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Recent evolution of fungicide resistance in French populations of
Mycosphaerella graminicola

By A-S WALKER', ] CONFAIS!, D MARTINHO', G COULEAUD?, G BEAUVALLET?,
d C MAUMENE? and P LEROUX?

UNRA, UR 1290 Bioger-CPP, Avenue Lucien Brétignieres, 78850 Thiverval-Grignon, France
“Arvaliss - Institut du Végétal, Station de Boigneville, 91720 Boigneville, France

Summary

Sterol 140-demethylation inhibitors (DMIs) have been widely used in many European
countries and erosion of efficacy, correlated with significant shifts in sensitivity of
M. graminicola populations, has been recorded for most of them. Recently, sirains highly
tesistant to DMIs have been isolated from French but also other European populations.
This work aims lo characterize these M. graminicola field isolates and to evaluate the risk
of practical resistance if they were to progress in populations. Target alleration, linked
to one or several changes in the gene CYP51, enceding sterol 14a-demethylase, was the
basic resistance mechanism in all DMI-resistant strains. Changes in CYP51, combined
with the overexpression of drug efflux transporters probably result in multidrug resistance
in the more resistant phenotypes. Morcover, some isolates moderately or highly resistant
to DMIs harbour an insertion in the CYP51 promoter and/or new combinations of already
known mutations in the target gene. An inoculated field trial showed that efficacy of all
fungicides may be partially reduced when these strains are dominant.

Key words: Mycosphaeretia graminicola, azale, acquired resistance, CYP51, multidrug
Tesistance, resistance dynamics, efficacy

Introduction

'Se_Plol‘ia leafblotch, caused by Mycosphaerella graminicola (anamorph Seproria tritici) is the major
Oliar disease of winter wheat in France and Western Europe. Sterol 14¢-demethylation inhibitors
MIs) have been the key components of fungicide strategies used to control this disease in the
;if:zﬁf:rs- Most are triazole derivatives (e.g. prroconazole, c.:p.oxiconazo.le, fluquinconazole,
Midazo]e‘) melconnz.ole, lebllCDlla?OIG)l, but‘ this class of fungicides also includes prochloraz
terol 14a.3nd prothioconazole (1_riazoI111eth|onc). _ . . .
‘?Ia, includiemethyl_ﬂse_(CYPS_ lisa gytochrome P450 reqm.red for sterol blos.ym.he.sm in various
450 by bindpg fungi. Itis 1‘]1e bt.ochemlca.l target of DMls, which are lhm_lght to inhibit cytocl}rome
it eh INg to the active site “cysteine pocket™ via a protonated nitrogen atom coordinated
aem iron,
:;s;g:f?;:f%{al}ts and humans, DM.I resislanc_e may be determined by (1) .alleralions.in (?YP§ L,
s of stero 1a4 inity of DMIs for their target site (2) CYP51 overexpression, resulting in high
ATP-ng, u-demethylase and (3) an increase in the eﬁ”h._lx o'f DMIs, due to th.e upregulation of
tof these efIFTg cassetic) or MFS (major facilitator superfamily) transporters.m the mcmbra_ne.
UX pumps can transport various unrelated compounds and their overproduction
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may lead to multiple drug resistance (MDR). A combination of these mechanisms, leading (o the
polygenic control of DM] resistance, is commonly found in clinical isolates of Candida albicans
{Akins, 2005).

In M. graminicola, DMI resistance in European countries resylted mostly from changes jn
CYP51, at least until 2007 (Cools er al., 2003, Leroux er al., 2007). However, a continuous shif
in sensitivity to DMIs has been observed recently, consistent with additional mechanisms, and this
“quantitative” or “multiple-step” resistance is thus cottsidered to be polygenic {Cools & Fraaije,
2008; Chassot ef af., 2008). Eight categories of strains (TriR1-TriR8) displaying reduced sensitivity
to DMIs have been characterised in previous studies and were classified into two main groups, TriLR
{TriR1-TriR5) and TriMR (TriR6-TriR8) {Leroux ef al., 2007; Fig. 2). This classification is based
on in vitre responses to various families of DMIs including pyridines (e.g. pyrifenox}, imidazoles
(e.g. prochioraz, triflumizole) and triazoles (e.g. difenaconazole, epoxiconazole, fluquinconazole,
propiconazole, tebuconazole, triadimenol), and changes in the target encoded by CY P51, Monitoring
in 2008, 2009 and 2010 resulted in the identification of new sirains, more resistant to DM than
those found before 2010. The aim of this study was to characterize these new isolates, for their
phenotypic and genotypic characteristics but also also to evaluate thejr progression in populations
and the associated risk of practical resistance.

Material and Methods

Origin of samples

Nineteen isolates of Mycosphaerella graminicola were collected tn 2009 in France and UK
after isotation from diseased wheat leaves. Irish isolates are a kind gift from Professor O’Sullivan
(Teagasc). Isolates collected before 2007 were used as reference isolates representing the various
phenotypes TriR |- TriR§ {Leroux et al., 2007). All isolates were kept as mono-conidial cultyres on
a medium containing 20 g L malt, 5 g L yeast extract and 12.5 g L' agar, at 17°C in the dark.

Bulk populations were produced from at least 20 diseased leaves, collected in ficld trials all
over France, A few samples were also collected in the UK. These samples enabled assessing the
frequency of the various phenotypes in populations,

Resistance phenotype characierization

Sensitivitics of the single conidia isolates towards DMI inhibitors were determined at different
concentrations, following a geometric progression of x2, x2.5 or x3, on a medium containing
glucose 10 g L, K,HPO, 2 g L1, KH,PO, 2 g L and agar 12.5 g L. Germ-tube elongation was
assessed microscopically after 48 |y incubation at 17°C in the dark. EC,, values and resistance
factors (RFs) were determined as described previously (Leroux & Walker, 2011).

Frequency of resistance in bulk poputations were determined using discriminate doses offungicides
{Leroux er al., 2007), including high doses of epoxiconazole, prothioconazole, prochloraz and
pyrifenox that detect only novel TriR strains.

Molecular procedures
DNA from the isolates was extracted using a sarcosyl-based protocol. PCR-amplification was
performed for the CYP5] gene as previously described (Leroux er al., 2007). CYP51 promoter
insertion was checked using the protocol from Chassot ef al, (2008) as it was suggested to be linked
to CYPS| overexpression, by the author.

Inoculated field trial
A field trial, cultivar Tremie, located in Boigneville (Paris area, France), received a cover spray
of chlorothalonil (750 £ ha'') at stage GS31-32. The trial was then inoculated three times with
spore suspensions of either TriR6, TriR9 or MDR-6 strains (see below for description), respectively
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at stage GS39, GS45 and GS51. The second fungicide treatment was applied at stage GS45. The
disease progression was noticed weekly, as was the proportion of leaf surface covered by septoria
necrosis, in the non inoculated control plot, in the inoculated and treated plots.

Results and Discussion

Characterization of novel TriR strains

Thorough examination of isolated novel TriR strains revealed various new phenotypes (Leroux
et al., 2011), different to those previously described (Leroux et al., 2007) (Table 1).

Among them, phenotypes TriR5+, TriR8+, TriR9 and TriR11a exhibited very high resistance
factor (> 100) towards one or a few DMIs, especially pyrifenox. TriR5+ and TriR8+ exhibit the
same cross-resistance pattern that TriR5 (no or weak cross-resistance with tebuconazole) and TriR8
(no or weak cross-resistance with prochloraz), respectively, but with either RFs (Table 1). Indeed,
these isolates share the same changes in CYP51 as the phenotypes they are derived from (Fig.
1). No CYP51 promoter insertion was observed within these strains. Their additional resistance
mechanism is still unkown. Alternatively, TriR9 isolates were highly resistant to pyrifenox and
newly combined the V/C136A and S524T changes in CYP51. This phenotype was most commonly
found in Ireland and South-West England in 2009, in addition to France. TriR 11a isolates exhibited
very high resistance towards pyrifenox, bromuconazole, fluquinconazole and flusilazole (Table 1)
and exhibited the new combination of changes V/C136A + 1381V + D134G in CYP51 (Fig. 2). In
addition, CYPS1 promoter insertion was found in some TriR11a isolates.

Type a[DYGYG ] (458462} Type b [ D--YG ] wsee2)
Tris L ;
I I i |
Y137F Mut 459, 460, b4 A 459460
F 461 !
4 1
TriR1?2/R3 TriR2/R4a | TriR4b
i
1381V VIC136A 1 VIC136A 1381v
N [P |
TriLR TriR6 TriR5a = = Tri R5+ *+ = Tri R5b - TrRT
THMR i i :
mr 1381V ssut | S524T A3ITIG mdr
e . : + + o
TriR10 [ TRe, | 1 TRy, | Tire | [MBRES
| !
D134G mdr ; s
1 1
L TAR1Y ! TriR8+
1

Fig. 1. CYP51 molecular background of resistance to DMIs in field isolates of Mycosphaerella

graminicola.

The last three categories of phenotypes (MDR-6, MDR-7 and MDR-10) exhibit very high
cross-resistance for most tested DMIs; they therefore are named TriHR strains (Table 1; Fig. 1).
Positive cross-resistance was also noticed with tolnaftate, a squalene epoxidase inhibitor (RF=25),
strobilurins (RF=4-10, when compared to QolR isolates), inhibitors of succinate deshydrogenase
(SDHIs) (RF=5-15) but not with chlorothalonil, fenpropimorph, fludioxonil, cyprodinil and
fenhexamid (Leroux & Walker, 2011). Examination of CYP51 sequence did not reveal any new
mutation or combination of mutations in these strains, and confirmed their resistance mechanism
had been selected in CYP51 TriR6, TriR7 or TriR 10 genetic background, respectively for MDR-6,
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Fig. 2. Occurrence of field trials with the presence of new TriR strains in populations in French populations
of $. tritici in 2009 and 2010,

MDR-7 and MDR-10 phenctypes (Fig. 1). In addition, CYP31 promoter insertion was found in
some bul not all of these isolates. Complementary experiments (data not shown) revealed that drug
transporter modulators reduced resistance to various prochloraz, tolnaftate or boscalid in our in vitro
test, for strains from the MDR-6 and MDR-7 phenotypes (MDR-10 not tested). All together, these
data suggest that multiple resistance related to overexpression of one or several MFS- or ABC-
transporters oceurring in these isolates. Moreover, multidrug resistance was already suggested in
the taboratory (Roohparvar et al., 2008) or field isolate of M. gramiinicola, but without correlation
‘With Phenotype (Cools ef al., 2005h). This would represent the second case of multidrug resistance
n Phytopathogenic fungi afier Bofrytis cinerea (Kretschmer ef af., 2009), whereas, this mechanism
1s well established for human pathogens {Akins, 2005).

Progression of novel TriR strains in French and other European populations

NOYel TriR strains were first observed in 2008 in 3% of the bulk populations analysed in our routing
Mmonitoring as spores exhibiting long germ tubes at high doses of various DMIs. These isolates
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were successfully isolated in 2009, At that time, they were present in 13% of the tested populations,
with a mean frequency of 0.6% in the whole sampling and 4.9% in positive plots. The maximum
observed frequency was 40% from a positive location in Brittany. These emerging phenotypes
were observed again in 2010 at higher frequencies. In 2010, they were detected in 30.3% of the

mples (20.4% for non MDR strains, i.e. TriR5+, TriR8+, TriR9 and TriR 11 yand 11.7% for
MDR strains, i.e. MDR-6, MDR-7 and MDR-10), Their mean frequency was 4.5% in the whole
sampling (3.2% for non MDR and 1.3% for MDR) and 14.7% in positive plots (15.8% for non
MDR and 9.8% for MDR). At last, very high frequencies were observed in a few locations (96%
for non MDR and 90% for MDR). Moreover, a few populations collected in the UK in 2009 and
2010 revealed that some of these emerging phenotypes (MDR and non MDR) were also present in
this country at low frequencies. More generally, non MDR strains were detected in many European
countries at increasing freque > and many new genotypes (novel combinations of CYPS]
mutations) were characterized, after sequencing (G Stammler, BASF, personal communication),
Since the molecular mechanism of MDR strains is still unknown, this category of strain can only
be detected iby monitoring using phenotyping methods.

As observed in Fig. 2, these emerging phenotypes had a greater occurrence in July 2009 and
2010, i.e. after a mean application of two treatments. As DMIs are the basis of septoria leaf blotch
chemical control, this would suggest that these fungicides strongly select these new isolates. As
positive cross-resistance is observed in MDR strains between azoles, Qols and SDHISs. It remains
conjecture as to what extent Qols and SDHIs modes of action have selected for MDR strains.

CTN 1100

EPZ100+PCZ 316

See Table 1 for the characterization of strains. Frequency of these strains in inoculated control plots were
checked at 95, 98 and 95% frequency, respecti
¢ level in the untreated control
PTZ: prothioconazole
EPZ: epoxiconazole
SDHLI: succinate dehydrogenase inhibitor
CTN: chlorothalonil
PCZ: chloraz

Fig 3. Field efficacy of various fungicides in plots inoculated with strains of S. Iritici resistant to azoles.
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Efficacy of fungicides in 2010

The generalisation of TriMR strains, at the beginning of 2000, had lead to the erosion of azoles
efficiency, which meant they had to be used in mixture. Despite the emergence, in 2008, of new
phenotypes highly resistant to azoles, efficacy of programs using the best fungicides remained
similar to the previous years standards, although 2010 was a year of low disease pressure (Maumene
et al., 2010). These good results seem to contradict the fact that some highly resistant strains are
present in populations. Obviously, their still relative scarceness may explain this observation. It is
difficult to predict if these strains will progress in populations up to level at which they will affect
fungicides efficacy. To answer this question, an inoculated field trial was conducted in Boigneville
in 2010. Results are presented in Fig. 3. Analysis of the population structure in inoculated control
plots revealed that the inoculated strains were dominant (>95%). Efficacy of most triazoles,
epoxiconazole, prochloraz, prothioconazole were reduced in the presence of TriR9, and more
particularly, or MDR-6 strains. Efficacy of SDHI was reduced only in the presence of the MDR-6
strain. Interestingly, efficacy of fungicides was only partially, and not fully, reduced. As expected,
the efficacy of chlorothalonil, a multisite inhibitor, was not affected.

Conclusion

Finally, M. graminicola populations keep evolving and new resistant phenotypes can regularly be
described, because DMIs fungicides are not likely to be abandoned in wheat disease management
programmes. At least two resistance mechanisms, i.e. target alteration and drug transporters
overexpression, seem to be responsible for these increasing RFs observed in resistant isolates.
They can also cumulate in a single strain, maybe without any evident fitness penalty.

Some of the new phenotypes (TriR5+, TriR8+, TriR9 and TriR11), classified among the TriMR
group, may not exhibit high resistance risk and could be controlled by optimized chemical strategies.
The situation may be different for TriHR-MDR strains. Further work is needed to understand more
accurately how the MDR mechanism is responsible for azoles and other unrelated modes of action,
resistance in M. graminicola. Especially drug transporters need to be identified, as well as the genome
alterations responsible for their overexpression. Practical concerns to estimate their fitness and of
the field efficacy losses that may occur are urgently needed, to be able to recommend effective
preventive anti-resistance strategies. As these strains exhibit positive cross-resistance between all
DMIs subgroups, SDHIs and Qols, all three families are commonly used on wheat, qualitative and
qQuantitative selective pressure of the various molecules need to be estimated.
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