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Abstract: Spin-up runs usually used to initialize mechanistic biogeochemical 
models highly increase the time required to make simulations. The aim of this 
paper is to evaluate the use of linear and quadratic regression models, as an 
alternative way to initialize such models. This option is illustrated with the grassland 
ecosystem Pasture Simulation model (PaSim) under a range of climate, soil and 
management conditions. Coupled to the CENTURY model for the soil processes, 
PaSim simulates fluxes of C, N, water and energy at the soil-plant-animal-
atmosphere interface for managed grasslands at the plot scale. This study 
demonstrates the feasibility of approximating steady state SOM (Soil Organic 
Matter) by a quadratic regression. For instance, PaSim initialization using a 
quadratic regression with P-ET0 (Climatic Water Balance indicator) is about 500 
times faster than using spin-up runs. However, quadratic SOM regression provides 
a 10-15% gap, due to the existing variability in SOM response to climate (e.g. ~7% 
standard deviation for one P-ET0 value of the climate year). Anyway, these 
quadratic regressions could be used in future vulnerability assessments that 
require a prohibitive number of simulations for complex models.  
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1. INTRODUCTION 
 
Soil organic matter (SOM) is the primary reservoir in grasslands of organic carbon 
(C) and nitrogen (N) and plays a key role in mitigating GHG (Green House Gas) 
emissions. Classical biogeochemical models incorporate a mechanistic view of the 
SOM dynamics and provide a sound basis for development of generalised 
response signals of SOM pools (Guo and Giffort [2002]). There is a concern that 
the different SOM pools are vulnerable to future warming (IPCC [2001]), and this 
emphasizes the need for understanding SOM dynamics.  
 
There is a great number of relevant parameters influencing climate change 
vulnerability, and a high level of uncertainties in climate change impact studies 
(e.g. emission scenarios, climate modelling, downscaling and initialization, and 
modelling of the impacts on a target system). So assessing the vulnerability of soil 
stocks needs many simulation runs to gain an accurate understanding of the 
influence of environmental variables. This suggests that a pertinent Design of 
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Experiment (DOE) should be employed to reduce the time required for simulations 
(Lardy et al. [2011a]). Such an amount of simulations also needs high 
performance computing resources to scatter simulations in distributed 
environments. 
 
However, due to the often lack of experimental data and/or the difficulty to link up 
measurements with SOM input values, a common way to initialize models is to put 
them at equilibrium with climate and management. For that initialization, spin-up 
runs are usually performed to bring the soil C and N pools to steady-state (e.g. 
millennia, Wutzler and Reichstein [2007]). To avoid the prohibitive computational 
time required by this conventional approach, we can build response surfaces (i.e. 
metamodels) of SOM, i.e. approximations of the relationship between inputs and 
outputs in much simpler terms than the full simulation model (Kleijnen et al. [2005]). 
In this study, we document the creation of such response surfaces simulated under 
a range of climate, soil and management conditions in France by the Pasture 
Simulation Model (PaSim, Riedo et al. [1998]). This study is also a first step in 
SOM vulnerability assessment, taking into account different sources of 
uncertainties (Lardy et al. [2011a]), such as climate, management, soil and plant 
species. 
 
The next section presents the grassland model used in this study. The third section 
describes the DOE and the steps taken to prepare and conduct the experiment. 
Then we analyze the results and discuss them. The concluding section identifies 
key results and explores future research needs. 
 
 
2. MODEL DESCRIPTION 
 
The Pasture Simulation model (PaSim, Riedo et al. [1998]) is a multi-year, plot-
scale, biogeochemical model to simulate water, C and N cycles in grassland 
systems on a daily to sub-daily time step. Soil processes are based on the 
CENTURY model of Parton et al. [1988]. Photosynthetic-assimilated C is either 
respired or allocated dynamically to one root and to three shoot compartments. 
Accumulated aboveground biomass is used by either cutting or grazing, or enters a 
litter pool. Soil organic Carbon (SOC) is represented in three pools (active, slow 
and passive) with different potential decomposition rates, while above and 
belowground plant residues and organic excreta are partitioned into structural and 
metabolic pools. The N cycle considers three types of N inputs to the soil via 
atmospheric N deposition, fertilizer N addition, and symbiotic N fixation by 
legumes. The inorganic soil N is available for root uptake and may be lost through 
leaching, ammonia volatilization and nitrification/denitrification, the latter processes 
leading to nitrous oxide (N2O) gas emissions to the atmosphere. Management 
includes N fertilization, mowing and grazing and can either be set by the user or 
optimized by the model (Vuichard et al., [2007]; Graux [2011]). The vegetation is 
simulated at the community scale without accounting for species interactions. In 
this PaSim version, nitrogen fixation is simulated by assuming a constant legume 
fraction. The animal module [Graux et al., 2011] simulates the performance of 
grazing ruminants (suckler cows with calves, dairy cows and heifers) in response to 
climate and management. This version 5.3 of PaSim was used in this study, with 
the algebraic method for equilibrium search method (Lardy et al. [2011b]) already 
developed to reduce computation time. 
 
 
3. DESIGN OF EXPERIMENT 

 
Design of experiments (DOE) has a rich history, with many theoretical 
developments and practical applications in a variety of fields. Since the beginning 
of computer simulation, DOE has been an active research field (Kempthorne 
[1952]; Amblard et al. [2003]). In the modelling field, DOE is a needed tool for 
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efficiently testing and analysing the behaviour of a model (Kleijnen [1987]). Most of 
model simulations aim at exploring and/or testing the behaviour of the model. A 
parameter or a model input is called a factor in the DOE terminology, and it could 
either be qualitative or quantitative (Kleijnen et al. [2005]). Each factor can take two 
or more values, called levels. An experimental design is a combination of factor 
levels. 
 
In environmental dynamics modelling, models became increasingly more complex 
at the pace of the growth of computational power. Due to the high number of model 
parameters and the computation time required for a single run, the needed time by 
a sequential machine is usually too expensive for a full factorial DOE. This implies 
that, first of all smart but less complete DOE are used and, on top of that, 
distributed computing is required. The use of a proper DOE will help to get, firstly, 
all the information we are looking for. The second point is to have the smallest 
number of simulation runs for a desired accuracy, which implies the optimization of 
the total computation time. Computation time is then considerably reduced thanks 
to the distribution of processes on parallel architectures. 

 
3.1. Factor choice and simulation domain 

 
The size of the simulation domain was reduced by considering exemplary climate 
and management conditions in France. Similarly, the number of potential 
agricultural practices was restrained to mown grasslands. Default vegetation 
parameters were used (see Riedo [1998]). An experiment was run based on the 
combination of three kinds of factors: 
- Soil. We used 102 dominant grassland soils of France (through the French 

ANR ‘VALIDATE’ project http://www1.clermont.inra.fr/ validate), characterized 
by texture (silt, sand and clay), depth, bulk density and pH. Other soil 
characteristics were not considered in the design as they are highly linked to 
these four properties. The data do not contain the whole combinations of 
depth x texture x density x pH, thus a qualitative value was assigned to each 
soil (i.e. one number per soil) for the purpose of DOE’s conception. On the 
other hand, soil properties were used for response surface estimation. 

- Climate. For each spin-up run, we repeated a cycle of three years until the 
equilibrium is reached. One can show that three years is a good compromise 
between speed and performance (data not shown). Climate data are from 
1970 (or later) to 2006, at 12 sites, representative of the climate in France 
(408 years of hourly weather data), provided by the French ANR ‘CLIMATOR’ 
project (http://w3.avignon.inra.fr/ projet_climator). Due to the complexity of 
choosing an array of variables representative of the climate, and in order to 
have a consistent coverage of the domain, climate was considered as a 
qualitative trait for the conception of the DOE. We also added atmospheric 
CO2 concentration and site elevation to the design. 

- Management. Constant over the three years of the spin-up runs, different 
agricultural practices depend on the number of cuts and nitrogen fertilization 
rates. Systems were analyzed with one to four cutting events per year, with 
about one month interval between each one. Fertilization rates (in the form of 
ammonitrate) varied from 0 to 120 kg N ha-1 per year, applied 30 days before 
the first cutting event and two days after other cuts (except after the last cut). 
The same amount of N was supplied at each fertilization event under condition 
that a minimum of 40 kg N ha-1 is provided at each event. The presence of 
legumes in the sward is also linked to practices, and was added to the design 
(in the form of fraction in the sward). 

 
 

3.2. Choice of the experimental design 
 
Due to the number of factors and their levels in the study (Table 1), most classical 
designs (e.g. factorial design) are not directly applicable. We decided to use a Latin 
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Hypercube Design (LHD) for its good space-filling properties with a relatively low 
number of sample points. The size of LHD is the least common multiple of the 
levels (i.e. 157080). A simple transformation was applied on each factor to get the 
correct level. We refined it by optimizing the ‘maximin’ criterion (Johnson et al. 
[1990]) over 100 designs. 
 

Table 1. DOE Factors and levels 
Name of the factor Number of levels Information 
Climate year 1 408 

Three levels of input are considered in 
the response surface regression 

Climate year 2 408 
Climate year 3 408 
Atmospheric CO2 
concentration 

8 320–390 ppm 

Soil 102 Depth, bulk density, pH and texture are 
used in response surface regression 

Number of cuts 4 1; 2; 3; 4 
1st cutting date 7 1st April to 1st May 
2nd cutting date 7 16th May to 15th June 
3rd cutting date 7 1st July to 31st July 
4th cutting date 7 16th August to 15th September 
Legume fraction 5 0; 10; 20; 30; 40% 
Nitrogen 
fertilization rate 

6 0; 40; 60; 80; 100; 120 kg N ha-1yr-1 

Elevation 20 50–1000 m a.s.l. 
 
 

3.3. Regression methods 
 
The design previously described, allows us to build a response of the SOM to 
climate, soil and management. In our case, we restricted our study to the simplest 
approaches, i.e. linear and quadratic regressions, with different climate entries. 
Indeed, we used three alternative models according to temporal grain: 
- a single variable per year: P-ET0, where P is the annual precipitation sum, and 

ET0 the annual sum of the reference potential evapotranspiration by Allen et 
al. [1998], adjusted of the CO2 effect (Olioso et al. [2010]) 

- five variables per season: average air temperature, average global radiation, 
average air humidity, average wind speed and precipitation sum 

- five variables per month: average air temperature, average global radiation, 
average air humidity, average wind speed and precipitation sum 

As the order of the years is negligible on the total SOM (<1%, data not shown), 
years were sorted by aridity conditions for the regression (i.e. by P-ET0 in the first 
case, and by the Martonne-Gottman index (De Martonne [1942]) in the two other 
cases. All the regressions and statistical tests were done using “biglm” package by 
Lumley [2011] in the software R [2011]. 
 
 
4. RESULTS AND DISCUSSION 
 
We launched simulations on the Biomed VO grid, thanks to the OpenMOLE 
software by Reuillon et al [2010], in order to reduce the computing time required 
(about four years on a single modern CPU) by the number of runs involved. 
 
The goodness of SOM regressions was analyzed by three performance indices, 
the Relative Root Mean Squared Error (RRMSE, Table 2), the Root Mean Squared 
Relative Error (RMSRE, Table 3), and the modelling efficiency (EF, Table 4). All 
these indices use the comparison between values predicted by regression (Pi) and 
values given by PaSim (Oi) for each ith simulation in the design. For RRMSE and 
RMSRE, the nearer to zero they are, the better the prediction is, whereas best 
predictions are at one for EF. All the indices calculated for soil organic nitrogen 
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showed the same pattern as those calculated for SOC (data not shown). The 
results for SOC (Table 2, Table 3, Table 4) clearly show that climate information 
contained in the annual variable P-ET0 is sufficient for a linear regression of SOC 
pools at equilibrium. Indeed, the RRMSE decreases when moving from annual (P-
ET0) to seasonal and monthly variables (e.g. radiation, temperature), because the 
addition of explanatory variables reduces the squared errors (and improve the 
efficiency) of least-squares regressions. However, the RMSRE, which gives more 
weight to the relative error and less to the total amount of the error, is only 
improved in five of 22 cases. 
 

Table 2. RRMSE ("Relative Root Mean-Squared Error") values of linear and 
quadratic regressions of five carbon (C) pools and their totals for three climatic 

input levels (P-ET0, Season or Month) on design points.  

 ����� � �∑ �	
��

²�
�� ��� � ��� ; where Pi is the ith prediction by the regression model 

and Oi the ith corresponding value by PaSim 
 Linear Quadratic 

P-ET0 Season Month P-ET0 Season Month 
Metabolic C 38.87 36.21 36.09 34.17 29.14 27.78 
Structural C 30.25 28.81 28.75 21.56 16.60 15.69 
Active C 27.54 26.59 26.49 18.34 14.99 14.08 
Slow C 21.03 19.85 19.75 14.99 11.18 10.38 
Passive C 20.89 19.71 19.62 14.85 11.04 10.25 
Total C 21.39 20.12 20.03 15.26 11.20 10.42 
 

Table 3. RMSRE ("Root Mean-Squared Relative Error") values of linear and 
quadratic regressions of five carbon (C) pools and their totals, for three climatic 

input levels (P-ET0, Season or Month) on design points. 

 ����� � �∑ �	
��
�
 �²�
��
� � ��� ; where Pi is the ith prediction by the regression 

model and Oi the ith corresponding value by PaSim 
 Linear Quadratic 

P-ET0 Season Month P-ET0 Season Month 
Metabolic C 83.05 81.61 81.44 60.95 56.70 54.59 
Structural C 38.99 39.95 39.94 21.32 19.98 19.55 
Active C 35.77 36.06 36.05 21.94 20.67 19.71 
Slow C 28.47 28.55 28.49 17.33 15.39 14.42 
Passive C 28.38 28.44 28.37 17.10 15.11 14.15 
Total C 28.62 28.75 28.69 17.23 15.20 14.27 
 

Table 4. Modelling Efficiency values of linear and quadratic regressions of five 
carbon (C) pools and their totals, for three climatic input levels (P-ET0, Season or 

Month) on design points. ������ !�" � � # ∑ $%�&'�(²!���∑ $'�&'�(²!���  ; where Pi is the ith 

prediction by the regression model and Oi the ith corresponding value by PaSim 
 Linear Quadratic 

P-ET0 Season Month P-ET0 Season Month 
Metabolic C 0.183 0.360 0.367 0.468 0.662 0.702 
Structural C 0.662 0.703 0.704 0.853 0.918 0.927 
Active C 0.609 0.645 0.649 0.858 0.909 0.921 
Slow C 0.688 0.731 0.735 0.863 0.928 0.939 
Passive C 0.687 0.731 0.734 0.863 0.929 0.939 
Total C 0.695 0.739 0.742 0.865 0.931 0.941 
 
The transition from a linear to a quadratic regression can considerably improve 
performance, regardless of the three statistical criteria considered (e.g. efficiency 
increases from ~ 0.7 to ~ 0.9 for the total soil C). This improvement is not solely 
due to the increased number of explanatory variables. Indeed, the quadratic 
regression with P-ET0 contains 172 against 196 variables in the linear regression 
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with monthly climatic input. Unlike linear regression, moving from an annual climate 
variable to five seasonal variables causes an improvement of the quadratic 
regression (e.g., RRMSE decreased from 15% to 11% for total soil C). 
  
The poor quality of the regression of metabolic compartment is partly due to the 
rapid turnover (0.5 years) (Parton et al. [1988]) of this component, and its strong 
relationship with the state of plant biomass. Given its rapid turnover, this 
compartment is more influenced by last year climate than by the full climatic cycle. 
Indeed, the regressions were improved by the use of unsorted years [data not 
shown], with an efficiency of 0.629 against 0.367 for a linear regression using 
monthly climate data. However, the prediction gain is only apparent for the 
metabolic compartment, which represents on average only 0.89% of the total soil 
biomass. The lack of sorting led to a slight drop in the prediction accuracy (e.g. 
0.71 vs. 0.69 for the efficiency of the total organic matter with P-ET0). 
 
PaSim showed a failure rate of 4.0‰, only on alkaline soil (8 ≤ pH ≤ 8.5), where 
numerical instability in computing the ammonia concentration was exacerbated by 
dry climate and intensive management. It is also interesting to note that 0.95‰ of 
the equilibria do not exist (even after a 100 cycles with the matrix equilibrium 
search (Lardy et al. [2011b])). These situations are characterized by more cutting 
events than on average (ca. 2.8 vs. 2.5), lower fraction of legumes (on average, 
10% vs. 20% for the overall design) and lower fertilization rates (46 kg N ha-1 vs. 
an average 66 kg N ha-1). These conditions are unsustainable for grasslands, 
turning out into excessive exploitation (mowing) in relation to resources (resource-
poor nitrogen), and causing lack of balance if climate and management were 
extended indefinitely. Indeed, in the absence of any equilibrium the model slowly 
moves to herbage zero biomass. 
 
Although SOM decomposition rates are temperature dependent in the model, 
elevation does not significantly change SOM values in this study, as the effects of 
elevation and climate were tested independently (the elevation effect was tested 
without changing input climate data and conversely). As expected, atmospheric 
CO2 concentration, legume fraction and the amount of fertilizer applied have a 
positive effect on the organic matter, because they promote plant growth and thus 
increase the inflow of SOM. Similarly, mowing has a negative effect due to the 
export of material. As the model simulates SOM throughout the soil profile, it 
makes sense to find a positive effect of soil depth, as for the bulk density which has 
an overall positive effect. The increase in each of the texture fractions has a 
negative effect, however, which is lower for silt content. It is interesting to note that 
the effect of the agrometerorological indicator P-ET0 has a positive effect on 
organic matter (in fact, an arid climate results in decreased productivity of the 
grassland associated with reduced flow). Moreover the effect of the two driest 
years is almost twice as much as the wettest year (standardized regression 
coefficients, for the total carbon, with linear regression with P-ET0: 6.0, 5.2, 3.0 kg 
C m-2 mm-1). These results show that the behaviour of the PaSim model is 
coherent with the state-of-the-art of plant-soil interactions. 
 
We can observe (Figure 1) that the response of SOC at equilibrium to climate is 
noisy. Indeed, we can easily cover a quite big range of SOC values for each value 
of P-ET0 (of a single meteorological year). We can evaluate on this two examples, 
a standard deviation of 5-7%. This can be explained by the fact that in situ intra-
annual vegetation dynamics contain threshold effects, for example phenology, and 
that there are non-linearities in the equations (e.g. energy budget) and inputs (e.g. 
precipitations). Somehow, it proves the interest of biogeochemical models use 
(compared to approximation models) to simulate SOM dynamics. It shows that a 
model like PaSim is able to produce information that cannot be fully reproduced by 
regressions. Moreover, with regression models, it is harder to detect the lack of 
equilibrium than with usual equilibrium simulations. Indeed, regressions can 
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provide SOM equilibrium 
(unrealistic situations). 
 

Figure 1. Influence of the change of one climatic year on SOC at equilibrium. Left: 
extensive, arid grassland on shallow soil; right: humid, intensive grassland on deep 

 
5. CONCLUSION 
 
This study demonstrates 
quadratic regression 
models. Using P-ET0 may be sufficient to capture the climate 
example, initialization by quadratic 
times faster than PaSim spin
SOM  response to climate (e.g. ~7% standard deviation for one of the three climate 
year). Vulnerability analysis is a multi
sensitivity and uncertainty analyses at different levels (e.g. Lardy et al. [2011a]), 
and thus requires a huge amount of simulation runs. The present 
regressions could be 
number of simulations 
extended to projections of 
vulnerability indices on the 
using current climate 
existence of equilibrium may be of interest.
necessary to prove that this approximation model contains specific trends and 
global maxima and minima. The authors also intend to test alternative 
approximation models, for instance based on the Kriging method.
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