Thematic and citation structure dynamics of Organic Food & Farming research
Guillaume Ollivier, Stephane Bellon, Servane Penvern

To cite this version:
Guillaume Ollivier, Stephane Bellon, Servane Penvern. Thematic and citation structure dynamics of Organic Food & Farming research. 3. ISOFAR Scientific Conference at the 17. IFOAM Organic World Congress, Sep 2011, Gyeonggi Paldang, South Korea. hal-02748525

HAL Id: hal-02748525
https://hal.inrae.fr/hal-02748525
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thematic and citation structure dynamics of Organic Food & Farming research

Ollivier, G. 1, Bellon, S. 1 & Penvern, S. 1

Key words: OF&F, scientometrics; document co-citation analysis; specialty detection

Abstract

This paper analyses the Organic Food & Farming (OF&F) scientific domain dynamic through a “progressive document co-citation analysis” based on peer-reviewed papers from Web of Science. The dataset of OF&F domain displayed an exponential growth and a thematic diversification pattern. Both dominant and marginal clusters in association with their main cited articles were identified. This study enables to pinpoint major themes addressed or emerging. It can feed further research work and projects, namely with the definition of information system and research policy.

Introduction: need for research and research needs in OF&F

The organic sector is increasingly considered by stakeholders as a tangible alternative to address current challenges faced by agriculture. This leads to a continuous expansion of both the knowledge base and the demand of synthesis in OF&F. Several authors suggested topics for research, whether as general themes (Watson et al., 2008; Rahmann et al., 2009) or specific fields (Kristiansen et al., 2006). Others addressed the specificity of organic research approaches (Lockeretz, 2000; Watson et al., 2008; Drinkwater, 2009). However, such reviews do not analyse evolutions in topics within the OF&F literature. This assessment is important as transnational projects and journals dedicated to OF&F develop. We propose, using scientometrics, to identify dynamic of specialties and associated research topics in OF&F domain.

Material and methods

The progressive document co-citation analysis (PDCA), developed inside the CiteSpace Software (Chen et al., 2010), allows to find the intellectual basis of specialties developed within the OF&F domain by mapping its internal citation structure. A co-citation link occurs when two documents are cited in the same citing documents. PDCA identifies high-density patterns (clusters) inside the co-citation network. Theses clusters gather the documents often cited together (intellectual basis) upon which authors build their specialties. The analysis is progressive since the dataset is divided into n-years slices, thus useful to interpret the clusters evolutions. As citation clusters are hierarchically organised, we iteratively tested various threshold parameters to produce different co-citation networks in order to detect a common robust structure emerging from the different resulting clustering. To better synthesise information, we gathered structurally and topically coherent clusters thanks to the CiteSpace automatic cluster labeling which detects specific cluster terms from citing documents (Chen et al., 2010).

The Web of Science was used because it includes the cited references for each publication. The challenge was to build a query representing all the aspects of OF&F research (production modes, products, social dimensions) without inducing noises. Indeed, some terms related to OF&F are also used in other domains. After a first query, we extracted terms using “organic” to test their specificity in the OF&F domain.

1 UR 0767 Ecodéveloppement, INRA E-Mail : gollivier@avignon.inra.fr
We finally built a complex query, composed of 120 specific terms representing the domain and resulting in a dataset of 4401 journal articles from 1975 to 2009.

Results

The dataset displayed a clear exponential growth associated with a thematic diversification pattern (Figure 1). The OF&F domain was firstly developed inside Agricultural sciences. Every subject area (SA) increased in the 90’s except for Sociology whose growth remained relatively low. Lately, three SA have dominated the domain: Agriculture (Multidisciplinary) and Agronomy prevailed jointly until 2001 and afterwards; they exhibit a rather similar growth.

Figure 1: Evolution of significative subject areas

The third SA, Food Science & Technology, remained marginal until 1999 before being the second most important one after 2002. While Ecology was also a major SA, it did not face such a development and increased constantly after the late 90’s. In the meantime, secondary SA emerged with significant growth during the past years: Dairy and Animal Sciences, Economics, Applied Chemistry and Nutrition & Dietetics.

Table 1: main features of specialties detected

<table>
<thead>
<tr>
<th>Specialty</th>
<th>year</th>
<th>1st Author</th>
<th>title</th>
<th>Journal</th>
<th># cited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farming performances</td>
<td>1973</td>
<td>Pimentel</td>
<td>Food production and the energy crisis</td>
<td>Science</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1978</td>
<td>Berardi</td>
<td>Organic and conventional wheat production: evaluation of energy and economics</td>
<td>Agronomy</td>
<td>13</td>
</tr>
<tr>
<td>Soil</td>
<td>1993</td>
<td>Reganold</td>
<td></td>
<td>Science</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>Drinkwater</td>
<td></td>
<td>Ecological Applications</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>Krebs</td>
<td></td>
<td>Nature</td>
<td>30</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>2005</td>
<td>Hole</td>
<td>Does organic farming benefit biodiversity?</td>
<td>Biological Conservation</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>Weese</td>
<td>A comparison of organically and conventionally grown foods - results of a review of the relevant literature</td>
<td>Journal of the Science of Food and Agriculture</td>
<td>118</td>
</tr>
<tr>
<td>Food qualities</td>
<td>2001</td>
<td>Brandt</td>
<td>Does organic agriculture decrease the nutritional value of plant foods?</td>
<td>Idem</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>Boom</td>
<td>A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods</td>
<td>Critical Reviews in Food Science and Nutrition</td>
<td>98</td>
</tr>
<tr>
<td>Consumer & consumption determinants</td>
<td>1998</td>
<td>Schifferstein</td>
<td>Health-related determinants of organic food consumption</td>
<td>Food quality and Preferences</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>Magnusson</td>
<td>The effects of organic agriculture on biodiversity and abundance: a meta-analysis</td>
<td>Agriculture and Human Values</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>Lockie</td>
<td>Organic agriculture: does it influence the nutritional value of plant foods?</td>
<td>Applied Human Sciences</td>
<td>16</td>
</tr>
<tr>
<td>Sociology of OF&F dynamics</td>
<td>1997</td>
<td>Buck</td>
<td>Organic farmers in Ontario: An examination of the conventionalization argument</td>
<td>Sociologia Ruralis</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>Hall</td>
<td>Organic farming in the US: a typical example of the conventionalisation process</td>
<td>Idem</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>Padel</td>
<td>Recent development and political acceptance of organic farming in Europe</td>
<td>Idem</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Guthman</td>
<td>The trouble with 'organic' in California: a rejoinder to the conventionalisation debate</td>
<td>Idem</td>
<td>27</td>
</tr>
</tbody>
</table>

2Each journal in Web of Science is associated with 1 or more SA. For more details see: http://science.thomsonreuters.com/mjl/subject/scope.jsp.
The first major co-citation cluster identified concerns performances in the 80’s turn, with studies tackling the energetic and environmental crisis of agriculture. This introduced the multiple farming performances assessment in the domain. The domain “diversification” occurred since the turn of the 90’s in correlation with its global growth A specialty related to Soil historically dominated while new specialties emerged. They are related to Biodiversity, Food content, Consumers, and Social aspects of OF&F development.

The main specialty (Soil), composed of many citation sub-clusters (almost 30% of detected clusters and included references) also contained the most cited references of the domain, with various focus of Soil. The most structured approach, first developed, concerned soil biological activity. It essentially referred to the Journal Soil Biology & Biochemistry, which introduced methodologies to measure soil biological features. Related smaller and peripheric clusters focussed on specific biological compartments.

A second and more recent approach focussed on nutrient cycling, particularly on the role of nutrient processes in soil fertility. Some clusters combined the previous two approaches with a holistic view of soil. This approach is supported by comparative studies in agronomy or soil ecology, centered on the effects of organic/conventional systems or practices (fertilisation, tillage) on different soil features.

The Biodiversity specialty is the most distinctive of the domain due to the weakness of its interconnexion to other clusters. Emerging at the 90’s turn, it concerns studies and reviews on farming systems or practices comparisons to assess the effects of intensification on diverse elements of biodiversity (landscape, vertebrates, weed communities). Surprisingly, no citation cluster appears with Biodiversity as a source of services for farming.

Another well-structured specialty concerns organic food content in comparison with conventional food. Two linked clusters, without clear delineation, emerged in the beginning of the 2000’s. The specialty focussed on chemical characterisation and to a lesser extent on nutritional and sensory quality concerns. Few studies appear in citing articles on the effects of organic food on human health, but not as a specialty per se, ie without a structured intellectual basis. The specialty is weakly linked to clusters focussing on farming system while some papers refer to the effect of specific production practices on food quality.

The connexion between production and products issues is made through references related to consumer and sociological approaches of OF&F dynamics. The first specialty is based on two main clusters. The first one, occurring as a dense cluster around the 90’s turn concerns factors determining consumer purchase decisions. Corresponding studies reveal the importance of Nutrition and Health determinants that are now emerging issues in the “food content” specialty. The second cluster largely extends this approach with a slight evolution in the type of references used. Whereas the first one is mainly anchored in Food Science & Technology, the second one includes more Economics and Sociology corresponding to the integration of commodity chains, linking production and consumption with individual-focused studies.

This partly explains the connexions between the last specialty and the one concerning social sciences approaches of OF&F development dynamics. Indeed, the clusters of this specialty, emerging at the turn of the 90’s, share a common intellectual basis specific to their discipline whereas they mix different aspects of OF&F from producers to consumers. The main cluster concerns issues about OF&F sector development from the farmer level, with adoption/conversion/abandonment determinants, to the institutional level, with policy issues and certification devices, also addressing
collective actions and geographical diffusion. These aspects, emerging in the beginning of 2000’s, are gathered under the conventionalisation thesis in OF&F development. A second cluster is focused on OF&F as an element of power/poitics transformation in food system/chain/network through the localism issue.

In addition, some marginal clusters, ie with less structured intellectual basis, occurred in the DCA tested. Some expected topics concerning production practices were marginal or absent. Clusters concerning dairy production may arise in some networks but are still in a marginal position. When present, this topic concerned animal health in organic production. We also expected to find specialties about crop protection and weed control but these topics are not based upon a highly cited reference pool.

Discussion and conclusion

The OF&F domain is very dynamic as shown with the continuous emergence of specialties. This outlines the gradual recognition and incorporation of OF&F into the larger agricultural scientific and policy communities where it is progressively viewed both as one credible variant of “alternative” agriculture and as a new research field. The analysis highlights the recurrence of comparative approaches of performances and effects. Researchers rarely design new production systems or techniques and they often tend to value OF&F in confrontation with a conventional model, still considered as the reference. This questions the autonomy of OF&F research.

This growth suggests early stages of development. As well as OF&F sector, research development could suffer forms of conventionalisation. Even if the multidisciplinarity and holistic approaches are fundamental in the emergence and the identity of the domain, recent specialisations induce some issues about the maintenance of OF&F as a separate domain. Yet organic research proved to be rarely different from those used in conventional agriculture (Lockeretz, 2000; Watson et al., 2008).

We highlighted the institutionalisation but also some lacks in topics we expected. There is a methodological issue about detecting this kind of emerging or lightly structured topics, because statistical tools tend to detect patterns with high frequency. We could deepen our study by using lower thresholds or other parameters in DCA to detect more clusters and crossing with other types of analysis to detect marginal topics (Chen et al., 2010).

References

Chen, C., Ibekee-SanJuan, F., Hou, J., 2010. The Structure and Dynamics of Co-Citation Clusters: A Multiple-Perspective Co-Citation Analysis. Journal of the American Society for Information Science 61, 1386–1409.

