  
The significance of the coefficients was evaluated by multiple regression analysis based upon 
the F-test with unequal variance. 
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Results and Discussion  
All replicates were characterized by the same values or values that did not differ from more 
than 0.1h. Therefore the statistical analysis was performed on the mean germination time, 
otherwise all parameters coefficients of the model would be significant. The mean 
germination times, τ (h) were reported in Table 1.  

Table 1: Experimental values obtained by applying the Doehlert matrix to assess the effect of 
relative humidity, time and temperature (factors) on the germination time of Penicillium 

chrysogenum (response). 
Experiment                          Experimental values  Germination 

time (h)  RH (%) Time (day) Temperature (°C) 
1 100 15 15 17.5 
2 20 15 15 21.4 
3 80 28 15 19.8 
4 40 2 15 19.0 
5 80 2 15 17.7 
6 40 28 15 21.0 
7 80 19.3 25 19.0 
8 40 10.7 5 20.1 
9 80 10.7 5 18.0 
10 60 23.7 5 19.6 
11 40 19.3 25 20.2 
12 60 6.3 25 17.5 
13 60 15 15 19.6 
 
Depending on the storage conditions, τ varied in the range 17.5-21.4 h. The average 
germination time for the central point of the experimental design, RH 60%, 15 days, 15°C, 
was equal to 19.6h (experiment 13). This value is in accordance with the response means, b0, 
estimated by the polynomial model (Table 2). The suitability of the polynomial model to fit 
the experimental data is strengthened by a value of the determination coefficient, r2 = 0.979. 
All the coefficients for the main effects, b1, b2 and b3 were significant with p-values less than 
0.01. The relative effect of the factors can be ranked according to the absolute value of these 
coefficients. By a decreasing order of significance, the most important factors were RH, time 
and temperature. As compared to the response means and regardless of the other factors, the 
germination time decreased for positive values of X1 because b1 negative lead to b1.X1 also 
negative. The decrease of the germination time with increasing RH was shown on Figure 1. 
At 15°C, τ was equal to about 20h after a storage of 15 days at 20% RH, as compared to about 
17h at 100% RH. This result can be explained by an initiation of the germination process (i.e., 
swelling) during storage at high relative humidity, thus decreasing τ. 
 In contrast, b2 was positive, thus an increase of time, X2, delayed germination. At 
15°C, the germination time of the conidia of P. chrysogenum was equal to about 18h and 
20.5h after being stored for 0 and 30 days respectively, Figure 1.  

Table 2: Parameter estimates obtained by fitting the germination time of P. chrysogenum to a 
second-order polynomial model. 

Coefficient b0 b1 b2 b3 b11 b22 b33 b12 b13 b23 
        
Factor Mean RH t T RH2 t2 T2 RH.t RH.T t.T 
Value 19.6 -1.71 1.27 -0.20 -0.15 -0.25 -0.72 0.06 0.053 1.04 
p-value <0.01 <0.01 <0.01 0.206 31.8 10.1 <0.01 68.2 0.194 <0.01 

 
 
The effect of temperature on the germination time was less clear than that of RH and time 
because the coefficient of the major effect b3 was not as significant as b1 and b2. The quadratic 
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effect of temperature, b33 should be also be taken into account as highly significant, in 
addition to the interactive effect between time and temperature, b23. Assuming, b2.X2 positive 
(for X2>0) and b3.X3 also positive (for X3<0), the interactive effect is negative (b23.X2.X3<0) 
thus antagonistic. The contour plot (Figure 1, right) showed that for a short period of storage, 
the germination time decreased at increased temperatures. Conversely, for long period of 
storage, the germination time increased at increased temperatures. 
 

 
 

Figure 1: Contour plots of the influence of time and RH at 15°C (left), T and RH at 15 days 
(centre), T and time at 60% RH (right) on the germination time of Penicillium chrysogenum 

on Potato Dextrose Agar. 

Conclusions 
In the present study the effects of 3 factors, RH, time and temperature were assessed at 5, 7 
and 3 levels, respectively. For this kind of study, full factorial designs are usually applied. In 
such a case, all the experiments are carried out, thus leading to 5x7x3=105 experiments as 
compared to only 13 with the Doehlert design. Concerning the present study, the paramount 
influence of the relative humidity during storage on the germination time of the conidia of 
Penicillium chrysogenum was highlighted. Obviously, longer period of storage should be 
examined as this could affect the germination time but also the viability of the conidia. Finally, 
it is very difficult to draw conclusions based on one mould only, because a great variability on 
the experimental responses was shown depending on the mould species. The present study is 
currently extended to other fungi. 
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Abstract 
In an attempt to evaluate the life cycle of spoilage moulds in foods as affected by storage 
temperature, the germination time and mycelium growth kinetics of Penicillium expansum 
spores were modelled at isothermal conditions. Additionally, a time lapse microscopy method 
was developed for monitoring the kinetic behavior of the spore after germination. The 
applicability of the derived models in predicting the level of germination at fluctuating 
temperatures was evaluated by comparing predictions with the respective responses under 
dynamic conditions.  
 
Keywords: fungi, modelling, germination, mycelium formation, temperature  

Introduction 
After the contamination of foods with fungal spores and if the conditions are suitable, the 
appearance of visible mycelia depends on the spore germination time and the mycelium 
growth rate (Gougouli and Koutsoumanis 2010). In real situations, the contamination of foods 
with fungal spores usually occurs at very low numbers (Dantigny et al. 2007), and the 
probability that their germination will result in a spoiled product or the production of 
mycotoxins at the time of the consumption depends greatly on the germination time of the 
contaminated spores and the mycelium growth kinetics. Therefore, the development of 
mathematical models, which are able to predict spore germination and fungal growth, is of 
great importance (Dantigny et al. 2002; Gougouli and Koutsoumanis 2010). 
In the objective of assessing the germination of fungal spores, microscopic observations are 
required (Dantigny et al. 2002). Research data indicate that the germination time of a spore is 
not a fixed value and can be characterized better by a probability distribution (Dantigny et al. 
2006). Thus, the primary germination models that are frequently used, quantify the percentage 
of germination of a population of spores in relation to time. On the contrary, fungal growth on 
solid substrates requires direct measurement of the colony diameter over time. The linear 
model is the most widely used for describing the mycelium fungal growth, while the 
mycelium’s growth rate and the apparent lag time can be determined easily.  
All the available models on spore germination and fungal growth have been developed and 
validated based on data from constant conditions. Environmental factor, such as temperature, 
can fluctuate during distribution, retail and domestic storage of foods. If such fluctuations are 
not taken into account during validation of a model, its use in a quality assurance system may 
lead to wrong decisions. Thus, there is a need for studying and modelling spore germination 
and fungal growth in real situations such as dynamic temperature conditions (Gougouli and 
Koutsoumanis 2010). 
Given the above and that fungal behavior has been less studied compared to bacteria, the 
current study was conducted to evaluate the relationship between germination time and lag 
time of individual spores, and to assess the effect of temperature (static and dynamic) on the 
kinetics of germination time.  

Materials and Methods 
The growth and germination of Penicillium expansum was investigated on malt extract agar 
(LAB M, United Kingdom) (aw 0.997, pH 4.2) under isothermal conditions (0.1-33°C). For 
the germination study and mycelium growth kinetics of single spores, portions (100-μL) of 
the inoculum, containing approximately 106 spores and 10 spores, respectively, were surface 
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plated aseptically on Petri dishes containing the solidified medium with a diameter of 90mm 
in the first case and 145mm in the last one.  
For the germination study, at regular time intervals during storage, depending on the 
incubation temperature, the germination of spores was examined microscopically. Spores 
were considered to have germinated when the length of the germ tubes were equal with the 
greatest dimension of the swollen spores (Dantigny et al. 2006). In total, about 450 spores 
were observed in every trial. The percentage of germinated spores was calculated (P(%)), and 
data of P(%) over time were fitted to the modified Gompertz equation (Eq. (1)) for the 
estimation of the germination kinetic parameters (μg and λg): 
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where t (h) is the time, Pt (%) is the percentage of germinated spores at time t, Pmax (%) is the 
asymptotic Pt value at t  +∞, μg (1/h) is the slope term of tangent line through the inflection 
point, and λg (h), the lag time for germination, is the t-axis intercept of the tangent through the 
inflection point. 
For the growth study, perpendicular diameters (mm) of each mycelium were measured 
macroscopically and the average diameter of the colony was plotted against time and fitted to 
a linear model (Eq. (2)) for the estimation of the growth rate μ (mm/h) and the lag time λ (h). 

)()( λµ −= tD t                                                                (2) 
where t is the time (h) and D(t) is the diameter at time t. Based on the above inoculation 
procedure, each mycelium that appeared was assumed to originate from a single spore. The 
growth of approximately 200 mycelia was examined and the cumulative frequencies of the 
estimated λ were fitted to Eq.(1) with the difference that the parameters μm and λm, were used 
instead of μg and λg.  
The effect of temperature on x (x = μg, 1/λg, μm, 1/λm) was modeled using the Cardinal Model 
with Inflection (CMI) originally developed by Rosso et al. (1993): 
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where Topt, Tmin and Tmax are the theoretical optimum, minimum and maximum temperature 
(°C) for germination or growth depending on the case. 
Under dynamic conditions, the prediction of the Pt when the temperature shift occurred (i) 
before the appearance of germ tubes (ts ≤ λgI) was made using Eq. (1), with the predicted λg 
being derived from Eq. (4) as λgT, or (ii) during germination (λgI < ts < tmax, tmax = time that all 
the spores have germinated) was made using Eq. (5). 
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where μgI and μgF is the μg at the temperature before (TI) and after (TF) the shift, respectively, 
as predicted from the CMI (Eq. (2)) and Ps the percentage of germination at the time of the 
shift. 
Additionally, a time lapse microscopy method was developed for monitoring spores’ behavior 
after germination at 25°C.  
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Results and Discussion  
A total of 200 growth curves were plotted for the P. expansum mycelia at each tested 
temperature and the frequency distributions of the estimated lag times from Eq. (2) were 
generated (Fig. 1). The mean values (±st.dev) were 800±71.2, 182.1±25.9, 91.4±11.1, 
55.5±6.4, 37.7±4.2, 30.1±2.7, 35.9±3.9 and 89.1±18.8 h at 0.1, 5.2, 10.5, 15.0, 19.5, 25.5, 
27.5 and 30.5 °C, respectively. As expected, the distributions of single spores’ lag were 
shifted to higher values and became more spread when the temperature shifted to higher or 
lower values from the optimum, indicating that temperature contributes to both the extent and 
variability of the lag of a population of spores.  
The cumulative frequencies of the single spores’ lag, as well the germination data were fitted 
to Eq. (1). The relationship between germination time and lag time of a population of single 
spores is shown in Figure 2. The relative difference %(λm-λg)/λm was found to be constant for 
all temperatures tested (72.5±5.1, mean±st.dev).  
When the effects of temperature on μg and 1/λg were modelled with the aid of CMI (Eq. (3)), 
the estimated values of the cardinal parameters for μg were found to be close to the respective 
values for 1/λg, indicating similar temperature dependence between them (Fig. 3). The same 
trend was also observed for μm and 1/λm. On the contrary, the germination region (Tmin-Tmax) 
was found to be slightly wider compared to mycelium growth region (Fig. 3). This can be 
attributed to the fact that at conditions close to the germination boundaries the spores can 
germinate but are not able to form a mycelium. 
For the trials under dynamic conditions, germination time and mycelium growth was 
predicted with a model based on a cumulative approach for lag and the assumption that the 
rate is adopted instantaneously to the new temperature conditions. An agreement between the 
observed and the predicted plotted germination curves was revealed for all temperature 
scenarios with single temperature shifts before the λg. The same results were observed for 
scenarios with single temperature shifts inside the germination region after λg (Fig. 4). It 
needs to be noted that similar was the effect of temperature shifts on the growth rate of P. 
expansum mycelia (Fig. 5) as reported before (Gougouli and Koutsoumanis 2010). The 
assumption of the model about the rate, however, did not confirmed at scenarios which 
included an abrupt transition from a temperature optimum to a temperature close to minimum 
for germination.  
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Figure 1: Frequency distributions of lag 
times of 200 P.expansum mycelia of 

different temperatures. 

Figure 2: Germination kinetics and cumulative 
frequencies of the lag time of P.expansum spores 

(lines: fitting of Gompertz model). 

 
 
 
 
 
 
 
Figure 3: Effect of temperature on the parameters of the Gompertz model for germination (μg, 

λg) and mycelium lag times (μm, λm) fitted with the CMI (lines).  
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Figure 4: Comparison between observed and 
predicted germination of P. expansum spores 
incubated for 9.7h at 25°C and then at 10°C.  

Figure 5: Comparison between observed and 
predicted growth of P. expansum incubated 

for 97h at 25 °C and then 191h at 5 °C 
(Gougouli and Koutsoumanis, 2010).  

Figure 6: Representative kinetic behavior of a P. expansum single spore after germination. 

Figure 6 illustrates a representative kinetic behaviour of single spore after germination at 
25°C. After measuring the spanning of the peripheral zone, four growth curves were made for 
the four perpendicular radius of growth vs time. After a certain time of exponential growth of 
the tube’s length, the growth for all the surface directions was linear and equal with the 
estimated growth rate from the subsequent macroscopic observation.  

Conclusions  
The data generated and the models developed in this work are useful in understanding and 
predicting the germination and mycelium growth behavior. Additionally, the results on the 
variability of the germination and lag time of P. expansum single spores and the observed 
relationship between spore germination kinetics and lag time for growth can be used for the 
development of stochastic models and the risk assessment of mould spoilage.  
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From single spores to mycelium: variability of Aspergillus 
westerdijkiae, Aspergillus carbonarius and Penicillium verrucosum 
growth and ochratoxin A production 
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1 Laboratory of Food Quality Control & Hygiene, Department of Food Science & Technology, Agricultural 
University of Athens (pskan@aua.gr) 

Abstract 
We evaluated the growth and ochratoxin A (OTA)-production kinetics of single spores of 
Aspergillus westerdijkiae, A. carbonarius and Penicillium verrucosum on Malt Extract Agar 
at a pH 3.5 or 5.5 and aw 0.99 or 0.94, at 10-30 oC. Individual spores were obtained with 2-
fold dilutions in microtiter plates. Fungal growth was determined by measuring the radial 
growth rate (RGR) and time-to-visible growth (TTVG) of colonies from 80-100 spores, while 
6-8 colonies were tested at each sampling time for OTA production (HPLC). The variance of 
TTVG and OTA production by colonies from single spores significantly increased at growth 
limiting conditions (aw 0.94, pH 3.5 and 15 oC or 10 oC for A. westerdijkiae or P. verrucosum, 
respectively). OTA levels ranged from below to above the legislation limits (2-10 µg/L). At 
aw 0.99/20 oC/pH 5.5, no toxin was detected by P. verrucosum. Fitted distributions showed 
marked symmetry regardless of experimental conditions. Given that RGR distributions were 
narrower than those of TTVG, the variability of the latter is likely associated with variability 
in germination times (GT) and growth rates of single germ tubes. GT is the time until the 
length of a germ tube equalled to the diameter of the original spore (~10 μm). We 
microscopically evaluated spore germination on gel ‘cassettes’, by monitoring changes of 
certain spores and % of germinated spores over time, in 10 optical fields per observation. 
Germination data were used to simulate the increase from spore to a mycelium of detectable 
size (1 mm). Monte Carlo simulations (10000 iterations) were used to model spore 
germination, increase in mycelium diameter and time for OTA detection from various spore 
populations (1-100 spores), assuming that spores behave independently. Simulations agreed 
well with validation data, suggesting that these findings may be used for risk assessment of 
OTA production based on the variability in responses of individual spores. 
 
Keywords: germination, mycotoxins, predictive mycology, stochastic, germ tubes, spores  

Introduction 
The variability in the germination time and individual growth rate of germ tube of fungal 
spores has been reflected on the lag time (i.e., the time to visible growth) and radial increase 
of Aspergillus, and Fusarium mycelia grown on corn solid media (Samapundo et al. 2007). 
Experimental protocols involving microscopic observations can be used to monitor the 
kinetics of single fungal spores in response to aw and % ethanol (Dantigny et al. 2005; Judet 
et al. 2008). Individual fungal spore kinetics may serve as a basis in stochastic modelling for 
predicting the time until spoilage occurs, in the form of visible mycellium. A similar concept 
is presented here for assessment of time to toxin production by ochratoxin producing fungi 
based on the variability of single spores in response to temperature, pH and aw. Variability in 
macroscopic data was confirmed by microscopic measurements. 

Materials and Methods 
Isolation of individual fungal spores and macroscopic data collection 
Aspergillus westerdijkiae (ochraceus), A. carbonarius and Penicillium verrucosum were 
grown on Malt Extract Agar (MEA) for 7 days to obtain sporulating cultures and then spores 
suspensions were harvested in sterile water with 0.01% Tween 80. Individual spores of all 
three fungi were isolated using a 1/2 serial dilution protocol in microtiter plates based on 
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calibration curves relating optical density (600 nm) to spores density (Francois et al. 2003). 
Following dilutions, the contents of the aforementioned columns were spread aseptically on 
MEA plates (pH 3.5 or 5.5 and aw 0.99 or 0.94) and were incubated at 10, 15, 20, 25, and 
30oC. Fungal growth was determined by measuring the radial growth rate (RGR) and time-to-
visible growth (TTVG) of mycelia from 80-100 spores, while 6-8 mycelia were tested for 
ochratoxin A (OTA) production (HPLC) at each sampling. 

Microscopic determination of spore kinetics 
Individual germination rate (GR) of germ tubes and germination time (GT) were evaluated in 
cassettes containing solidified MEA between sheets of PVC film. An appropriate volume (0.6 
mL) of MEA at pH 3.5 or 5.5 and aw 0.99 or 0.94 was transferred into the cassettes through 
special holes located on the frame. Fungi were inoculated into the cassettes by injecting a 
total volume of 10 µL of spores suspension through the same holes. Cassettes were incubated 
at 10, 15, 20, 25, and 30 oC. Approximately 200 single spores per cassette were examined 
microscopically. Spores were considered to be germinated when the germ-tube was equal to 
or greater than the diameter of the spore.  

Data analysis 
The kinetic parameters of the single spore experiments were calculated using the Baranyi 
model. The diameter at which ochratoxin levels were detected was also determined. Gamma, 
Normal, Logistic and Weibull distributions were fitted to the kinetic parameters (time-to-
visible-growth, TTVG and radial-growth-rate, RGR) using @Risk 4.5 software (Palisade 
Corp., New York, USA). Distributions were ranked using the Chi-squared (χ2) and the 
Anderson-Darling (A-D) statistical tests. The type error I (a) of 0.05 was used as the cut off 
confidence limit. Monte Carlo simulations (10000 iterations) were used to model spore 
germination, increase in mycelium diameter and time for OTA detection (TTO) from various 
spore populations (1-100 spores), assuming that spores behave independently. 

Results and Discussion  
Level of detection and level of quantification for the ochratoxin A was 0.4-0.5 and 0.9-1.0 
ppb, respectively. The variance of TTVG and OTA production by colonies from single spores 
significantly increased at growth limiting conditions (aw 0.94, pH 3.5 and 15 oC or 10 oC for 
A. westerdijkiae or P. verrucosum, respectively). OTA levels ranged from below to above the 
legislation limits (2-10 µg/L; Fig. 1a). Monte Carlo simulation was performed to predict the 
time-to-ochratoxin detection (tdet OTA) using the following equation (Métris et al. 2003): 

 
RGB
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TTVGt oOTA

OTA

−
+= det

det
   (1) 

where, TTVG (d) and RGR (cm per day) are the distributions that best fitted the data from the 
single spore experiments, d0 (cm) is the initial diameter described by a Poisson distribution of 
the length of a germ tube after spore germination with average equal to the diameter of the 
original spore (ca. 10 μm or 0.001 cm) and ddet OTA (cm) is the diameter at which the OTA 
detection levels were experimentally determined. The distribution of the latter parameter was 
assumed to be uniform. The above equation was used to analyze the dependence of the 
distribution of the tdet OTA parameter on the four variables, RGR, d0 and ddet OTA and TTVG 
(distribution of which depends on the initial number of spores, N0). When there is more than 
one spore and considering that the different spores behave independently, the TTVG was 
estimated by the formula (Métris et al. 2003): 
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The term inside the parenthesis is linked with the concept of the physiological state (Métris et 
al. 2006). For a population consisting of N0 spores, the physiological state is defined as: 

                           (3) )()( NoRGRxTTVGeNoh −=
The TTVG(N0) indicates that the time-to-visible-growth depends on the initial number of the 
spores, N0. The physiological state of the population N0 is equal to the arithmetic mean of the 
individual physiological states:  
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The term inside the parenthesis in the equation (2) was experimentally determined from the 
single spore experiments using the equations (3) and (4). After calculating the TTVGN0, the 
equation (1) was used to determine the new tdet OTA (tdet OTA/N0) for spore population N0 (e.g. 1-
100 spores) by substituting TTVG with TTVGN0 and assuming that spores behave 
independently. Given that RGR distributions were narrower than those of TTVG, the 
variability of the latter is likely associated with variability in germination times (GT) and 
growth rates of single germ tubes. Thus, the % of germinated spores over time reflects the 
expected variance of TTVG (Fig. 1b).  
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Figure 1: Variability in OTA production by A. westerdijkiae (a) and in % of germinated A. carbonarius 
spores (b), in various optical microscopic fields containing 10 spores. 

Table 1: Representative predicted tdet OTA (days) obtained by Monte Carlo simulation for individual 
spores. 

Growth 
conditions Observed and predicted by distribution  

Mean Microorganism Temperature 
(0C) aw pH 

Observed Predicted 
5% 

percentile 
95% 

percentile 
15 0.99 3.5 20-22 15.5 11.3 20 
  5.5 24-26 19.2 16.1 22.4 
 0.94 3.5 20-21 19.7 15.1 24.8 
  5.5 22-24 19.9 17.3 22.8 

20 0.94 3.5 19-21 14.1 12.2 16.0 
  5.5 25-28 17.9 15.6 20.5 

25 0.94 3.5 10-12 8.1 6.4 10 
  5.5 19-20 10.9 9.7 12.3 

30 0.99 3.5 26-28 15.8 11.4 21.2 
  5.5 9-10 7.9 6.3 9.8 
 0.94 3.5 8-11 8.4 6.6 10.5 

Aspergillus 
westerdijkiae 

  5.5 10-17 5.9 5.1 6.7 
Penicillium 
verrucosum 10 0.99 3.5 16-22 16.3 12.3 20.8 

 15 0.99 5.5 8-11 8.7 6.5 11.1 
  0.94 3.5 25-30 22.5 16.5 29.2 
 20 0.99 3.5 18-21 20.5 17.8 23.4 
  0.94 3.5 27-31 29.6 22.3 38.4 
 25 0.99 5.5 16-18 18.6 13.4 26.5 
 
Regarding the distribution fitting for TTVG and RGR parameters, the statistical test showed 
that Gamma distribution was not suitable for fitting in any experimental case. Weibull was 
suitable for fitting in most of the cases but the Normal and Logistic distributions were able to 
fit all the experimental datasets (100%). The logistic distribution displayed a high percentage 
of probability values (p-value) above 0.05 and low percentage with low significance, i.e., p-
value < 0.05, in comparison with the Normal distribution. Therefore, the Logistic distribution 
was further selected to describe the variability of the individual spores relative to the TTVG 
and RGR. Regarding h0, the Gamma distribution was able to fit only a fraction of the 
experimental datasets and Weibull was the most suitable distribution. Under stress conditions, 

488



only Logistic and Normal distributions could adequately fit all experimental datasets. This 
could be due to distributions getting broader by the increased variability under stress. The 
times-to-OTA production predicted by Monte Carlo simulation of germination and growth of 
individual spores agreed well with the experimentally determined tdet OTA production on MEA 
plates almost for all conditions tested (Table 1). Simulations for initial fungal spore 
populations of 100 spores, taking into account the variability in growth kinetics of individual 
spores and based on the assumption that spores behave independently showed that tdet OTA 
were markedly shorter than those required by an individual spore (Table 2; Fig. 2). This was 
also confirmed by microscopic measurements. Therefore, the description of individual spore 
variability may be used to assess the risk of toxigenesis of potentially higher fungal 
populations.  
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Figure 2: Representative differences between the mean predicted times-to-OTA detection of single 
(TTOsingle) and 100 spores (TTO100) inocula, obtained by Monte Carlo simulation. 

Table 2: Detection of single (TTOsingle) and 100 spores (TTO100) inocula 
Growth conditions 

TTO100 Microorganism Temperature 
(0C) aw pH 

TTOsingle-
TTO100 

5% percentile 95% percentile 
15 0.99 3.5 3.1 8.2 17.1 
  5.5 2.8 13.3 19.5 

20 0.94 3.5 3.0 9.2 13.1 
25 0.94 3.5 1.9 4.5 8.4 

Aspergillus 
westerdijkiae 

30 0.94 5.5 1.4 3.8 5.4 
10 0.99 3.5 3.0 8.1 17.0 
15 0.94 3.5 3.4 11.8 25.0 
20 0.99 3.5 1.5 16.3 22.1 
 0.94 3.5 2.7 19.5 36.0 

Penicillium 
verrucosum 

25 0.99 5.5 0.7 12.5 26 

Conclusions 
OTA production varies with the physiological state of spores. TTVG and tdet OTA by any fungal 
population can be predicted through the stochastic behaviour of individual spores.  
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Abstract 
Apples used for the production of juice in Brazil are those that do not reach the standard for in 
natura consumption, therefore there is a risk factor regarding contamination by molds, which 
can produce mycotoxins. The ascospores of heat resistant fungi as Byssochlamys fulva and 
Neosartorya fischeri can be activated by the heat process, being able to germinate and grow 
into the package during storage. The aim of this work was to study the influence of incubation 
temperature and water activity (aw) of the medium on B. fulva and N. fischeri growth on apple 
juice. Agar added apple juices (1.5 g agar per 100 mL) adjusted to different aw levels (0.88, 
0.90, 0.93, 0.97 and 0.99) were put into Petri dishes. Both mold species were grown in plates 
and incubated at different temperatures (10, 20 and 30 ºC) for a period of 3 months. Growth 
responses were evaluated over time in terms of colony diameter changes. Gompertz and 
Logistic models were fitted to experimental data and the result growth rates (µmax) and lag 
phase duration (λ) were further modeled as a function of temperature and water activity. The 
Gompertz model presented a slightly better performance than the Logistic model, so the 
former model was used to determine the growth parameters. The results showed that the 
growth of both molds was affected by temperatures and water activity. The elevation of aw 
from 0.93 to 0.99 led to a decrease in λ and an increase in μmax. How the ready to drink juices 
are usually stored at room temperature, these results are useful to establish the shelf life of 
these products. 
 
Keywords: predictive modeling, heat resistant fungi, growth colony diameter, apple juice 

Introduction 
Heat preservation is the method usually employed for fruit juice. However, heat resistant 
molds can be activated during this process and germinate during juice storage causing 
deterioration of the product, mycotoxin production and economic losses (Engel and Teuber 
1991, Zimmermann et al. 2011).  
Some mold species show characteristics that make them more heat resistant due to the 
capacity of ascospore production. Species like Byssochlamys sp. and N. fischeri are reported 
as mycotoxin producers (Sant’Ana, Rosenthal and Massaguer 2009). 
Mathematical modeling is an efficient tool for assessing how individual or combined 
environmental factors affect microorganisms that degrade processed foods. Various models 
have been developed in predictive microbiology for fitting growth curves and estimating 
biological parameters of food-borne pathogens (McMeekin et al. 2002; Lahlali et al. 2007). 

Materials and Methods 
In this study, the growth of N. fischeri and B. fulva IOC 4518 was analyzed. N. fischeri was 
isolated and identified in Biochemical Engineering laboratory in Federal University of Santa 
Catarina by Salomão (2002) in samples collected from the processing line of apple nectar. B. 
fulva strain was isolated from concentrate apple juice (Salomão et al. 2008).  
The apple juice was prepared from clarified concentrate apple juice by dilution. The aw 
(determined by Aqualab - Models Series 3TE) was adjusted to 0.75, 0.88, 0.93, 0.97 and 0.99 
and the pH to 3.8. The juice was added with 1.5 g of agar per 100 mL of juice and the 
samples were pasteurized at 115 °C/1 min and filled on duplicated Petri dishes of 150 x 
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15 mm. The plates containing the juice were individually inoculated by depositing a loop of 
microorganism in the center of each plate. The colonies growth was analyzed at different 
incubation temperatures (10, 20 and 30 °C) by measuring every 12 hours, approximately.  
The primary models, Gompertz (Equation 1) and Logistic (Equation 2) were fitted to 
experimental growth curves and statistically compared by applying the following indexes: 
root mean square error (MSE) and correlation coefficient (R2) between predicted values and 
observed values. After selection, the best model was used to obtain microbial growth 
parameters: maximum specific growth (μmax (mm/h)) and lag phase duration (λ (h)) for each 
temperature and soluble solids content, using Matlab® software. 

 

[ ]{ }).(expexp.ln MtBAy −−−=                                         
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=                                                    

(2) 

The diameter of the colony is y (mm) at a given time t (h), λ is the length of adaptation phase 
(h); A is the logarithmic increase of population (mm); M is a dimensionless parameter and B 
is the relative growth in half of the time of the exponential phase (h-1). M and B are used to 
determine the microbiological parameters of growth λ and µmax. Secondary models may be 
used with empirical exponential equations, polynomials, logarithmic or other that best 
describe the influence of temperature on the primary parameters of growth (Corradini and 
Peleg 2005). General secondary models (exponential model presented on Equation (3), and 
linear model presented on Equation (4)) were used to describe the influence of the statistical 
significant factors on the growth parameters, using Excel software. 
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Results and Discussion  
Gompertz and Logistic models were fitted and the results are shown in Figures 1 and 2. At 
water activity of 0.88 and 0.75 no growth was observed, even after 4200 hours incubation for 
the three studied temperatures to both microorganisms. At 10 °C, only after 960 hours of 
incubation the growth was observed (data not shown).  

 
 
 
 
 
 
 
 
 
 
 

Figure 1:.Growth curves of B. fulva in apple juice at temperatures of 20 °C (a) and 30 °C (b) 
and water activity conditions of 0.99 (●), 0.97 (♦) and 0.93 (►).The continuous line (−) 

represents the fit of Gompertz model (G) and the dotted line (--) represents the fit of Logistic 
model to the experimental data. 

 

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

Time (h)

Ln
 D

ia
m

et
er

 (m
m

)

(b) 

(a) 

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

Time (h)

Ln
 D

ia
m

et
er

 (m
m

)

491



 
 
 
 
 
 
 
 
 
 
 

Figure 2: Growth curves of N. fischeri in apple juice at temperatures of of 20 °C (a) and 30 °C 
(b) and water activity conditions of 0.99 (●), 0.97 (♦) and 0.93 (►).The continuous line (−) 

represents the fit of Gompertz model (G) and the dotted line (--) represents the fit of Logistic 
model to the experimental data. 

The Gompertz and Logistic models fitted very well to the experimental data for both 
microorganisms, since the R2 values were higher than 0.95. However, the Gompertz model 
fitted better for most temperatures and aw. Analyzing Figures 1 and 2 can be observed that aw 
and temperatures affected B. fulva and N. fischeri growth in apple juice. The highest length of 
lag phase (λ) for B. fulva was 362.1 h to aw 0.93 at 20 °C and the lowest was 14.5 h for aw 
0.99 to 30 ºC. For N. fischeri, the lag phase was higher at 20ºC and aw 0.93, reaching 665.0 h 
and lowest was 17.3 h for aw 0.99 to 30 °C. According to Marin et al. (2008), plotting 
diameters of a mould colony against time a lag phase is observed followed by a linear phase, 
but in most of the cases no decrease in growth rate is observed before the edge of the Petri 
plate is reached. The same was observed in the present results, as shown in Figure 1. These 
results showed that is very difficult to discuss A parameter (maximum colony diameter). 
Considering the end of shelf life of juice is the time when the colony of the fungus becomes 
visible, the parameter λ is determinant to define the shelf life of the product.  
Figure 3 presents the average values B. fulva and N. fischeri in apple juice in function of aw, 
for different temperatures. 
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Figure 3: Influence of aw of the media on the values of B. fulva (a) at  30 °C (♦) and 20 °C (х) 

and N. fischeri (b) at 30 °C (♦) and 20 °C (х) in apple juice. The continuous line (−) 
represents the fit of secondary model (Linear) and the dotted line (--) represents the fit of 

secondary model (Exponential) to the experimental data. 
 
The secondary models for the two microorganisms are shown in Table 1. 
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Table 1: Secondary models for B. fulva and N. fischeri growth parameters. 
Parameters Equation R² 

B. fulva 30 °C 
λ (h) 

 
 

B. fulva 20 °C 
λ (h) 

 
 
 

N. fischeri 30 °C 
λ (h) 

 
 
 

N. fischeri 20 °C 
λ (h) 

)27exp(.129 aw−Ε=λ  
4.11636.1148 +−= awλ  

 
 

)5.31exp(.152 aw−Ε=λ  
4.52856.5304 +−= awλ  

 
 

)4.31exp(.146 aw−Ε=λ  
17246.1728 +−= awλ  

 
 
 

)8.31exp(.154 aw−Ε=λ  
3.97997.9855 +−= awλ  

0.84 
0.71 

 
 

0.99 
0.97 

 
 
 

0.98 
0.98 

 
 
 

0.97 
0.93 

 
The mathematical relation between aw and λ obtained by fitting the Exponential and Linear 
Model for B. fulva and N. fischeri  at 20 and 30°C show that for the higher temperature aw 
medium presents less influence on λ than that observed at lower temperature, for both moulds. 
. The influence of aw and temperature on the growth parameter λ was clearly demonstrated 
through mathematical models that can be employees for both species analyzed, within the 
range of aw studied.The empirical secondary models (Corradini and Peleg 2005) showed good 
prediction (Table 1), once the correlation coefficients (R2) are close to one.  

Conclusions  
It is possible to conclude that the storage temperature of the juice and its soluble solids 
concentration directly influence the growth of the molds B. fulva and N. fischeri and the 
temperature elevation from 20 to 30 °C led to an increase six times in the duration of 
adaptation phase and about two times in the maximum specific growth. 
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Abstract 
The context of this work is the parametric identification of complex microbiological dynamic 
systems by particle nonlinear filtering. It is well known that the successive sampling times at 
which corresponding data are recorded (counts of UFC on Petri plates, or counts of bacteria 
by means of flux cytometry) have a strong influence on the quality of the estimation of the p 
parameters of the considered system model. In Gauchi and Vila (2011a) an innovative 
statistical approach was proposed to sequentially estimate the optimal sampling times. The 
aim of this poster is to give a practical synthesis of this approach, and show an illustration 
based on the Baranyi and Roberts (1994) model (BR model). This innovative approach can be 
put into practice through the FILTREX software (Bidot et al. 2009) presented in a talk of this 
Congress (Gauchi and Vila 2011b). 
 
Keywords: particle nonlinear filtering, sequential optimal designs, predictive modeling, 
microbiology 

Introduction 
Several approaches were proposed to tackle the difficult question of optimal sequential (or not 
sequential) sampling design, where the difficulty is due to both the nonlinearity and dynamic 
aspects of the involved microbiological models. We can cite here, not exhaustively, the 
relevant works of Versyck et al. (1997), Grijspeerdt and Vanrolleghem (1999), Vassiliadis et 
al. (1999), Balsa-Canto and Banga (2000, 2001), Banga et al. (2002), Smets et al. (2004), 
Banga and Balsa-Canto (2005), and also the recent book of Ucinsky (2005). We propose in 
this conference the present work where a new method is summarized from Gauchi and Vila 
(2011a). Indeed, in the particle filtering context it is still an open issue to sequentially find the 
optimal sampling times while minimizing the costly data acquisition. One of the difficulties is 
to use a sampling criterion allowing relatively fast computations, in order to have the next 
optimal sampling time to be computed before the corresponding actual time occurrence. 

Materials and Methods 
The proposed innovative approach is based on a new type of model parameter sensitivity 
indices called SI for brevity’s sake in this communication (see Gauchi et al. 2010, for 
technical details). The main idea of our procedure is threefold: (i) the p SI indices are 
computed and plotted versus time, leading to p sensitivity index curves (SIC), from the initial 
time t0 to the final time tmax of the experiment, a priori chosen; (ii) the first occurring 
maximum among all of these SI curves is determined: it corresponds to the first optimal 
sampling time t1*; (iii) new counts corresponding to samples at this optimal time t1* are 
performed. Then, a new bundle of p SI curves are computed and plotted from t1*. This 
procedure is repeated for finding t2*, etc..., and goes on until the a priori chosen number of 
optimal sampling times is reached or the final time tmax. An important point to emphasize is 
that the successive new SI curves do not forget the previous parameter estimate values, when 
they are computed.  
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Results and Discussion 
Simulation conditions 
In this subsection simulation results obtained with the BR model are displayed: Data (counts 
of bacteria by means of flux cytometry) were simulated by means of the BR model, with the 
following a priori parameter values: N0 = 200 UFC/ml, Nmax = 5×108 UFC/ml, μmax = 
0.05/h,  λ = 50 h. The a priori parameter intervals required by the particle filtering process 
(based on 105 particles) were assumed as: N0 = [140 ; 260], Nmax = [0.5×108 ; 109], μmax = 
[0.01 ; 0.09], λ = [10 ; 110]. tmax was chosen as 504 hours. All these values are realistic 
because they are based on real microbiological studies. 

Bundle of SI curves 
A first curve bundle was computed for the BR model and is displayed on left panel of Figure 
1 from t0 to tmax. One can observe that the first optimal time will be t1* = 2, corresponding to 
the first occuring maximum (on the SI curve corresponding to the N0 parameter). 
 

  
Figure 1: Left panel: bundle of the p SI curves from t0 to the final time tmax; Right panel: 

bundle of the p SI curves from the optimal time t4* = 125 to the final time tmax. 

On the right panel of Figure 1 a new bundle of SI curves from the optimal time t4* = 125 to 
tmax, is displayed: it can be seen that the next optimal time is t5* = 140, corresponding to a 
maximum of the μmax SI curve. 

Sequential optimal time design 
The procedure found successively the ten optimal times t*= {2; 69; 97; 125; 140; 160; 176; 
263; 384; 504} where samplings must be collected. They are displayed on Figure 2 together 
with the simulated sampling data. One can notice the accumulation of the optimal sampling 
times in the first half of the evolution process, which is the most sensitive to the parameters 
N0, μmax and λ. Moreover the extreme right last sampling time has been judiciously 
positioned for the estimation of the fourth parameter Nmax. The maximum sampling time 
number can be automatically determined by the procedure. Here the maximum time number 
of 13 was found. However, as it will be shown in the next subsection, the first ten optimal 
times were sufficient enough for providing correct (anticipated) estimated parameter 
confidence intervals (ECI). Indeed, it will be seen that these ECI are statistically better than 
those obtained from usual sampling time designs.  
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Figure 2: The first ten optimal sampling times and observed data ("∗"). 

Comparison of Estimated Confidence Intervals (ECI) 
 From the 10 optimal sampling times, the particle filtering process provided the following 
parameter estimates with their estimated 95%-ECI given in Table 1.  

Table 1: 95%-ECI’s with the optimal time design. 
Parameter Lower bound Estimation Upper bound 
N0 193 198 204 
λ 48.6 51.6 54.6 
μmax 0.049 0.051 0.053 
Nmax 5.3×108 5.6×108 5.8×108 
 
Table 1 shows that the parameter estimates are very close to the true parameter values. They 
are globally better than those obtained from the design tusual = {0; 72; 120; 168; 240; 264; 
288; 336; 408; 504} already used by the microbiologists, given in Table 2. 

Table 2: 95%-ECI’s with a usual time design. 
Parameter Lower bound Estimation Upper bound 
N0 191 196 200 
λ 61.7 65.1 68.5 
μmax 0.053 0.054 0.055 
Nmax 5.7×108 5.85×108 6.0×108 
 
Results of table 1 are also better than those obtained from the naive 10-time equidistributed 
design between t0 and tmax, given in Table 3. 

  Table 3: 95%-ECI’s with a naive time design. 
Parameter Lower bound Estimation Upper bound 
N0 191 195 199 
λ 59.6 64.0 68.4 
μmax 0.053 0.055 0.056 
Nmax 5.11×108 5.29×108 5.47×108 
 
In Tables 2 and 3 it can be observed that the true parameters values for the crucial μmax and λ 
parameters (0.05 for μmax and 50 for λ) do not lie in the corresponding estimated 95%-ECI’s. 
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On the contrary, thanks to the optimal design, one can see in Table 1 that the true parameter 
values lie in these 95%-ECI’s, which confirms the better quality of the filtering process. 

Comparison with other methods on the same optimal sampling problem 
It is relevant to notice that our optimal time design - based on the ten optimal times shown on 
Figure 2 - is different from those of Grijspeerdt and Vanrolleghem (1999) where the design 
was based on four optimal times. Of course, the reason is that our criterion is different from 
the D-optimality criterion used by these authors. Moreover, the construction of their D-
optimal design was not undertaken in an optimal sequential way. But the crucial point we 
want to recall here is that the D-optimality criterion was invented for linear models, and it is 
only an approximate criterion for nonlinear models such as the BR model. In this mind our 
optimal time design takes into account the nonlinearity of the model thanks to the particle 
filtering context detailed in Gauchi and Vila (2011a). At last, we want to emphasize a strong 
advantage: for determining the D-optimal design in the nonlinear case it is necessary to 
provide parameter guesses, whereas with our approach only parameter intervals guesses (even 
broad) are necessary.   

Conclusions  
This optimal sampling time computation procedure will be soon available in the FILTREX 
software. In the near future a real on-line version will be implanted: the experimenter will 
have the possibility to enter real observational data (counts) at each optimal sampling time 
computed by the procedure. In a further work this sequential optimal design procedure will be 
extended to hierarchical models. 
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Abstract 
Statistical process control (SPC) for microbial counts in foods has been little investigated, yet 
in all cases the assumptions of normality of microbial concentrations and constant within-
batch standard deviation has been maintained. Previous research, however, has shown that the 
variance in contaminated food units cannot be assumed constant batch to batch, and 
furthermore that the within-batch spread measure correlates with the within-batch mean 
concentration. Additionally, for microorganisms present in low concentrations such as 
pathogens, the gamma distribution, assumed as the true within-batch distribution, has 
represented the observed plate count data by far better than the lognormal distribution. These 
latest findings posed the question as to whether the fundamentals of classical SPC – whereby 
the production process is assumed to be in control with a fixed process quality of μ (a long 
run mean concentration CFU/g) – could be applied for microbial counts considering the 
evident variability that occurs batch to batch. A novel SPC methodology for microorganisms 
of low counts is proposed that takes elements from variables sampling plan theory but it is 
based on the sample units created by the process itself. The ‘observed’ quality of a lot (j) is 
assumed to vary at random according to a Poisson-gamma (kj,mj) model with correlated 
random effects for the within-batch mean mj and the within-batch dispersion kj. On a two-
dimensional space, a contour of tolerance criterion or critical level is established with basis on 
previous history of unsafe production lots, so that sampling inspection should distinguish 
unsatisfactory from satisfactory. Samples distributions for each of the lots, simulated from the 
lots’ universe, are used to estimate the α (probability of misclassifying a satisfactory lot as 
unsatisfactory) and β (probability of misclassifying an unsatisfactory lot as satisfactory) risks 
at different upper control limits (UCL, samples’ mean), so as to find an appropriate UCL. 
This methodology has been tested for the establishment of SPC for Enterobacteriaceae on pre-
chill beef carcasses using Irish abattoirs’ data. For a critical level of a maximum of 10% of 
the carcasses within a batch exceeding 60 CFU/cm2, a UCL of 12 CFU/cm2 that minimises 
the ‘mean’ conditional α and β risks at 6.6% is recommended for a sample size of 5 carcasses 
while for a sample size of 10, a UCL of 15.5 CFU/cm2 will minimise both mean risks at 
3.4%. This novel procedure for SPC can be utilised in the development of both food safety 
criteria and process hygiene criteria based on the availability of multiple bacterial counts from 
production.  
 
Keywords: statistical process control, microbial counts, poisson-gamma 
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Proposal for operating characteristic curves developed for 
Cronobacter in powder infant formula 
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Dublin, Belfield, Dublin 4, Ireland. 

Abstract 
The microbiological criteria established in the EC 2073/2005 for Cronobacter in powder 
infant formula (PIF) are based on two-class attribute sampling plans, where the sample results 
are qualitative (sample indicates presence or absence) and the lot is rejected if any sample is 
positive. The performance of a sampling plan is revealed by its OC curve which plots the 
probability of acceptance against possible values of proportion defective. The objective of this 
study was to generate several OC curves assuming different statistical distributions of 
Cronobacter in PIF in order to determine and compare the probabilities of rejecting/accepting 
the lot and the respective level of contamination. The microbial distribution of Cronobacter in 
PIF was described by assuming a Poisson-lognormal (PLN), Poisson-gamma (PG), Zero-
inflated Poisson (ZIP) and Zero-inflated Poisson-gamma (ZIPG). For each distribution the 
proportion defective of the population was estimated in order to determine the probability of 
acceptance. Furthermore, the effect of clustering of the bacteria on the probability of 
acceptance of the lot was assessed through a Poisson-logarithmic (PLOG) and a PLogn 
distribution. Probabilities of accepting the lot at a given level of contamination change 
drastically according to the statistical distribution assumed and by changing the values of its 
own parameters. The best case scenario was described by the PLN where we are 95% 
confident of rejecting a lot with mean level of contamination of 0.083 or 0.202 CFU/g 
(assuming standard deviation 10 and 100 CFU, respectively). Furthermore, results show that 
the size of the clusters does not have any effect on the proportion acceptable of the sample, 
which is affected only by the distribution of the clusters in the powder. The statistical 
distribution of Cronobacter in PIF and the sampling plan implemented play a crucial role in 
determining the confidence level of rejecting a contaminated lot. 
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Tracing the contamination levels of acid curd cheese implicated in an 
outbreak of listeriosis in Austria, 2009/2010 
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Public Health, Veterinaerplatz 1, 1210 Vienna, Austria. 

Abstract 
As a result of an outbreak investigation on a cluster of 34 cases of listeriosis, with 8 fatalities 
mainly occurring in elderly, sour-milk cheese was identified as the source of infection. The 
company launched a recall action from Austrian and German supermarket chains and cheese 
of eighteen incriminated lots was shipped to the Institute for Milk Hygiene, Milk Technology 
and Food Science. All recalled cheese lots were investigated with challenge tests (storage at 4 
°C, 15 °C, 20 °C), cultural methods (ISO 11290:1&2) and culture-independent quantification 
(qPCR). The lots were tested after delivery, at the end of shelflife (that is up to 50 days post 
production), and to mimic a worst case scenario, at timepoints beyond the shelf-life. Sixteen 
out of eighteen (16/18) lots were positive for L. monocytogenes at each timepoint whereas 
levels of L. monocytogenes increased dramatically during storage. The highest population 
enumerated in cheese was 2.8 × 108 CFU/g; however, intralot variability was crucial. Data 
collected througout this particular cheese chain included aw and pH changes during ripening 
and storage of cheese and temperature during ripening and retail display and were fitted by 
proper distributions. Monte Carlo simulations were applied to describe the variability in early 
stages of potential contamination scenarios and predict the potential increase of L. 
monocytogenes with time. Predicted pathogen levels were plotted against the limit of 
quantification of the enumeration method. This approach is capable of showing the theoretical 
“at-line window of response” since, by using actual sampling schemes, a cheese lot could be 
contaminated but still remain undetected (due to the low contamination level being present). 
Such simulations may be used for re-assessment of the shelf life of this product under the 
constraint of L. moncytogenes growth and for establishing realistic performance objectives for 
L. monocytogenes before the product leaves the processing establishment. 
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